
BOUNDS FOR DISPERSERS, EXTRACTORS, AND DEPTH-TWO
SUPERCONCENTRATORS∗

JAIKUMAR RADHAKRISHNAN† AND AMNON TA-SHMA‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 2–24

Abstract. We show that the size of the smallest depth-two N -superconcentrator is

Θ(N log2 N/ log logN).

Before this work, optimal bounds were known for all depths except two. For the upper bound, we
build superconcentrators by putting together a small number of disperser graphs; these disperser
graphs are obtained using a probabilistic argument. For obtaining lower bounds, we present two
different methods. First, we show that superconcentrators contain several disjoint disperser graphs.
When combined with the lower bound for disperser graphs of Kővari, Sós, and Turán, this gives an
almost optimal lower bound of Ω(N(logN/ log logN)2) on the size of N -superconcentrators. The
second method, based on the work of Hansel, gives the optimal lower bound.

The method of Kővari, Sós, and Turán can be extended to give tight lower bounds for extractors,
in terms of both the number of truly random bits needed to extract one additional bit and the
unavoidable entropy loss in the system. If the input is an n-bit source with min-entropy k and the
output is required to be within a distance of ε from uniform distribution, then to extract even one
additional bit, one must invest at least log(n − k) + 2 log(1/ε) − O(1) truly random bits; to obtain
m output bits one must invest at least m− k + 2 log(1/ε)−O(1). Thus, there is a loss of 2 log(1/ε)
bits during the extraction. Interestingly, in the case of dispersers this loss in entropy is only about
log log(1/ε).

Key words. dispersers, extractors, superconcentrators, entropy loss

AMS subject classifications. 94C15, 05C35

PII. S0895480197329508

1. Introduction.
Superconcentrators. An N -superconcentrator is a directed graph with N distin-

guished vertices called inputs, and N other distinguished vertices called outputs, such
that for any 1 ≤ k ≤ N , any set X of k inputs and any set Y of k outputs, there
exist k vertex-disjoint paths from X to Y . The size of a superconcentrator G is the
number of edges in it, and the depth of G is the number of edges in the longest path
from an input to an output.

Superconcentrators were studied originally to show lower bounds in circuit com-
plexity. Valiant [23] showed that there exist N -superconcentrators of size O(N); Pip-
penger [16] showed that there exist N -superconcentrators of size O(N) and depth
O(logN). On the other hand, Pippenger [17] showed that every depth-two N -
superconcentrators has size Ω(N log2N). This raised the question of the exact tradeoff
between depth and size, which attracted much research during the last two decades [17,
7, 19, 1]. Table 1.1 gives a summary of the results. Here λ(d,N) is the inverse of

∗Received by the editors November 3, 1997; accepted for publication (in revised form) July 6,
1999; published electronically January 13, 2000. A preliminary version of this paper appeared as
Tight bounds for depth-two superconcentrators, in 38th Annual IEEE Symposium on Foundations of
Computer Science, 1997, pp. 585–594.

http://www.siam.org/journals/sidma/13-1/32950.html
†Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India (jaikumar@

tcs.tifr.res.in). This work of this author was done while visiting the Institute of Computer Science,
Hebrew University, Jerusalem, Israel.
‡International Computer Science Institute, 1947 Center Street, Berkeley, CA 94704 (amnon@

icsi.berkeley.edu). The work of this author was done while at the Department of Computer Science,
Weizmann Institute of Science, Rehovot, Israel. The research of this author was supported by a Phil
Zacharia postdoctoral fellowship.

2

EXTRACTORS, DISPERSERS, AND DEPTH-TWO SUPERCONCENTRATORS 3

Table 1.1

Depth Size

2 O(N log2 N) [17], Ω(N log3/2 N) [1]
3 Θ(N log logN) [1]
4, 5 Θ(N log∗N) [7, 19]
2d, 2d+ 1 Θ(Nλ(d,N)) [7, 19]
Θ(β(N)) Θ(N) [7]

functions in the Ackerman hierarchy: λ(1, N) behaves like logN , λ(2, N) behaves
like log∗N . In general, λ(d,N) decays very rapidly as d grows; β grows more slowly
than the inverse of any primitive recursive function. We refer the reader to [7] for
the definition of λ and β. Thus, the dependence of the size on the depth was well
understood for all depths except two. In this paper, we close this gap.

Let size(N) denote the size of the smallest depth-two N -superconcentrator.

Theorem 1.1 (main result). Size(N) = Θ
(
N · log2 N

log logN

)
.

For the upper bound, we use the method of Wigderson and Zuckerman [24], who
showed how superconcentrators can be constructed using a type of expander graphs
called disperser graphs.

Definition 1.2 (disperser graphs [20, 6]). A bipartite graph G = (V1 = [N], V2 =
[M], E) is a (K, ε)-disperser graph, if for every X ⊆ V1 of cardinality K, |Γ(X)| >
(1 − ε)M (i.e., every large enough set in V1 misses less than an ε fraction of the
vertices of V2). The size of G is |E(G)|.

Nisan and Wigderson suggested (see [14]) that it might be possible to choose
better parameters in the construction given in [24]. We implement their suggestion to
obtain superconcentrators by putting together a smaller number of disperser graphs.
These disperser graphs are obtained by probabilistic arguments.

Remark. The best explicit construction known gives N -superconcentrators of size
O(N(logN)poly(log log n)) (see [22, 13]).

We also observe a connection in the opposite direction: every depth-two su-
perconcentrator contains many disjoint disperser graphs. Thus, lower bounds for
disperser graphs imply lower bounds for depth-two superconcentrators. Using this
method, we derive a simple Ω(N · (logN/log logN)2) lower bound for depth-two N -
superconcentrators; this is only a factor of log logN away from the upper bound. To
obtain the optimal lower bound, we use a method based on the work of Hansel [9]
(see also Katona and Szemerédi [11]).

Dispersers and extractors. Disperser graphs arise from disperser functions. For a
random variable X taking values in {0, 1}n, the min-entropy of X is given by

H∞(X) = min
x∈{0,1}n

log(1/Pr[X = x]).

Definition 1.3 (dispersers). F : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-disperser
if for all random variables X taking values in {0, 1}n with H∞(X) ≥ k and all W ⊆
{0, 1}m of size at least ε2m, we have

Pr[F (X,Z) ∈W] > 0,

where Z is uniformly distributed over {0, 1}d.
With F : {0, 1}n × {0, 1}d → {0, 1}m, we associate the bipartite graph GF =

(V1, V2, E), where V1 = {0, 1}n, V2 = {0, 1}m, and there is one edge of the form (x,w)

4 JAIKUMAR RADHAKRISHNAN AND AMNON TA-SHMA

for each z such that f(x, z) = w. In this graph, the degree of every vertex in V1 is
exactly 2d.

It is then easy to verify the following.
Proposition 1.4. F is a (k, ε)-disperser iff GF is a (2k, ε)-disperser graph.
One special case of disperser graphs is the class of highly-expanding graphs [18],

sometimes called a-expanding graphs [24]. These are bipartite graphs G = (A =
[N], B = [N], E), where for any two subsets X ⊆ A, Y ⊆ B of size a, there is an edge
between X and Y . This is clearly equivalent to saying that G is a (K = a, ε = a

N)-
disperser graph. If G is an a-expanding graph, then Ḡ (the bipartite complement of G)
has no subgraph isomorphic to Ka,a. Such graphs have been studied extensively, and
the problem of determining the maximum possible number of edges in these graphs
is known as the Zarankiewicz problem (see [2, pp. 309–326]). An elegant averaging
argument, due to Kővari, Sós, and Turán, gives good upper bounds on the number
of edges in these graphs. When applied to disperser graphs, this method gives the
following lower bounds.

Theorem 1.5 (lower bounds for disperser graphs). Let G = (V1 = [N], V2 =
[M], E) be a (K, ε)-disperser. Denote by D̄ the average degree of a vertex in V1.

(a) Assume that K < N and
⌈
D̄
⌉ ≤ (1−ε)M

2 (i.e., G is not trivial). If 1
M ≤ ε ≤ 1

2 ,

then D̄ = Ω(1
ε · log N

K), and if ε > 1
2 , then D̄ = Ω(1

log(1/(1−ε)) · log N
K).

(b) Assume that K ≤ N
2 and D̄ ≤M/4. Then, D̄K

M = Ω(log 1
ε).

Dispersers play an important role in reducing the error probability of algorithms
that make one-sided error. In such applications, we typically have ε ≤ 1/2. Also,
a-expanding graphs fall in this category, because there ε tends to 0. Hence, the
case ε ≤ 1/2 is the one usually studied. However, for showing lower bounds for
superconcentrators, we need to consider the case ε > 1/2.

For reducing the error in algorithms that make two-sided error, one requires the
function to satisfy stronger properties. Such functions are called extractors. For a
survey of constructions and applications of dispersers and extractors, see the paper
of Nisan [13].

For distributions D1 and D2 on {0, 1}n, the variational distance between D1 and
D2 is given by

d(D1, D2) = max
S⊆{0,1}n

|D1(S)−D2(S)|.

Definition 1.6 (extractors). F : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor,
if for any distribution X on {0, 1}n with H∞(X) ≥ k, we have that d(F (X,Ud), Um) <
ε, where Ud, Um are random variables uniformly distributed over {0, 1}d and {0, 1}m,
respectively.

In this view, an extractor uses d random bits to extract m quasi-random bits
from a source with min-entropy k. Graphs arising from extractors have uniformity
properties similar to random graphs.

Definition 1.7 (extractor graphs). A bipartite multigraph G = (V1 = [N], V2 =
[M], E) is a (K, ε)-extractor with (left) degree D, if every x ∈ V1 has degree D and
for every X ⊆ V1 of size K, and any W ⊆ V2,∣∣∣∣ |E(X,W)|

|E(X,V2)| −
|W |
|V2|

∣∣∣∣ < ε.

Here, E(V,W) is the set of edges between V and W in G.

EXTRACTORS, DISPERSERS, AND DEPTH-TWO SUPERCONCENTRATORS 5

We then have the following analogue of Proposition 1.4 (see Chor and Goldreich [4]
and Zuckerman [25]).

Proposition 1.8. F is a (k, ε)-extractor iff GF is a (2k, ε)-extractor graph.
Theorem 1.9 (lower bounds for extractors). There is a constant C > 0 such

that the following holds. Let G = (V1 = [N], V2 = [M], E) be a (K, ε)-extractor with
K ≤ N

C . Then,

(a) if ε ≤ 1
2 and D ≤ M

2 , then D = Ω(1
ε2 · log(NK));

(b) if D ≤ M
4 , then DK

M = Ω((1
ε)2).

In the terminology of functions this means that if F : {0, 1}n×{0, 1}d → {0, 1}m is
a (k, ε)-extractor, then d ≥ log(n−k)+2 log(1

ε)−O(1) and d+k−m ≥ 2 log(1
ε)−O(1).

These two bounds have the following interpretation.
(a) In order to extract one extra random bit (i.e., having m ≥ d + 1) we need

to invest at least d ≥ log(n − k) + 2 log(1
ε) − O(1) truly random bits (and

d ≥ log(n− k) + log(1
ε)−O(1) for dispersers).

(b) There is an unavoidable entropy loss in the system. The input to the extractor
has entropy at least k + d (k in X and d in the truly random bits that we
invest), while we get back only m quasi-random bits. Thus, there is a loss
of k + d − m ≥ 2 log(1

ε) − O(1) bits. In the case of dispersers we have
d+ k −m ≥ log log(1

ε)−O(1).
Surprisingly, the entropy loss (which can be compared to the heat wasted in a

physical process) has different magnitudes in dispersers (about log log 1
ε) and extrac-

tors (about 2 log 1
ε). In [8, 21], explicit (k, ε)-extractors F : {0, 1}n×{0, 1}d → {0, 1}n,

with d = n−k+ 2 log 1
ε + 2 are constructed. Theorem 1.9 shows that the entropy loss

of 2 log 1
ε in these extractors is unavoidable.

Theorems 1.5 and 1.9 improve the lower bounds shown by Nisan and Zucker-
man [15]; they showed that D ≥ max{log(NK), 1

2ε}, and DK
M ≥ 1 − ε. Furthermore,

our lower bounds match the upper bounds up to constant factors. Using standard
probabilistic arguments [20, 26] one can show that our lower bounds are tight up to
constant factors (for completeness we include the proofs in Appendix C).

Theorem 1.10 (probabilistic constructions). For every 1 < K ≤ N, M > 0 and
ε > 0 there exists a

(a) (K, ε)-disperser graph G = (V1 = [N], V2 = [M], E) with degree D = d 1
ε (ln(NK)+

1) + M
K (ln(1

ε) + 1)e,
(b) (K, ε)-extractor graph G = (V1 = [N], V2 = [M], E) with D = dmax{ 1

ε2 (ln(NK)+

1), ln 2 · MK · 1
ε2 }e.

1.1. Organization of the paper. In section 2, we first describe the lower
bounds for dispersers. We describe the argument informally, leaving the formal proof
for the appendix. Then we derive the lower bounds for extractors assuming a techni-
cal lemma on hypergeometric distributions. In section 3, we present the new upper
and lower bounds for depth-two superconcentrators. The appendix has three parts.
In the first we give the formal proof of the lower bounds for dispersers; in the second,
we give the proof of the technical lemma used in section 2; in the third, we prove
Theorem 1.10.

2. Bounds for dispersers and extractors. In this section we present the lower
bounds for disperser and extractor graphs. In the rest of this section, we will drop the
word “graphs,” and refer to them as dispersers and extractors. As stated earlier, the
lower bounds for dispersers claimed in Theorem 1.5 follows from the bounds obtained
by Kővari, Sós, and Turán for the Zarankiewicz problem. Instead of quoting their

6 JAIKUMAR RADHAKRISHNAN AND AMNON TA-SHMA

result directly, we will present the complete proof based on their method. This will
help clarify the proof of Theorem 1.9, where we use the same method to show lower
bounds for extractors.

In the rest of this section, we will use the following notation. For a bipartite
graph G = (V1, V2, E), D(G) will denote the maximum degree of a vertex in V1 and
D̄(G) will denote the average degree of a vertex in V1.

2.1. Dispersers. We now describe the proof of Theorem 1.5. Suppose G =
(V1 = [N], V2 = [M], E) is a (K, ε)-disperser.

We first observe that part (b) follows from part (a). Let G′ = ([M], [N], E′) be
the graph obtained from G by interchanging the roles of V1 and V2. Then, G′ is a
(dεMe, KN)-disperser. Hence, by the first half of part (a) we have

D̄(G′) = Ω

(
N

K
· log

(
M

εM

))
.

Now D̄(G′) = D̄(G)N/M ; thus D̄(G)K
M = Ω(log(1

ε)), as claimed in part (b).
Now consider part (a). For a vertex v of G and a subset X of vertices of G we say

that X misses v (and also v misses X) if Γ(v) ∩X = ∅. Now, we let B be a random
subset of V2 of size L = dεMe. For v ∈ V1 with degree dv, we have

Pr[B misses v] =

(
M − dv

L

)(
M

L

)−1

.(2.1)

The expected number of vertices missed by B (that is, E[|V1 \ Γ(B)|]) is the sum of
these probabilities. Since B can miss at most K − 1 vertices, we have

∑
v∈V1

(
M − dv

L

)(
M

L

)−1

≤ K − 1.

Note that f(u) =
(
u
t

)
is a convex function of u. By applying Jensen’s inequality,

f(E[X]) ≤ E[f(X)], to the left-hand side above, we obtain

N

(
M − D̄
L

)(
M

L

)−1

≤ K − 1.(2.2)

Our lower bounds follow from this inequality. We will now informally sketch the main
points of the derivation; the formal proof is in the appendix.

For ε ≤ 1/2, the left-hand side of (2.2) is approximately N exp(−εD̄). Thus, we
obtain the lower bound

D̄ ≥ 1

ε
ln

N

K − 1
.

This strengthens the previous lower bound D ≥ max{1/(2ε), log(N/K)} (due to Nisan
and Zuckerman [15]).

For ε > 1/2, the left-hand side of (2.2) is approximated better by N
(

1−ε
2

)D̄
, i.e.,

D̄ ≥ log(N/(K − 1))

log(1/(1− ε)) + 1
.

EXTRACTORS, DISPERSERS, AND DEPTH-TWO SUPERCONCENTRATORS 7

2.2. Extractors. Since a (K, ε)-extractor is also a (K, ε)-disperser, the lower
bounds for dispersers apply to extractors as well. We will now improve these bounds
by exploiting the stronger properties of extractors. As in the proof of Theorem 1.5 we
will show that Theorem 1.9(a) implies Theorem 1.9(b). To that end we define “slice”
extractors.

2.2.1. Slice-extractors.

Definition 2.1. Let G = (V1 = [N], V2 = [M], E) be a bipartite graph. For
v ∈ V1 and B ⊆ V2, let

disc(v,B) = Pr
w∈Γ(v)

[w ∈ B]− |B|
M

,

where w is generated by picking a random edge leaving v. We say that v ε-misses B
(and also B ε-misses v) when |disc(v,B)| ≥ ε.

Definition 2.2 (slice-extractor). G is a (K, ε, p)-slice-extractor, if every B ⊆ V2

of size dpMe, ε-misses fewer than K vertices of V1.

A slice-extractor seems to be weaker than an extractor because it is required to
handle only subsets of V2 of one fixed size, whereas an extractor must handle sets of
all sizes. It is simple to show (see, e.g., [26])

Claim 2.3. If G = (V1 = [N], V2 = [M], E) is (K, ε)-extractor, then G is also a
(2K, ε, p)-slice-extractor for all p.

In fact, we have the following lemma.

Lemma 2.4. Suppose dqMe ≤ dpMe < M/2 and G = (V1 = [N], V2 = [M], E) is
a (K, ε, p)-slice-extractor. Then G is also a (2K, 2ε, q)-slice-extractor.

Proof. We will show that for any A ⊆ V1 of size K and any S ⊆ V2 of size dqMe,∣∣∣∣ Pr
w∈Γ(A)

[w ∈ S]− dqMe
M

∣∣∣∣ ≤ 2ε.(2.3)

This implies that S can not 2ε-miss more than 2K vertices, and G is a (2K, 2ε, q)-
slice-extractor.

We now show (2.3). Let S1, S2 ⊆ V2 be subsets of size dqMe and T ⊆ V2 a subset
of size dpMe− qM disjoint from S1 ∪S2. Denote T1 = T ∪S1 and T2 = T ∪S2. Since
G is a (K, ε, p) slice-extractor, |Prw∈Γ(A)[w ∈ Ti] − p| ≤ ε, for i = 1, 2. This implies
that ∣∣∣∣ Pr

w∈Γ(A)
[w ∈ S1]− Pr

w∈Γ(A)
[w ∈ S2]

∣∣∣∣ ≤ 2ε,(2.4)

for every two subsets S1, S2 ⊆ V2 of size dqMe. Now, pick S ⊆ V2 of size dqMe
randomly and uniformly. Then,

E
S

[Pr
w∈Γ(A)

[w ∈ S]] =
|S|
M
.

Hence, exist sets S+ and S− such that

Pr
w∈Γ(A)

[w ∈ S−] ≤ dqMe
M

≤ Pr
w∈Γ(A)

[w ∈ S+].

8 JAIKUMAR RADHAKRISHNAN AND AMNON TA-SHMA

This, when combined with (2.4), implies (2.3).
2.2.2. Proof of Theorem 1.9(a).
Lemma 2.5. There exists a constant C > 0, such that if G = (V1 = [N], V2 =

[M], E) is a (K, ε, p)-slice-extractor with D ≤ M/2, K ≤ N/C, p ≤ 1/10, pM ≥ 1
and ε ≤ p/25, then

D̄ ≥ p

Cε2
ln

N

CK
.

Proof. We proceed as in the case of dispersers, by picking a random dpMe-sized
subset R ⊆ V2. To bound from below the probability that R ε-misses a vertex v ∈ V1,
we will use the following lemma, whose proof appears in the appendix.

Lemma 2.6. Let R be a random subset of [M] of size qM , Γ be a nonempty

subset of [M] of size D, and w : Γ → [0, 1] be a weight function such that w(Γ)
def
=∑

i∈Γ w(i) = 1. Suppose δ ≤ 1/25, q ≤ 1/4 and D ≤M/2. Then,

Pr[|w(Γ ∩R)− q| ≥ δq] ≥ C−1 exp(−Cδ2qD).

Here C is a constant independent of δ, q, D, and w.
Fix v ∈ V1. Denote the set of v’s neighbors by Γ. Since in our definition of

extractors we allow multiple edges, |Γ| can be smaller than dv (the degree of v); so
when we pick a random edge leaving v, some vertices in Γ might be more likely to be
visited than others. Let us define a weight function w : Γ→ [0, 1] by letting w(b) be
the number of multiple edges between v and b divided by dv. Then, by definition

v ε-misses R iff |w(R ∩ Γ)− p| ≥ ε = (ε/p)p.

We take D = dv, dpMe = qM (so q ≤ 1
4) and δ = ε

p ≤ 1
25 . For C a large enough

constant we have Pr[R ε-misses v] ≥ C−1 exp(−Cδ2qdv) ≥ C−1 exp(−Cε2dv/p). It
follows that the expected number of vertices missed by R is at least∑

v∈V1

C−1 exp

(
−C ε

2

p
dv

)
.

Since R never misses K vertices, we have∑
v∈V1

C−1 exp

(
−C ε

2

p
dv

)
≤ K − 1.

Since exp(−Cx) is a convex function of x, Jensen’s inequality implies that

N C−1 exp

(
−C ε

2

p
D̄

)
≤ K − 1.

By taking logarithms we obtain

D̄ ≥ p

Cε2
ln

N

CK
.

We now show Theorem 1.9(a). Note that we may assume that ε ≤ 10−3 (say); oth-
erwise the claim follows from the lower bound for dispersers proved in Theorem 1.5(a).
But, if ε ≤ 10−3, our claim follows immediately from Lemma 2.5 by taking p = 1/10.

EXTRACTORS, DISPERSERS, AND DEPTH-TWO SUPERCONCENTRATORS 9

2.2.3. Proof of Theorem 1.9(b). We next show that, as in the proof of The-
orem 1.5, part (b) follows from part (a) by reversing the roles of V1 and V2.

Claim 2.7. Suppose G = (V1 = [N], V2 = [M], E) is a (K, ε)-extractor. Let
G′ = (V ′1 = [M], V ′2 = [N], E′) be the graph obtained from G by reversing the roles of
V1 and V2. Suppose p ≥ K/N and pN is an integer. Then, for all T > 2, G′ is a
(4M
T , ε′ = Tεp, p)-slice-extractor.

Proof. Suppose G′ is not a (4M
T , ε′ = Tεp, p)-slice-extractor. Then, there is some

B ⊆ V ′2 of size pN that ε′-misses at least 4M
T vertices of V ′1 . Let A− = {v ∈ V ′1 :

disc(v,B) ≤ −ε′} and A+ = {v ∈ V ′1 : disc(v,B) ≥ ε′}. One of these sets must have
size at least 2M

T , say A−. Then

|E′(A−, B)| =
∑
v∈A−

|E′(v,B)|

≤
∑
v∈A−

dv

(|B|
N
− ε′

)
≤ |E′(A−, V ′2)| ·

(|B|
N
− ε′

)
.

Therefore,

|E′(A−, B)|
|B|D ≤ |E

′(A−, V ′2)|
|B|D

(|B|
N
− ε′

)
=
|E(V1, A

−)|
ND

(
1− Nε′

|B|
)
.(2.5)

Since G is an extractor, we have

|E(V1, A
−)|

ND
≤ |A−|

M
+ ε.(2.6)

We will now consider the sets B ⊆ V1 and A− ⊆ V2 in the extractor G, and obtain
a contradiction by showing that there are fewer edges between them than required.
By combining (2.5) and (2.6), we obtain

|E(B,A−)|
|B|D ≤

(|A−|
M

+ ε

)(
1− Nε′

|B|
)

≤ |A
−|
M

+ ε− |A
−|
M

Nε′

|B|
≤ |A

−|
M

+ ε− 2ε

=
|A−|
M
− ε.

(For the third inequality, we used |A−| ≥ 2M/T , |B| = pN and ε′ = Tεp.) But this
contradicts our assumption that G is a (K, ε)-extractor.

Finally, to obtain part (b) of Theorem 1.9, we choose p = K/N and T = 16C in
the above claim and conclude that G′ is a (M/(4C), 16εCK/N,K/N)-slice-extractor.
Since D(G) ≤ M/4, we have D̄(G′) ≤ N/4. By Markov’s inequality, at least half
the vertices of V1(G′) have degree at most N/2. By restricting ourselves to the

10 JAIKUMAR RADHAKRISHNAN AND AMNON TA-SHMA

vertices of lowest degree, we obtain an (M/(4C), ε′ = 16εCK/N, p = K/N)-slice-
extractor G′′ with |V1(G′′)| ≥M/2, V2(G′′) = N , D(G′′) ≤ N/2 and D̄(G′′) ≤ D̄(G′).
If ε < 1/(400C), we have ε′ ≤ p/25. Then, by Lemma 2.5, we have D̄(G′′) ≥
p

Cε′2 ln(M/2
CM/(4C)); i.e.,

D̄(G′′) = Ω

(
p

ε2p2

)
= Ω

(
N

K

1

ε2

)
.

Since D̄(G′′) ≤ ND̄(G)/M , we get KD̄(G)
M = Ω(1

ε2).

3. Superconcentrators of depth two. In this section, we show bounds on the
size of depth-two superconcentrators. First, we show an O(N log2N/ log logN) upper
bound using the upper bounds for dispersers from Theorem 1.10 (a). Next, we show
that the lower bounds on dispersers, shown in Theorem 1.5 (a), imply an (almost
tight) Ω(N(logN/ log logN)2) lower bound for superconcentrators. Finally, by using
a different method, we improve this lower bound to Ω(N log2N/ log logN), matching
the upper bound (up to constant factors).

Recall that size(N) is the size of the smallest depth-two N -superconcentrator. It
is enough to establish the claimed bounds assuming that N is a power of two. For,
let 2n ≤ N < 2n+1, where n ≥ 1; then size(2n) ≤ size(N) ≤ size(2n+1).

3.1. The upper bound.
Theorem 3.1. Size(N) = O(N log2N/ log logN).
Proof. Our construction is based on a similar construction due to Wigderson and

Zuckerman [24]. We build a depth-two graph (A = [N], C,B = [N], E), where C is
the disjoint union of Ci, i = 0, . . . ,

⌈
loglogN N

⌉−1, where |Ci| = 2 logi+1N . For every

i put a (K = logiN, ε = 1/4)-disperser Di = (A,Ci, Ei), and another (K, ε)-disperser
between B and Ci.

For logiN ≤ K ≤ logi+1N , for every K-set X ⊆ A, Γ(X) covers at least 3/4 of
Ci. Similarly, for every K-set Y ⊆ B, Γ(Y) covers at least 3/4 of Ci. So, at least half
of the vertices of Ci are common neighbors of X and Y . We thus have the following
claim.

Claim 3.2. Any two sets X ⊆ A , Y ⊆ B of size K have at least K common
neighbors in C.

However, as shown by Meshulam [12], Menger’s theorem implies that this is suffi-
cient for G to be a superconcentrator (clearly, it is necessary). All that remains is to
count the number of edges inG. By Theorem 1.10 (a), we may take |Ei| = O(N logN).
Thus, we have |E(G)| = ∑i 2|Ei| = O(N log2N/ log logN).

Remark. This construction differs from the one in [24] in only one respect: in
their construction each Ci takes care of all K-sets for 2i ≤ K < 2i+1, whereas in
ours each Ci takes care of all K-sets for logiN ≤ K < logi+1N . The point is that
constructing a disperser that works for just one K, in itself, requires average degree
logN (as can be seen from Theorem 1.5). Furthermore, we can build dispersers that
recover almost all the random bits we invest (see Theorem 1.10(a)). This enables us
to hash sets of size K into sets of size K logN and use fewer Ci’s.

3.2. Lower bound via dispersers. Now we show that any depth-two super-
concentrator must contain Ω(logN/ log logN) disjoint disperser graphs and derive
from this an Ω(N(logN/ log logN)2) lower bound. The idea is as follows. Consider
any depth-two superconcentrator G = (A = [N], C,B = [N], E). By definition, for
any 1 ≤ K ≤ N , and any two subsets X ⊆ A, Y ⊆ B of cardinality K, X, and Y

EXTRACTORS, DISPERSERS, AND DEPTH-TWO SUPERCONCENTRATORS 11

have at least K common neighbors in C. In particular, if we fix a subset X ⊆ A
of cardinality K and look at Γ(X), we see that every K-subset of B must have at
least K neighbors in Γ(X). In other words, the induced graph on Γ(X) and B is a
disperser. By doing this for different K’s we get several disjoint dispersers. Our lower
bound then follows by applying the disperser lower bound to each of them.

Theorem 3.3. Size(N) = Ω(N · (logN/ log logN)2).
Proof. Let G = (A = [N], C,B = [N], E) be a depth-two N -superconcentrator.

We will proceed in stages. In stage i, we will consider subsets of A and B of size
Ki = log3iN . If Ki ≤

√
N (i.e., i ≤ (1/6) logN/ log logN), then we will show that

there is a subset Ci of the middle layer C such that the number of edges between B
(the output vertices) and Ci is at least N logN/ log logN . The sets Ci will be disjoint
for different values of i. Collecting the edges from the different Ci’s, we have

|E(G)| ≥
⌊

logN

6 log logN

⌋
· Ω
(
N

logN

log logN

)
= Ω

(
N

(
logN

log logN

)2
)
.

Suppose the average degree in A is D̄. If D̄ ≥ log2N , then the number of edges
between A and C is ND̄ ≥ N log2N and we are done. So assume D̄ ≤ log2N .

Let Xi ⊆ A be the set of Ki = log3iN vertices with smallest degrees (breaking
ties using some order on the vertices). Let Zi = Γ(Xi). Clearly |Zi| ≤ KiD̄. Let
Ci = Zi\(Z1

⋃
Z2

⋃ · · ·⋃Zi−1). Since Xi ⊆ Xi+1 for all i, we also have Zi = Γ(Xi) ⊆
Γ(Xi+1) = Zi+1; thus, Ci = Zi \ Zi−1.

Claim 3.4. G restricted to B and Ci is a (Ki, ε = 1− 1
2D̄

)-disperser.
Proof of claim. Any two sets X ⊆ A, Y ⊆ B of cardinality Ki must have Ki

common neighbors in C. In particular, any set Y ⊆ B of size Ki has Ki distinct
neighbors in Zi = Γ(Xi), and therefore at least Ki − |Zi−1| distinct neighbors in Ci.

Notice that Ki − |Zi−1| ≥ Ki −Ki−1D̄ > Ki/2. Thus, in G restricted to B and
Ci, any subset in B of size Ki has more than Ki/2 distinct neighbors. Thus, the claim
follows if Ki/2 ≥ (1− ε)|Ci|. Indeed

(1− ε)|Ci| = |Ci|
2D̄
≤ KiD̄

2D̄
=
Ki

2
,

where the inequality follows from |Ci| ≤ |Zi| ≤ KiD̄.
By Theorem 1.5(a), the number of edges between A and Ci is

Ω

N · log
(
N
Ki

)
log
(

1
(1−ε)

)
 .

As long as Ki ≤
√
N , this is at least Ω(N logN/log logN). Since the Ci’s are disjoint,

we have obtained Ω(logN/log logN) disjoint dispersers, each having Ω(N logN/log logN)
edges.

3.3. The improved lower bound. If we look at the construction of Theorem
3.1, we see that sets of cardinality Ki communicate mainly through a specific subset
of C denoted Ci. Furthermore, the vertices of Ci can be identified using their degree:
vertices in Ci have degree about N/Ki. In our proof we will find this structure in the
superconcentrator.

12 JAIKUMAR RADHAKRISHNAN AND AMNON TA-SHMA

Theorem 3.5. Size(N) = Ω(N log2N/ log logN).

Proof. Let G = (A = [N], C,B = [N], E) be a depth-two N -superconcentrator.
We assume that N is large. As in the proof of Theorem 3.3, we proceed in stages. In
stage i (i = 1, 2, . . .), we consider sets of size K = Ki = log4iN . Let

Ci =

{
w ∈ C :

N

K

1

log2N
≤ deg(w) <

N

K
log2N

}
;

Di =

{
w ∈ C : deg(w) <

N

K

1

log2N

}
.

We will show that if K ≤ N3/4 (i.e., i ≤ 3
16 (logN/ log logN)), then there are at least

1
10N logN edges incident on Ci. Since the sets Ci are disjoint for different values of
i, we have

|E(G)| ≥
⌊

3

16
(logN/ log logN)

⌋
· 1

10
N logN

= Ω(N log2N/ log logN).

It remains to show that the number of edges incident on Ci is at least 1
10N logN . We

assume that

|E(G)| ≤ 1

10
N log2N ;(3.1)

otherwise the theorem follows immediately.

Lemma A. For every pair of K-sets X ⊆ A and Y ⊆ B, there is a common
neighbor in Ci ∪Di.

Proof of lemma. All vertices outside Ci ∪Di have degree at least (N/K) log2N .
Then, assumption (3.1) implies that the number of vertices outside Ci∪Di is at most

|E(G)|
(N/K) log2N

≤ K

10
.

Since X and Y have at least K common neighbors in the original graph, they must
in fact have at least 9

10K common neighbors in Ci ∪Di.

We wish to show that G restricted to A ∪ B and Ci cannot be sparse. We know
from Lemma A that every pair of K-sets in A∪B has a common neighbor in Ci∪Di.
Suppose that G restricted to A ∪B and Ci is sparse. We will first obtain sets S ⊆ A
and T ⊆ B such that S and T have no common neighbors in Ci. Then, all pairs of
K-sets in S and T have to communicate via Di; in other words, the bipartite graph
induced on S and T by the connections via Di is a K-expanding graph. Since the
number of edges incident on Di is small (because of (3.1)), Di cannot provide enough
connections for such a K-expanding graph, leading to a contradiction. We thus have
three tasks ahead of us.

• First, we need to show how to obtain sets S and T . For this we use a method
based on the work of Hansel [9]. We go through all vertices in Ci, and for
each, either delete all its neighbors in A or all its neighbors in B. Clearly,
after this the surviving vertices in A and B do not have any common neighbor
in Ci. It is remarkable that even after this severe destruction, we expect large
subsets of vertices S ⊆ A and T ⊆ B to survive.

EXTRACTORS, DISPERSERS, AND DEPTH-TWO SUPERCONCENTRATORS 13

• Second, we need to show that the number of connections required between S
and T is large. This follows from the fact that the bipartite graph induced
on S and T by the connections via Di is a K-expanding graph.
• Finally, we need to show that the low degree vertices in Di cannot provide

the required number of connections between S and T . This will follow from
the definition of Di and the fact that S and T are sufficiently random subsets
of A ∪B.

Lemma B. If K = Ki ≤ N3/4, then there are more than 1
10N logN edges incident

on Ci.
Proof of lemma. For u ∈ A∪B, let du be the number of neighbors of u in Ci. Let

A′ be the set of N
2 vertices u ∈ A with smallest du, and B′ be the set of N

2 vertices
v ∈ B with smallest dv. We will prove that there is some u ∈ A′∪B′ with du >

1
5 logN .

This implies the lemma for, say, u ∈ A′. Then, for all u ∈ A \A′, du >
1
5 logN , and

we have more than 1
10N logN edges incident on Ci, as required.

Now we have to prove that there is some u ∈ A′ ∪ B′ with large du. Otherwise,
for all u ∈ A′ ∪B′, du ≤ 1

5 logN . We will show that this contradicts (3.1).
For each w ∈ Ci, perform the following action (independently for each w):

– with probability 1
2 , delete all neighbors of w from A′;

– with probability 1
2 , delete all neighbors of w from B′.

Set d = 1
5 logN . For each vertex u in A′ ∪ B′ that survives, delete it independently

with probability 1− 2−(d−du).
It is clear that after the above process, the probability that a vertex in A′ ∪ B′

survives is exactly 2−d. Let S be the subset of vertices of A′ that survive and T the
subset of vertices of B′ that survive. Our construction ensures that S and T do not
have a common neighbor in Ci. Lemma A then implies that every pair of K-sets in
S and T has a common neighbor in Di.

Consider the bipartite graph H = (S, T,E), where E consists of pairs (u, v) ∈
S × T such that u and v have a common neighbor in Di. Then H is a K-expanding
graph (i.e., there is an edge joining every pair of K-sets in S and T). It follows (see
Lemma 3.8 below) that

|E(H)| ≥ |S| · |T |
K

− |S| − |T |.

Thus, if S and T are large, the required number of edges in H is also large. It is not

hard to see that the expected size of S and T is large (N2−d
2 ∼ N4/5 � K). But we

need S and T to be large simultaneously. Instead of ensuring this, it will be easier to
directly estimate the average number of edges needed by H.

Claim 3.6.

E[|E(H)|] ≥ E

[|S| · |T |
K

− |S| − |T |
]

>
N22−2d

10K
.

This gives a lower bound on the average number of connections required between S
and T . Conversely, our next claim shows that if the number of edges in G is small,
then the average number of edges in H (which is the number of connections between
S and T passing via Di) is small.

Claim 3.7.

E[|E(H)|] ≤ |E(G)| · N

K log2N
· 2−2d.

14 JAIKUMAR RADHAKRISHNAN AND AMNON TA-SHMA

Before proceeding to the proofs of these claims, let us complete the proof of Lemma
B. Putting the two claims together we obtain

|E(G)| · N

K log2N
· 2−2d >

N22−2d

10K
,

i.e., |E(G)| > N

10
log2N.

But then G has too many edges, contradicting (3.1).
Proof of Claim 3.6. We have |S| = ∑u∈A′ Xu and |T | = ∑v∈B′ Yv, where Xu and

Yv are the 0-1 indicator variables for the events “u ∈ S” and “v ∈ T ,” respectively.
For u ∈ A′ and v ∈ B′, Xu and Yv are independent whenever u and v don’t have

a common neighbor in Ci, and E[XuYv] = 2−2d. Since du ≤ 1
5 logN and vertices in Ci

have degree at most N
K log2N , each Xu is independent of all but N

K log2N · logN
5 <

N(logN)3

5K < N
4 of the Yv’s. Therefore,

E[|S| · |T |] =
∑

u∈A′,v∈B′
E[XuYv]

≥ |A′| · N
4
· 2−2d

=
1

8
N22−2d.

Clearly, E[|S|] =
∑
u∈A′ E[Xu] = N

2 2−d and similarly E[|T |] = N
2 2−d. Thus we

have

E

[|S| · |T |
K

− |S| − |T |
]
≥ N22−2d

8K
−N2−d =

N22−2d

K

(
1

8
− 2dK

N

)
>

N22−2d

10K
,

where the last inequality holds because 2dK ≤ N1/5N3/4 = o(N) and N is large.
Proof of Claim 3.7. Consider all pairs (u, v) ∈ A′ ×B′, such that u and v have a

common neighbor in Di. Since the degree of a vertex in Di is at most (N/K) log−2N ,
the number of such pairs is at most∑

w∈Di
deg(w)2 ≤ N

K log2N

∑
w∈Di

deg(w)

≤ N

K log2N
|E(G)|.(3.2)

As argued in the proof of Claim 3.6, for every pair (u, v) ∈ A′ × B′, if u and v
don’t have a common neighbor in Ci, then Pr[(u, v) ∈ S × T] = 2−2d; conversely,
if u and v have a common neighbor in Ci, then one of them will be deleted, and
Pr[(u, v) ∈ S × T] = 0. Thus, in both cases Pr[(u, v) ∈ S × T] ≤ 2−2d. Our claim
follows from this and (3.2) by linearity of expectation.

Finally, we prove the density bound for K-expanding graphs.
Claim 3.8. If (V1 = [N1], V2 = [N2], E) is a K-expanding graph, then |E| ≥

N1N2

K −N1 −N2

Proof. If either N1 or N2 is less than K, then the claim is trivial. Otherwise,
obtain bN1

K c disjoint sets of size K from V1. No set of size K can miss more than K
vertices in V2; in particular, each such set has N2−K edges incident on it. Collecting

EXTRACTORS, DISPERSERS, AND DEPTH-TWO SUPERCONCENTRATORS 15

the contributions from the bN1

K c sets, we get at least (N1

K −1)(N2−K) > N1N2

K −N1−N2

edges.

Appendix A. Lower bounds for dispersers.
We now complete the proof of Theorem 1.5. We will use inequality (2.2) derived

in section 2.1.
First, consider the case ε ≤ 1

2 . To simplify the left-hand side of (2.2), we will use

the inequality
(
a−c
b

)(
a
b

)−1 ≥ (a−b−c+1
a−b+1)b, valid whenever a − b − c + 1 ≥ 0. In our

application, we have D̄ ≤ (1 − ε)M/2 ≤ (1 − ε)M (an assumption in Theorem 1.5)
and L = dεMe ≤ εM + 1; thus, M − D̄ − L+ 1 ≥ M − (1− ε)M − εM − 1 + 1 = 0.
Then, (2.2) gives

N

(
M − L− D̄ + 1

M − L+ 1

)L
≤ K − 1;

i.e.,

N

K − 1
≤
(

M − L+ 1

M − L− D̄ + 1

)L
=

(
1 +

D̄

M − L− D̄ + 1

)L
≤ exp(D̄L/(M − D̄ − L+ 1)).

On taking lns and solving for D̄, we obtain

D̄ ≥ (M − L+ 1) ln(N/(K − 1))

L+ ln(N/(K − 1))
.

If ln(N/(K − 1)) > L, then

D̄ >
M − L+ 1

2
≥ (1− ε)M

2
,

contradicting our assumption. Thus, we may assume that ln(N/(K − 1)) ≤ L. Then,

D̄ ≥ M − L+ 1

2L
ln

N

K − 1

≥ (1− ε)M
2εM + 2

ln
N

K − 1

≥ 1

8ε
ln

N

K − 1
.

For the case ε > 1
2 , we must approximate the left-hand side of (2.2) differently.

Since
(
a
b

)
is a nondecreasing function of a, we have from (2.2) that

N

(
M − ⌈D̄⌉

L

)(
M

L

)−1

≤ K − 1.

Since
(
a−b
c

)(
a
c

)−1
=
(
a−c
b

)(
a
b

)−1
, we have

N

(
M − L⌈
D̄
⌉)(M⌈

D̄
⌉)−1

≤ K − 1.

16 JAIKUMAR RADHAKRISHNAN AND AMNON TA-SHMA

Now we use the inequality
(
a−b
c

)(
a
c

)−1 ≥ (a−b−c+1
a)c and obtain

K − 1 ≥ N
(
M − ⌈D̄⌉− L+ 1

M

)dD̄e

≥ N
(
M − L+ 1

2M

)dD̄e
≥ N

(
1− ε

2

)dD̄e
.

Thus,

⌈
D̄
⌉ ≥ log(N/(K − 1))

log(2/(1− ε)) .

Appendix B. Lower bounds on deviation.

This section is devoted to the proof of Lemma 2.6. We reproduce the lemma
below for easy reference. Note that in the version below we use ε instead of δ and p
instead of q.

Lemma 2.6. Let R be a random subset of [M] of size pM , Γ be a nonempty

subset of [M] of size D, and w : Γ → [0, 1] be a weight function such that w(Γ)
def
=∑

i∈Γ w(i) = 1. Suppose ε ≤ 1/25, p ≤ 1/4, and D ≤M/2. Then,

Pr[|w(Γ ∩R)− p| ≥ εp] ≥ C−1 exp(−Cε2pD).

Here C is a constant independent of ε, p, D, and w.

B.1. Overview of the proof. We have two cases based on the value of p.

Case 1 (small p). We first assume that pD ≤ 12. In this case, we show that with
constant probability Γ ∩R = ∅.

Lemma B.1. Pr[Γ ∩R = ∅] ≥ exp(−50).

Case 2 (large p). We now assume that pD > 12. In this case, the proof has two
main parts.

Part 1. The expected value of |Γ∩R| is easily seen to be pD. We first show lower
bounds on the probability that |Γ ∩ R| deviates from this expected value by at least
εpD.

Lemma B.2. If pD ≥ 12, then for some constant C0 (independent of p, D, M ,
and ε)

(a) Pr[|Γ ∩R| ≤ (1− ε)pD] ≥ C−1
0 exp(−C0ε

2pD),
(b) Pr[|Γ ∩R| ≥ (1 + ε)pD] ≥ C−1

0 exp(−C0ε
2pD).

Part 2. Note that Part 1 suffices when the weights are all equal. Next, we consider
a general distribution of weights. We show that when |Γ∩R| differs significantly from
its expected value, then w(Γ∩R) is also likely to differ from its expected value. Note
that the expected value of w(Γ ∩R) is p.

Lemma B.3. Let R+ be a random subset of Γ of size dpDe and R− be a random
subset of size b(1− 4ε)pDc. Then, at least one of the following two statement holds:

(a) Pr[w(R−) ≤ p(1− ε)] ≥ 1/25,
(b) Pr[w(R+) ≥ p(1 + ε)] ≥ 1/4.

EXTRACTORS, DISPERSERS, AND DEPTH-TWO SUPERCONCENTRATORS 17

We first complete the proof of Lemma 2.6 assuming that Lemmas B.1, B.2, and
B.3 hold. We shall justify Lemmas B.1, B.2, and B.3 after that.

Proof of Lemma 2.6. If pD ≤ 12, then with constant probability, Γ ∩R is empty.
Clearly, whenever Γ ∩R is empty, |w(Γ ∩R)− p| ≥ εp. The claim follows from this.

Next, assume that pD ≥ 12. We now use Lemma B.3 and conclude that at least
one of the two statements, (a) and (b), of the lemma holds. Suppose (a) holds. Then,
for all sizes k ≤ (1− 4ε)pD, we have

Pr[w(Rk) ≤ p(1− ε)] ≥ 1

25
,(B.1)

where Rk is a random k-sized subset of Γ. Let E denote the event |Γ∩R| ≤ (1−4ε)pD.

Pr[|w(Γ ∩R)− p| ≥ εp] ≥ Pr[E] · Pr[|w(Γ ∩R)− p| ≥ εp | E]

≥ Pr[E] · Pr[w(Γ ∩R) ≤ p(1− ε) | E]

= Pr[E] ·
(1−4ε)pD∑
k=0

Pr[|Γ ∩R| = k | E]

× Pr[w(Γ ∩R) ≤ p(1− ε) | |Γ ∩R| = k].

By Lemma B.2 (a), we have Pr[E] ≥ C−1
0 exp(−C0ε

2pD), for some constant C0. Also,
under the condition |Γ ∩ R| = k, the random set Γ ∩ R has the same distribution as
Rk. Then, using (B.1), we have

Pr[|w(Γ ∩R)− p| ≥ εp] ≥ Pr[E] ·
(1−4ε)pD∑
k=0

Pr[|Γ ∩R| = k | E] · Pr[w(Rk) ≤ p(1− ε)]

≥ C−1
0 exp(−C0ε

2pD) · 1

25

≥ C−1 exp(−Cε2pD)

for C = 25C0.
In the remaining case, statement (b) of Lemma B.3 holds, and the claim follows

by a similar argument, this time using Lemma B.2 (b).

B.2. Proofs. Proof of Lemma B.1. We have

Pr[Γ∩R| = ∅] =

(
M −D
pM

)(
M

pM

)−1

≥
(
M −D − pM
M − pM

)pM
=

(
1− D

M − pM
)pM

.

Now, we use the inequality 1− x ≥ exp(−x/(1− x)), valid whenever x < 1. Thus,

Pr[Γ ∩R| = ∅] ≥ exp

(
− DpM

M −D − pM
)
≥ exp(−4pD) ≥ exp(−48).

For the second inequality, we use D ≤ M/2 and p ≤ 1/4, and for the last inequality,
we use pD ≤ 12.

Part 1.
Proof of Lemma B.2. We will present the detailed argument only for part (a); the

argument for part (b) is similar.

Pr[|Γ ∩R| ≥ (1− ε)pD] =
∑

k≤(1−ε)pD
Pr[|Γ ∩R| = k].

18 JAIKUMAR RADHAKRISHNAN AND AMNON TA-SHMA

We will be interested only in the last approximately
√
pqD terms. Let

A = b(1− ε)pDc and B =
⌈
A−

√
pqD

⌉
+ 1.

Then,

Pr[|Γ ∩R| ≤ (1− ε)pD] ≥
B∑
k=A

Pr[|Γ ∩R| = k].

It can be verified that Pr[|Γ ∩ R| = k] is an increasing function of k, for A ≤ k ≤ B.
Thus,

Pr[|Γ ∩R| ≤ (1− ε)pD] ≥ (A−B + 1) Pr[|Γ ∩R| = B].(B.2)

We will now estimate the two factors on the right-hand side.
• First, A − B + 1 ≥ √pqD − 2, and since pD ≥ 12 and q ≥ 3

4 , we have
A−B + 1 ≥ 1

3

√
pqD.

• To estimate the second term, we write B = pd− h; then we have

εpD +
√
pqD − 2 ≤ h ≤ εpD +

√
pqD.

Since pD ≥ 12 and q ≥ 3
4 , we have 1 ≤ h < pD < qD. Claim B.4 below

shows that

Pr[|Γ ∩R| = B] ≥ 1√
4πpqD

exp

(
− 4h2

pqD

)
.

Substituting these two estimates in (B.2), we obtain

Pr[|Γ ∩R| ≤ (1− ε)pD] ≥ 1

6
√
π

exp

(
− 4h2

pqD

)
.

To finish the proof of the lemma we consider two cases.
• If εpD ≤ √pqD, then h ≤ 2

√
pqD, and the bound above gives

Pr[|Γ ∩R| ≤ (1− ε)pD] ≥ 1

6
√
π

exp

(
−4 · 4pqD

pqD

)
=

1

6
√
π

exp(−16).

• Conversely, if εpD ≥ √pqD, then h ≤ 2εpD, and

Pr[|Γ∩R| ≤ (1−ε)pD] ≥ 1

6
√
π

exp

(
−4 · 4(εpD)2

pqD

)
=

1

6
√
π

exp(−32ε2pD).

Now we return to the claim.
Claim B.4. If 1 ≤ h < pD, then Pr[|Γ ∩R| = pD − h] ≥ 1√

4πpqD
exp(− 4h2

pqD).

Proof of claim. We have

Pr[|Γ ∩R| = pD − h] =

(
D

pD−h
)(

n−D
p(n−D)+h

)(
n
pn

)
≥
√

2πpqn 2−nH(p)

× 1√
2πpqD

2DH(p) exp

(
− 2h2

pqD

)
exp

(
−1

6

)
× 1√

2πpq(n−D)
2(n−D)H(p) exp

(
− 2h2

pq(n−D)

)
exp

(
−1

6

)
≥ 1√

4πpqD
exp

(
− 4h2

pqD

)
.

EXTRACTORS, DISPERSERS, AND DEPTH-TWO SUPERCONCENTRATORS 19

For the last inequality we used the assumption n − D ≥ D. For the first inequality
we used the following bounds on binomial coefficients:

• For the denominator, we used the bound (see [3, p. 4])(
n

pn

)
≤ 2nH(p)

√
2πpqn

.

• For the numerator, we used(
n

pn+ h

)
,

(
n

pn− h
)

>
2nH(p)

√
2πpqn

exp

(
−2h2

pqn

)
exp

(
−1

6

)
,

valid for 1 ≤ h < min{pn, qn}. To justify this, we start from (see [3, p. 12])(
n

pn+ h

)
>

2nH(p)

√
2πpqn

exp

(
− h2

pqn
(
1

2
+

hp

2qn
+

h2q

3p2n2
+
q

n
)− 1

6

)
.

Since h < qn, we have hp
qn < p ≤ 1; since h ≤ pn, we have h2q ≤ h2 ≤ p2n2;

since min{pn, qn} ≥ 1, we have n ≥ 2 and q
n ≤ 1

n ≤ 1
2 . Thus, we get the

required bound(
n

pn+ h

)
>

2nH(p)

√
2πpqn

exp

(
−2h2

pqn

)
exp

(
−1

6

)
.

The bound on
(

n
pn−h

)
follows from the above inequality because(

n

pn− h
)

=

(
n

n− pn+ h

)
=

(
n

qn+ h

)
>

2nH(p)

√
2πpqn

exp

(
−2h2

pqn

)
exp

(
−1

6

)
.

Part 2. We now present the proof of Lemma B.3. We shall first consider the
case p = 1/2. The general case will follow from this.

Lemma B.5. Let S be a random subset of Γ of size ` = (1
2 − 2δ)D. Assume

δ ≤ 1/12. Then,

Pr

[
w(S) ≤ 1

2
− δ
]
≥ 1

12
.

Before we proceed to the proof of this lemma, let us deduce Lemma B.3 from it.
Proof of Lemma B.3. Let X be a random subset of Γ of size 2dpDe. Let

ρ = Pr[w(X) < 2p(1 + ε)].

We consider two cases based on the value of ρ:
1. ρ ≤ 1/2. Let X be as above. Let Y be a random subset of X of size⌊

(1
2 − 4ε)|X|⌋. Thus, by Lemma B.5, for each value of X

Pr

[
w(Y) ≤

(
1

2
− 2ε

)
w(X)

]
≥ 1

12
.

Since ρ ≥ 1/2, with probability 1/24, we have w(Y) < (1
2 − 2ε) · 2p(1 + ε) <

p(1− ε). This implies that

Pr[w(R−) < p(1− ε)] ≥ 1

24
.

20 JAIKUMAR RADHAKRISHNAN AND AMNON TA-SHMA

2. ρ < 1/2. In this case, let Y be a random subset of X of size dpDe. Whenever
w(X) ≥ 2p(1 + ε), at least one of Y and X \Y has weight of at least p(1 + ε).
Thus

Pr[w(Y) > p(1 + ε) | w(X) ≥ 2p(1 + ε)] ≥ 1

2
.

Since ρ < 1/2, we have that Pr[w(X) ≥ 2p(1 + ε)] > 1/2. Thus

Pr[w(Y) ≥ p(1 + ε)] ≥ 1

4
.

Now Y is a random subset of Γ of size dpDe; therefore,

Pr[w(R+) ≥ p(1 + ε)] ≥ Pr[w(Y) ≥ p(1 + ε)].

Proof of Lemma B.5. Let k = D − 2`, Since δ ≤ 1/12, we have that

` =

(
1

2
− 2δ

)
D ≥ 1

3
D and k = 4δD ≤ 1

3
D.

Thus, ` ≥ k, and we may write ` = mk + k′, where m and k are integers such that
1 ≤ m ≤ `/k and 0 ≤ k′ < k. We now describe a procedure for generating sets of size
`.

Step 1. Let π = {E1, E2, B1, B2, . . . , B2m+1} be a partition of Γ such that
|E1|, |E2| = k′, and for i = 1, 2, . . . , 2m + 1, |Bi| = k. E1 and E2 will be referred to
as the exceptional blocks.

Step 2. Pick a random permutation σ of [2m + 1] and arrange the blocks in the
order

〈E1, Bσ(1), Bσ(2), . . . , Bσ(2m+1), E2〉.

Step 3. Let

Prefix(π, σ) = E1 ∪Bσ(1) ∪Bσ(2) ∪ · · · ∪Bσ(m);

Middle(π, σ) = Bσ(m+1); and

Suffix(π, σ) = Bσ(m+2) ∪Bσ(m+3) ∪ · · · ∪Bσ(2m+1) ∪ E2.

If π and σ are chosen randomly, then Prefix(π, σ) and Suffix(π, σ) are random sets of
size ` (i.e., they have the same distribution as the random set S in the statement of
the lemma).

We will prove the lemma by contradiction. Suppose the claim of the lemma is
false.

Pr
π,σ

[
w(Prefix(π, σ)) >

1

2
− δ
]
>

11

12
and Pr

π,σ

[
w(Suffix(π, σ)) >

1

2
− δ
]
>

11

12
.

It follows that with probability more than 5/6, both Prefix and Suffix are heavy and
consequently w(Middle(π, σ)) < 2δ. Let E(π, σ) denote this event; then,

Pr
π,σ

[E(π, σ)] >
5

6
.(B.3)

EXTRACTORS, DISPERSERS, AND DEPTH-TWO SUPERCONCENTRATORS 21

Middle(π, σ) is a random subset of Γ of size k, and E1(π) and E2(π) are random
subsets of Γ of size k′. Since k′ < k, we may conclude that

Pr
π

[w(E1(π)) < 2δ] >
5

6
and Pr

π
[w(E2(π)) < 2δ] >

5

6
.

It follows that with probability 2/3, both E1 and E2 are light. Let F(π) denote this
event; then,

Pr
π

[F(π)] >
2

3
.(B.4)

Let B− be the block in π with the smallest weight; let its weight be w−. Let B+

be the block in π̂ with the largest weight; let its weight be w+. For a partition π and
an ordering σ, let σ′ be the ordering derived from σ by interchanging the positions
of B+ an B−. Clearly, if σ is chosen uniformly from the set of all permutations of
[2m+1], then σ′ is a random ordering with the same distribution as σ. It then follows
from (B.3) that

Pr
π,σ

[E(π, σ′)] >
5

6
.(B.5)

Now, from (B.3), (B.4), and (B.5) we have

Pr
π,σ

[E(π, σ) ∧ F(π) ∧ E(π, σ′)] >
1

3
.(B.6)

The probability that B− 6= Middle(π, σ) and B+ does not appear on the same side of
Middle as B− is

2m

2m+ 1
· m+ 1

2m
=

m

2m+ 1
≥ 2

3
,

where the inequality holds since m ≥ 1. By combining this with (B.6), we conclude
that with nonzero probability the following events take place simultaneously.

(a) Prefix(π, σ), Suffix(π, σ), Prefix(π, σ′), and Suffix(π, σ′) are all heavy;
(b) E1(π) and E2(π) are both light (i.e., have weight less than 2δ); and
(c) B− 6= Middle(π, σ), and B− and B+ do not appear on the same side of Middle.

We will show that this is impossible. Suppose (say) B− ∈ Prefix(π, σ). Then, from
the definition of σ′ and (a), we have

w(Prefix(π, σ′)) = w(Prefix(π, σ)) + w+ − w− >
1

2
− δ + w+ − w−.

Since Prefix(π, σ′) and Suffix(π, σ′) are heavy, we have

1 = w(Prefix(π, σ′)) + w(Middle(π, σ′)) + w(Suffix(π, σ′))

>

(
1

2
− δ + w+ − w−

)
+ w− +

(
1

2
− δ
)

= 1 + w+ − 2δ.

This is impossible, since, as we now show, w+ ≥ 2δ whenever (a) and (b) hold. For,
by (a) w(Prefix(π, σ)) > 1/2− δ, and by (b) w(E1(π)) < 2δ. Hence, one of the blocks
B1, B2 . . . , Bm, has weight more than

1

m

(
1

2
− 3δ

)
≥ k

`

(
1

2
− 3δ

)
≥ 4δ

1/2− δ
(

1

2
− 3δ

)
= 4δ

1− 6δ

1− 2δ
.

22 JAIKUMAR RADHAKRISHNAN AND AMNON TA-SHMA

Since δ ≤ 1/12, this is at least 2δ.

Appendix C. Existence of dispersers and extractors. In this section we
prove Theorem 1.10.

Dispersers. First, consider the part (a) of Theorem 1.10. Sipser [20] showed the
existence of disperser graphs with parameters (N = mlogm,M = m,K = m,D =
2 log2m, ε = 1/2); we use his argument and obtain disperser graphs with parameters
close to the lower bounds shown in section 2.

We construct a random graph G = (V1 = [N], V2 = [M], E) by choosing D
random neighbors for each v ∈ V1. Fix ε > 0 and let L = dεMe. If G is not a
(K, ε)-disperser, there is some subset of V2 of size L that misses some K vertices of
V1. Thus, Pr[G is not a (K, ε)-disperser] is at most(

N

K

)(
M

L

)
(1− L/M)KD

< (eN/K)K(eM/L)L(1− L/M)KD

≤ (eN/K)K(eM/L)L exp(−LKD/M)).(C.1)

(To justify the last inequality we use 1− x ≤ e−x.)
Plugging D we have (eN/K)K · (eM/L)K ≤ exp(LKD/M). Therefore, by (C.1),

we have

Pr[G is not a disperser] < 1.

So there is at least one instance of G that meets our requirements.
Extractors. We now consider part (b) of Theorem 1.10. Essentially the same

bounds were derived by Zuckerman [26]. We derive it again for completeness. We
will use Definition 1.7. We will obtain a bipartite graph G = (V1 = [N], V2 = [M], E)
where all vertices in V1 have the same degree D such that for every S ⊆ V1 of
cardinality K, and any R ⊆ V2,∣∣∣∣ |E(S,R)|

KD
− |R|
M

∣∣∣∣ < ε.(C.2)

We first observe that (C.2) can be replaced by a seemingly weaker condition.

Claim C.1. If for every S ⊆ V1 of size K, and any R ⊆ V2, |E(S,R)| < KD(|R|M +
ε), then G is a (K, ε)-extractor.

For, if there exist some S and R with |E(S,R)| ≤ KD(|R|M−ε), then consider the

set R̄ = V2 \ R. We have |E(S, R̄)| > KD(|R̄|M + ε), contradicting the hypothesis of
the claim.

Now we prove the existence of extractors. Consider the random graph G = (V1 =
[N], V2 = [M], E) obtained by choosing D random neighbors with replacement for
each v ∈ V1.

Fix S ⊆ V1 of size K and R ⊆ V2. Let p = |R|
M . We wish to estimate the

probability (over the choices of the edges) that |E(S,R)| ≥ KD(p+ ε). The number
of edges between S and R is the sum of KD identically distributed independents

random variables X1, X2, . . . , XKD, each taking the value 1 with probability p = |R|
M

and the value 0 with probability 1−p. Thus, we can bound the probability of deviation
using standard estimates for the binomial distribution:

Pr[|E(S,R)| ≥ (p+ ε)KD] ≤ exp(−2ε2KD).

EXTRACTORS, DISPERSERS, AND DEPTH-TWO SUPERCONCENTRATORS 23

(This version of Chernoff’s bounds appears in Chvátal [5] and Hoeffding [10].) Thus,
Pr[G is not a (K, ε)-extractor] is at most(

N

K

)
2M exp(−2ε2KD)

<

(
eN

K

)K
2M exp(−2ε2KD)

= (eK(1+ln(N/K)) · e−ε2KD) · (eM ln 2 · e−ε2KD).

Since D ≥ 1
ε2 (1 + ln(N/K)) the first factor is at most 1; similarly, since D ≥ M ln 2

ε2K
the second factor is at most 1. It follows that

Pr[G is not an extractor] < 1.

Hence, there is an instance of G that satisfies our requirements.
Acknowledgments. We thank Roy Armoni, Oded Goldreich (who first asked

us about entropy loss), Nati Linial, Avner Magen, Noam Nisan, Avi Wigderson, and
Shiyu Zhou for many helpful discussions. We thank Aravind Srinivasan for helping
us with the tail estimates. We are also grateful to the anonymous referee for many
helpful comments. We thank David Zuckerman for Lemma 2.4 and its proof.

REFERENCES

[1] N. Alon and P. Pudlák, Superconcentrators of depth 2 and 3; odd levels help (rarely), J.
Comput. System Sci., 48 (1994), pp. 194–202.

[2] B. Bollobas, Extremal Graph Theory, Academic Press, London, 1978.
[3] B. Bollobas, Random Graphs, Academic Press, New York, 1985.
[4] B. Chor and O. Goldreich, Unbiased bits from sources of weak randomness and probabilistic

communication complexity, SIAM J. Comput., 17 (1988), pp. 230–261.
[5] V. Chvátal, The tail of the hypergeometric distribution, Discrete Math., 25 (1979), pp. 285–

287.
[6] A. Cohen and A. Wigderson, Dispersers, deterministic amplification and weak random

sources, in Proceedings IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamos, CA, 1989, pp. 14–19.

[7] D. Dolev, C. Dwork, N. Pippenger, and A. Wigderson, Superconcentrators, generaliz-
ers and generalized connectors with limited depth, in Proceedings ACM Symposium on
Theory of Computing (STOC), ACM, New York, 1983, pp. 42–51.

[8] O. Goldreich and A. Wigderson, Tiny families of functions with random properties: A
quality-size trade-off for hashing, Random Structures Algorithms, 11 (1997), pp. 315–343.

[9] G. Hansel, Nombre minimal de contacts de fermature nécessaires pour réaliser une fonction
booléenne symétrique de n variables, C. R. Acad. Sci. Paris, 258 (1964), pp. 6037–6040.

[10] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer.
Statist. Assoc., 58 (1963), pp. 13–30.

[11] G. Katona and E. Szemerédi, On a problem of graph theory, Studia Sci. Math. Hungar., 2
(1967), pp. 23–28.

[12] R. Meshulam, A geometric construction of a superconcentrator of depth 2, Theoret. Comput.
Sci., 32 (1984), pp. 215–219.

[13] N. Nisan, Refining randomness: How and why, in Proceedings IEEE Symposium on Compu-
tational Complexity, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp 44–58.

[14] N. Nisan and A. Wigderson, Research pearls in theory of computation: Homework 2,
problem 2; also available online from http://www.cs.huji.ac.il/course/pearls/.

[15] N. Nisan and D. Zuckerman, Randomness is linear in space, J. Comput. System Sci., 52
(1996), pp 43–52.

[16] N. Pippenger, Superconcentrators, SIAM J. Comput., 6 (1977), pp. 298–304.
[17] N. Pippenger, Superconcentrators of depth 2, J. Comput. System Sci., 24 (1982), pp 82–90.
[18] N. Pippenger, Sorting and selecting in rounds, SIAM J. Comput., 16 (1987), pp. 1032–1038.

24 JAIKUMAR RADHAKRISHNAN AND AMNON TA-SHMA

[19] P. Pudlák, Communication in bounded depth circuits, Combinatorica, 14 (1994), pp. 203–
216.

[20] M. Sipser, Expanders, randomness, or time versus space, J. Comput. System Sci., 36 (1988),
pp. 379–383.

[21] A. Srinivasan and D. Zuckerman, Computing with very weak random sources, in Proceed-
ings IEEE Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1994, pp. 264–275.

[22] A. Ta-Shma, Refining Randomness, Ph.D. thesis, The Hebrew University, Jerusalem, 1996.
[23] L. Valiant, Graph-theoretic properties in computational complexity, J. Comput. System Sci.,

13 (1976), pp. 278–285.
[24] A. Wigderson and D. Zuckerman, Expanders that beat the eigenvalue bound: Explicit con-

struction and applications, in Proceedings ACM Symposium on the Theory of Computing,
ACM, New York, 1993, pp. 245–251.

[25] D. Zuckerman, Simulating BPP using a general weak random source, Algorithmica, 16
(1996), pp. 367–391.

[26] D. Zuckerman, Randomness-optimal oblivious sampling, Random Structures Algorithms,
11 (1997), pp. 345–367.

NONHAMILTONIAN 3-CONNECTED CUBIC PLANAR GRAPHS∗

R. E. L. ALDRED† , S. BAU‡ , D. A. HOLTON† , AND BRENDAN D. MCKAY§

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 25–32

Abstract. We establish that every cyclically 4-connected cubic planar graph of order at most 40
is hamiltonian. Furthermore, this bound is determined to be sharp, and we present all nonhamiltonian
examples of order 42. In addition we list all nonhamiltonian cyclically 5-connected cubic planar
graphs of order at most 52 and all nonhamiltonian 3-connected cubic planar graphs of girth 5 on at
most 46 vertices. The fact that all 3-connected cubic planar graphs on at most 176 vertices and with
face size at most 6 are hamiltonian is also verified.

Key words. nonhamiltonian, cubic, planar

AMS subject classification. 05C38

PII. S0895480198348665

1. Introduction. In this paper we describe an investigation (making much use
of computation) of cyclically k-connected cubic planar graphs (CkCPs) for k = 4, 5
and report the results. We shall also have occasion to consider cubic 3-connected
planar graphs with no restriction on cyclic connectivity; these we refer to as C3CP s.
The investigation extends the work of Holton and McKay in [10], in which the smallest
order of a nonhamiltonian C3CP was shown to be 38. We provide answers to two
questions raised in that paper, namely, the following:

(a) What is the smallest order of a nonhamiltonian C4CP?
(b) Is there more than one nonhamiltonian C5CP on 44 vertices?
The answer to the former question is determined to be 42, and all nonhamiltonian

C4CPs of that order are presented. The latter question is answered in the negative,
and a complete list of all nonhamiltonian C5CPs on at most 52 vertices is presented.

Before proceeding, we include some definitions and results from the existing lit-
erature as we shall make use of them in the rest of the paper. By a k-gon we mean
a face of a plane graph bounded by k edges. Note that a k-cycle is not necessarily
a k-gon. By a k-cut we mean a set of k edges whose removal leaves the graph dis-
connected and of which no proper subset has that property. The two components
(and clearly there are only two) formed by the removal of a k-cut are called k-pieces.
A k-cut is nontrivial if each of its k-pieces contains a cycle and is essential if it is
nontrivial and each of its k-pieces contains more than k vertices. A cubic graph is
cyclically k-connected if it has no nontrivial t-cuts for 0 ≤ t ≤ k− 1, and it has cyclic
connectivity k if, in addition, it has at least one nontrivial k-cut. We denote by λ′(G)
the value of k such that the C3CP G has cyclic connectivity k.

If G is a hamiltonian C3CP, then an a-edge is an edge which is present in every
hamiltonian cycle in G, while a b-edge is absent from every hamiltonian cycle in G.

To focus our search for nonhamiltonian C4CPs of smallest order we shall make
use of the following theorem which formed the main result in [10].

∗Received by the editors December 2, 1998; accepted for publication May 7, 1999; published
electronically January 13, 2000.

http://www.siam.org/journals/sidma/13-1/34866.html
†Department of Mathematics and Statistics, University of Otago, P.O. Box 56, Dunedin, New

Zealand (raldred@maths.otago.ac.nz, dholton@maths.otago.ac.nz).
‡Inner Mongolia Finance and Economics College, Hohhot, China.
§Department of Computer Science, Australian National University, Canberra, ACT 0200, Aus-

tralia (bdm@cs.anu.edu.au).

25

26 R. ALDRED, S. BAU, D. HOLTON, AND B. MCKAY

In each of the diagrams above,
replace the shaded vertices by
the 3-piece on the left.

1

1

2

3
3

1

2

3
3

1

2

3
1

2
3

1

3

2

1

3 1

2

3

1

2

1

3

3

1

2 2

222

3

1

1

2 3

Fig. 1. The 38-vertex nonhamiltonian C3CPs.

NH42.a NH42.b NH42.c

Fig. 2. The 42-vertex nonhamiltonian C4CPs.

Theorem 1. Every C3CP of order at most 36 is hamiltonian. Furthermore, if
G is a nonhamiltonian C3CP with 38 ≤ |V (G)| ≤ 42, then one of the following is
true:

(a) G is one of the six C3CPs of order 38 and cyclic connectivity 3 shown in
Figure 1;

(b) G has 40 or 42 vertices and has a nontrivial 3-cut for which one of the com-
ponents has at most five vertices;

(c) |V (G)| = 42, λ′(G) = 4, and G has an essential 4-cut, one 4-piece of which
consists of a pair of adjacent 4-faces while the other is obtained from a nonhamiltonian
C4CP on 38 vertices by deleting two adjacent vertices;

NONHAMILTONIAN CUBIC PLANAR GRAPHS 27

*

*

*

*

*

Fig. 3. Some forbidden subgraphs.

(d) G is one of the two graphs NH42.b and NH42.c in Figure 2;

(e) λ′(G) = 4 and G has no essential 4-cut.

Hence, if G is a nonhamiltonian C4CP of smallest order and not either of the
graphs NH42.b, NH42.c, then λ′(G) = 4, G contains no essential 4-cut (i.e., the only
nontrivial 4-cuts in G are the edges adjacent to of 4-cycles, and there must be at least
one such 4-cut) and |V (G)| ∈ {38, 40, 42}. (The graph NH42.a in Figure 2 is from
Grünbaum [8] and is a nonhamiltonian C4CP on 42 vertices with no essential 4-cuts.)

2. The cyclically 4-connected case. Throughout this section we shall assume
that G is a nonhamiltonian C4CP of smallest order, other than NH42.b and NH42.c.
In the light of the theorem above we know that λ′(G) = 4, G contains no essential
4-cut, and |V (G)| ∈ {38, 40, 42}.

Subgraphs that G cannot contain are called forbidden subgraphs. Since G is cycli-
cally 4-connected and contains no essential 4-cuts, triangles and adjacent 4-cycles are
forbidden subgraphs. Similarly, cuts of sizes 1 and 2, nontrivial 3-cuts, and essential
4-cuts are forbidden cuts.

Following the method of Okamura [14], we wish to show that none of the four
subgraphs in Figure 3 can occur in G. For each subgraph H in Figure 3, the reduction
H(G) of G using H is obtained by edge reduction. Delete the edges drawn thinly
in the figure, and then suppress the resulting vertices of degree 2. The resulting
thick edges are then edges in H(G). Notice that if an edge marked with an asterisk
corresponds to an edge in a hamiltonian cycle in H(G), then G is hamiltonian.

Theorem 2. If G is a nonhamiltonian C4CP of smallest order and contains a
subgraph H, such that H is one of the subgraphs in Figure 3, then H(G), the reduction
of G using H, is a hamiltonian C3CP with a b-edge.

Proof. We know that G must have at most 42 vertices and that the reduction of G
by any of the subgraphs in Figure 3 must have 10 fewer vertices than G. Thus H(G)
must be hamiltonian. By the observation above, that a hamiltonian cycle through an
edge in H(G) corresponding to an edge with an asterisk lifts to a hamiltonian cycle
of G, we see that H(G) must contain a b-edge. The proof that H(G) is 3-connected
is as in [14].

Hence, if G contains one of the subgraphs in Figure 3, then G can be constructed

28 R. ALDRED, S. BAU, D. HOLTON, AND B. MCKAY

Table 1
Numbers of C3CPs with b-edges.

Order of graphs Without triangles With triangles Total

24 1 0 1
26 7 24 31
28 26 483 509
30 146 6724 6870
32 776 79416 80192

from a smaller C3CP with b-edges using the inverse of some reduction by such a
subgraph. Since the subgraphs in Figure 3 are derived from those of Okamura [14],
we call such an inverse an Okamura expansion.

Our computation proceeded as follows.
Phase 1. Generate all 3-connected cubic planar graphs on up to 32 vertices

which contain a b-edge but no triangle. The method used was that of Mohar [13], in
conjunction with the graph isomorphism system described by McKay in [11].

Phase 2. Note that a C3CP H with a triangle has a b-edge if and only if the C3CP
obtained from H by contracting the triangle has a b-edge. Thus the C3CPs on up to
32 vertices, with b-edges and triangles can be constructed from the graphs generated
in Phase 1 on up to 30 vertices by successively expanding vertices to triangles. This
was done, yielding graphs in the numbers indicated in Table 1. (Table 1 extends part
of Table 1 of [10], where, it should be noted, a typographical error was made indicating
that the number of C4CPs with essential 4-cuts was 5863 when it is actually 5865.)

Phase 3. Perform all possible Okamura expansions on the graphs obtained in
Phases 1 and 2, discarding the new graphs which have so formed those with forbidden
cuts.

Phase 4. Test the graphs yielded by Phase 3 for hamiltonicity, and discard those
with hamilton cycles. (All hamiltonicity checking in our computations was done using
the method of McKay [12].)

No graphs remained at the completion of Phase 4, proving the following theorem.
Theorem 3. Let G be a nonhamiltonian C4CP of order 38, 40, or 42. Then G

contains none of the subgraphs in Figure 3.
Phase 5. Generate all of the C4CPs on at most 42 vertices with no pair of

adjacent 4-gons, discarding those which contain any of the forbidden subgraphs in
Figure 3. The small set of forbidden subgraphs provides an effective filter so that
from approximately 1.5 × 1010 graphs generated, only about five million graphs are
yielded in this phase.

Phase 6. Test the graphs obtained from Phase 5 for hamiltonian cycles, discarding
the hamiltonian graphs.

After Phase 6 there were three graphs left, which were precisely those of Figure
2.

Thus our computations establish the following result.
Theorem 4. All C4CPs on at most 40 vertices are hamiltonian. Furthermore,

the only nonhamiltonian C4CPs on 42 vertices are the three shown in Figure 2.

3. The cyclically 5-connected case. In [7], Faulkner and Younger established
that the smallest nonhamiltonian C5CP has 44 vertices. The nature of the search
employed there was such that the graph known to exhibit this bound, NH44 of Figure
4, could not be guaranteed to be unique. We have now generated all C5CPs on up

NONHAMILTONIAN CUBIC PLANAR GRAPHS 29

NH44

Fig. 4. The 44-vertex nonhamiltonian C5CP.

NH46

Fig. 5. The 46-vertex nonhamiltonian C5CP.

Fig. 6. The 50-vertex nonhamiltonian C5CPs.

to 52 vertices using the generation procedure of Barnette [1] and Butler [6]. The
graphs were then checked for hamiltonian cycles. This search confirms that NH44 is
the unique nonhamiltonian C5CP of smallest order. It also yielded a complete list of
all nonhamiltonian C5CPs on at most 52 vertices. These are shown in Figures 4, 5,
6, and 7.

4. Some questions arising. The graphs yielded in the above searches suggested
further questions, some of which we have partially pursued. As was noted, no smallest
nonhamiltonian cubic planar cyclically k-connected graph can contain a triangle. Thus
all such graphs have girth 4 or 5, regardless of the value of k. Apart from the C5CPs,
all of the minimal graphs determined through the above procedures have girth 4. This
raises a question: What is the smallest order of a nonhamiltonian C3CP of girth 5?

30 R. ALDRED, S. BAU, D. HOLTON, AND B. MCKAY

Fig. 7. The 52-vertex nonhamiltonian C5CPs.

Fig. 8. The other 44-vertex girth 5 nonhamiltonian C4CP.

Fig. 9. The other 46-vertex girth 5 nonhamiltonian C4CPs.

NONHAMILTONIAN CUBIC PLANAR GRAPHS 31

Table 2
Some numbers of graphs computed.

n n1 n2 n3 n4 n5 n6 n7 n8

38 4.53×1011 6 0 0 192 0 187 0

40 3.58×1012 37 191 0 651 0 627 0

42 2.86×1013 274 5062 3 2070 0 1970 0

44 2.30×1014 – – – 7290 1 6833 1

46 1.86×1015 – – – 25381 3 23384 1

48 1.52×1016 – – – – – 82625 0

50 1.25×1017 – – – – – 292164 3

52 1.03×1018 – – – – – – 6

In the table above, the column headers are defined as follows:

n = order of G,

n1 ' number of C3CPs,

n2 = number of nonhamiltonian C3CPs with λ′(G) = 3 and girth ≥ 4,

n3 =number of nonhamiltonian C3CPs with girth 3,

n4 = number of nonhamiltonian C4CPs,

n5 = number of C3CPs with girth 5,

n6 = number of nonhamiltonian C4CPs with λ′(G) = 4 and girth 5,

n7 = number of C5CPs, and

n8 = number of nonhamiltonian C5CPs.

We generated all girth 5 C3CPs up to 46 vertices and checked them for hamilton-
icity. The only such graphs which were found to be nonhamiltonian and not cyclically
5-connected are the 44 and 46 vertex graphs in Figures 8 and 9. All of these graphs
are cyclically 4-connected. Thus a smallest order of a nonhamiltonian C3CP of girth 5
with a nontrivial 3-cut is at least 48. We can easily construct a nonhamiltonian C3CP
of girth 5 with a nontrivial 3-cut on 60 vertices using one of the 42 vertex graphs in
Figure 2 and the dodecahedron.

Each of the nonhamiltonian C3CPs found in our searches has at least one face of
size 8 or more. Barnette conjectures that all C3CPs with maximum face size at most
6 are hamiltonian. In particular, this conjecture covers the fullerenes, C3CPs with 12
faces of size 5, and all other faces of size 6. Using generation techniques of Brinkmann
and McKay [5] we generated all C3CPs with maximum face size at most 6 (note that
all such graphs on more than 20 vertices must have faces of size 6) up to 176 vertices
and tested them for hamiltonicity. All were found to be hamiltonian. This supports
the conjecture and extends the known hamiltonicity of fullerenes beyond 150 vertices
(established in Brinkmann and Dress [3]).

5. Some graph counts. In Table 2 above we include some numbers of the
graphs produced in our computations. The numbers in the column headed n1 are the
approximate total numbers of C3CPs of each of the indicated orders. We, of course,
did not generate all such graphs but include them as an indication of the sparsity of
nonhamiltonian C3CPs and of the effectiveness of the filters employed to make these
computations feasible.

32 R. ALDRED, S. BAU, D. HOLTON, AND B. MCKAY

Acknowledgment. We wish to thank Gunnar Brinkmann for assisting with the
computation.

REFERENCES

[1] D. Barnette, On generating planar graphs, Discrete Math., 7 (1974), pp. 199–208.
[2] J. Bosák, Hamiltonian lines in cubic graphs, in Proceedings of International Seminar on Graph

Theory and Applications, Rome, 1966, Gordon and Breach, New York, pp. 33–46.
[3] G. Brinkmann and A. Dress, PentHex puzzles: A reliable and efficient top-down approach

to fullerene-structure enumeration, Adv. Appl. Math., 21 (1998), pp. 473–480.
[4] G. Brinkmann and A. Dress, A constructive enumeration of fullerenes, J. Algorithms, 23

(1997), pp. 345–358.
[5] G. Brinkmann and B. D. McKay, Fast Generation of Some Classes of Planar Graphs, in

preparation.
[6] J. W. Butler, A generation procedure for the simple 3-polytopes with cyclically 5-connected

graphs, Canad. J. Math., 26 (1974), pp. 686–708.
[7] G. B. Faulkner and D. H. Younger, Non-hamiltonian simple planar maps, Discrete Math.,

7 (1974), pp. 67–74.
[8] B. Grünbaum, Convex Polytopes, John Wiley, New York, 1967.
[9] D. A. Holton and B. D. McKay, Cycles in 3-connected cubic planar graphs. II, Ars Combin.,

21(A) (1986), pp. 107–114.
[10] D. A. Holton and B. D. McKay, The smallest non-hamiltonian 3-connected cubic planar

graphs have 38 vertices, J. Combin. Theory Ser. B, 45 (1988), pp. 305–319; Erratum, 47
(1989), p. 248.

[11] B. D. McKay, Nauty User’s Guide (Version 1.5), Tech. report Tr-CS-90-02, Computer Science
Dept., Australian National University, Canberra, Australia, 1990.

[12] B. D. McKay, A Fast Search Algorithm for Hamiltonian Cycles in Cubic Graphs, in prepara-
tion.

[13] B. Mohar, Search for minimal non-hamiltonian simple 3-polytopes, in Proceedings Fourth
Yugoslav Seminar on Graph Theory, Novi Sad, University of Novi Sad, Institute of Math-
ematics, Novi Sad, 1983, pp. 191–208.

[14] H. Okamura, Every simple 3-polytope of order 32 or less is hamiltonian, J. Graph Theory, 6
(1982), pp. 185–196.

COMPLETELY DISCONNECTING THE COMPLETE GRAPH∗

JOHN GINSBURG† AND BILL SANDS‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 33–47

Abstract. In this paper we consider procedures for completely disconnecting a complete graph
on n vertices Kn. By this we simply mean that we wish to remove all of the edges of Kn in a sequence
of steps by which the graph Kn is successively transformed into the empty graph on n vertices. The
rules are that, on each step, we may remove at most one edge from each connected component of the
present graph, and in addition we may impose a limit w on the maximum number of edges we can
remove at a time. What is the minimum number of steps fw(n) it will take to completely disconnect
Kn? The two cases considered are w = ∞ and w = 2. We show that the ratio of fw(n) to the
number of edges of Kn is asymptotic to 2/3 in the first case and to 1/2 + λ(1 − λ) = .74194412 . . .
in the second, where λ is the real root of the equation λ = 2(1− λ)3.

Key words. complete graph, edge deletion

AMS subject classification. 05C85

PII. S0895480197326553

1. Introduction. In a recent work [2] the authors investigated the “celery cut-
ting” problem: to describe an optimal procedure with which to cut any given collection
of sticks of various integer lengths completely into pieces of unit length, using a knife
that can cut as many as w sticks at a time, where w is a given integer. As shown in
[2], an optimal procedure results when one repeatedly cuts as many sticks as possible,
always cutting the longest available sticks first and always cutting the sticks in half,
or as nearly in half as possible.

There are various natural generalizations of this type of cutting problem. We can
think of a “celery stick” as being a path, whose vertices correspond to the units to
be cut apart, and whose edges correspond to the connections to be cut between the
units. Making a cut to a celery stick then corresponds to deleting one edge from a
path, changing it into a disjoint union of two smaller paths. In this way, a collection
of sticks corresponds to a graph G which is a disjoint union of paths, and cutting up
all the sticks into units is equivalent to deleting all of the edges of the graph G in
a sequence of steps. On each step we are allowed to remove or “cut” as many as w
edges from the present graph, but we can delete no more than one edge from any of
the connected components of the present graph. This last condition must be included
since on any step we can make only one cut to any particular stick which is then
present. If we phrase the celery cutting problem in these graph-theoretic terms, it
has a natural and interesting generalization to all graphs G, and one can seek, for a
given graph or class of graphs, an optimal procedure by which to cut or delete all of
the edges of the graph in this way. We will speak of this as completely disconnecting
the graph. In this paper we will consider how this problem extends to the class of
complete graphs. We will discuss two instances of the problem, w = 2 (we can cut or

∗Received by the editors August 27, 1997; accepted for publication (in revised form) August 9,
1999; published electronically January 13, 2000. The majority of the research of this paper was done
while the second author was visiting the University of Winnipeg.

http://www.siam.org/journals/sidma/13-1/32655.html
†Department of Mathematics and Statistics, University of Winnipeg, Winnipeg, MB, Canada

R3B 2E9 (ginsburg-j@l-h.uwinnipeg.ca).
‡Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada T2N

1N4 (sands@math.ucalgary.ca).

33

34 JOHN GINSBURG AND BILL SANDS

@
@
@

¡
¡
¡
s s s s s s s s s s
s

s
e f

Fig. 1.

delete at most two edges at a time) and w =∞ (we can delete any number of edges
at a time).

Probably the most natural direction in which to extend the celery cutting problem
is to consider trees rather than paths. While we will not investigate this topic here,
it is worth noting that the obvious analog of the optimal algorithm described above
for paths will not, in general, be optimal for trees. The analog to cutting a path
in half would be to delete an edge from a tree so that the resulting two connected
components have sizes which are as nearly equal as possible. If we are allowed to
delete as many as w edges at a time, we would then repeatedly apply this to the w
largest trees present. However, this will not always delete all of the edges of the tree
in the minimum number of steps. An example to show this is the “rake” in Figure 1.
Suppose we take w to be 5. On the first step we can only delete one edge. We want to
cut this tree into two equal components, and so we delete the edge labeled f in Figure
1. This cuts the tree up into two smaller trees. For each of these trees we find an edge
which will split the tree up into two equal or nearly equal pieces, and we delete these
two edges together. We then do the same thing for all of the four resulting trees,
continuing in this manner until all edges have been removed. We see that five steps
will be required by this procedure. However, this procedure is not optimal. In fact, if
one starts by deleting the edge labeled e (which does not cut the tree into equal-sized
parts), then the rest of the edges can be removed using just three more steps as we
invite the reader to show.

One issue in efficiently cutting up a graph is whether to strive to “bisect” the
graph, that is, to delete edges so that the graph is divided up into two components
of equal size (or as nearly equal as possible). However, as we have just seen, even
for trees, successively bisecting may not lead to an optimal procedure. Another issue
concerns the size and nature of the set of edges to be deleted in splitting a connected
graph into components. Should we attempt to break the graph into two components
as quickly as possible (by successively deleting as few edges as we can in order to
disconnect the graph)? Or should we take more steps to split the graph up (by
successively deleting the edges of a larger sized cutset) and obtain more equal-sized
components? In any tree, just as in paths, every single edge is a cutset, and deleting
any one edge divides the graph into two components, so the size of the cutset is not
an issue here. However for other types of graphs, this must obviously be an important
consideration.

For complete graphs, which are the focus of this paper, the size of these cutsets
becomes the main concern. The complete graph on n vertices as usual is denoted by
Kn. For any two nonempty disjoint sets of vertices A and B whose union is the whole
set of vertices, the set (A,B) consisting of all edges joining a vertex of A to a vertex
of B is a cutset of Kn, and so for every integer k with 1 ≤ k ≤ n− 1, Kn has a cutset

COMPLETELY DISCONNECTING THE COMPLETE GRAPH 35

of size k(n − k). The smallest of these cutsets occurs for k = 1 and the largest for
k = bn/2c.

In our study of complete graphs we will see that, unlike the case for paths or
celery sticks, the width of the knife w (that is, the limit on how many edges we are
allowed to remove at a time) also plays an important role.

We denote the set of vertices and set of edges of a graph G, respectively, by
V (G) and E(G). If G1 and G2 are disjoint graphs, we denote their disjoint union
by G1 ⊕ G2—this denotes the graph whose vertex set is V (G1) ∪ V (G2) and whose
edge set is E(G1) ∪ E(G2). We refer the reader to [1] for other basic concepts and
terminology regarding graphs.

To end this section we give a more precise description of what is meant by a
procedure which successively removes all of the edges of a graph. Let w be a given
positive integer. A procedure for completely disconnecting a graph G is a sequence
G0, G1, . . . , Gt of spanning subgraphs of G, where t is a nonnegative integer and
G0 = G, Gt is the empty graph on the vertex set V (G), and such that, for all
i = 0, 1, . . . , t−1, Gi+1 is a graph obtained from Gi by deleting at most w edges from
Gi with no more than one edge being deleted from any connected component of Gi.
For such a procedure, we will say that the integer t is the number of steps used by
the procedure. A procedure for completely disconnecting G which uses the smallest
number of steps is called an optimal procedure for G.

2. The optimal procedure for completely disconnecting Kn when w =
∞. In our first theorem we actually assume no upper bound on the number of edges
that can be removed on each step, beyond the condition that the edges removed must
be in separate components. We abbreviate this situation by writing w = ∞. It is
clear that this is equivalent to having w ≥ n/2, where n is the number of vertices of
the graph.

We will let f∞(G) denote the least number of steps required to completely dis-
connect a graph G when w = ∞. When G = Kn, we will write f∞(n) instead of
f∞(Kn).

Imagine an optimal procedure for disconnecting Kn. In disconnecting Kn we can
remove only one edge at a time until Kn has been separated into two components
C1 and C2. These components will be subgraphs of Ka and Kb, where a and b are
positive integers such that a+ b = n, corresponding to disjoint sets of vertices A and
B of sizes a and b, respectively. In getting to this point we must, of course, have
deleted the cutset consisting of all of the ab edges connecting A and B (with one step
required for each edge). In fact, we would not have yet needed to delete any other
edges, that is, the edges joining two vertices of A or joining two vertices of B, in
getting to C1 and C2, because so far all edges can be deleted only one at a time and
therefore can be done in any order. Therefore, in considering an optimal procedure for
completely disconnecting Kn, we can assume that we first reduce Kn to two disjoint
complete subgraphs Ka and Kn−a, where (say) n/2 ≤ a ≤ n − 1, and that no other
edges of Kn are removed until this much has been accomplished. This takes a(n− a)
moves. Since it is also clear that f∞(x) ≥ f∞(y) whenever x ≥ y, we will be able to
finish the remaining graph Ka⊕Kn−a in f∞(a) moves by reducing both components
simultaneously. Our first theorem says that the best way to do all this is to separate
Kn into equal-sized components, even though this takes the largest number of initial
moves.

36 JOHN GINSBURG AND BILL SANDS

Theorem 2.1.

f∞(n) =
⌈n

2

⌉ ⌊n
2

⌋
+ f∞

(⌈n
2

⌉)
.

Proof. By the above discussion, we need only show that for all integers a satisfying
n/2 ≤ a < n,

dn/2ebn/2c+ f∞(dn/2e) ≤ a(n− a) + f∞(a).

This is true for n ≤ 3 by inspection. Proceeding by induction, consider some integer
n > 3 and an integer a such that n/2 ≤ a < n, and suppose that the result holds for
all integers smaller than n. In particular, then,

f∞(a) = da/2eba/2c+ f∞(da/2e),

and by the definition of f∞,

f∞(dn/2e) ≤ da/2e(dn/2e − da/2e) + f∞(da/2e).

So it is enough to prove that

dn/2ebn/2c+ da/2e(dn/2e − da/2e) ≤ a(n− a) + da/2eba/2c.(1)

But since

a2 − da/2e2 − da/2eba/2c = (a− da/2e)(a+ da/2e)− da/2eba/2c
= ba/2c(a+ da/2e)− da/2eba/2c = aba/2c,

(1) can be rewritten successively as

aba/2c − an+ da/2edn/2e+ dn/2ebn/2c ≤ 0,

aba/2c − a(n− dn/2e)− dn/2e(a− da/2e) + dn/2ebn/2c ≤ 0,

aba/2c − abn/2c − dn/2eba/2c+ dn/2ebn/2c ≤ 0,

and finally

(a− dn/2e)(ba/2c − bn/2c) ≤ 0,

which is true, since ba/2c ≤ bn/2c ≤ dn/2e ≤ a.
Corollary 2.2. For all integers n ≥ 2,

n2 − 1

3
≤ f∞(n) ≤ n2 + n− 3

3

where both bounds are the best ones possible.
Proof. First note that f∞(2) = 1 and f∞(3) = 3, so that the inequalities hold

when n = 2 and 3. Now consider some n > 3, and assume the result holds for all

COMPLETELY DISCONNECTING THE COMPLETE GRAPH 37

positive integers less than n. Then by the theorem,

f∞(n) = dn/2ebn/2c+ f∞(dn/2e)
≥ dn/2ebn/2c+

dn/2e2 − 1

3

=
3dn/2ebn/2c+ n2 − (n− dn/2e)(n+ dn/2e)− 1

3

=
n2 − 1 + 3dn/2ebn/2c − bn/2c(n+ dn/2e)

3

=
n2 − 1 + bn/2c(2dn/2e − n)

3

≥ n2 − 1

3
.

Equality holds if and only if n is even and equality holds for the integer dn/2e, from
which it is easy to see that f∞(n) = (n2 − 1)/3 if and only if n is a power of 2.

Similarly we can prove the right-hand inequality:

f∞(n) = dn/2ebn/2c+ f∞(dn/2e)
≤ dn/2ebn/2c+

dn/2e2 + dn/2e − 3

3

=
3dn/2ebn/2c+ n2 − (n− dn/2e)(n+ dn/2e) + (n− bn/2c)− 3

3

=
n2 + n− 3 + 3dn/2ebn/2c − bn/2c(n+ dn/2e)− bn/2c

3

=
n2 + n− 3− bn/2c(n+ 1− 2dn/2e)

3

≤ n2 + n− 3

3
.

Equality holds if and only if n is odd and equality holds for dn/2e. One can check
that this happens exactly when n = 2k + 1 for some integer k.

We can observe other nice special cases, for example, f∞(n) = n2/3 if and only
if n = 3 · 2k for some integer k.

It is interesting to compare the number of steps necessary to disconnect all of the
edges of Kn to the number of edges of Kn. As the preceding inequalities show, the
ratio of these two numbers is asymptotic to 2/3.

Corollary 2.3. f∞(n) ∼ 2
3 (n2) as n→∞.

3. Removing at most two edges at a time: The case w = 2. In this
section we restrict our attention to the case when w = 2. In this case, a procedure
for completely disconnecting a graph G is a sequence G0, G1, . . . , Gt of graphs, where
t is a nonnegative integer and G0 = G, Gt is the empty graph, and such that, for all
i = 0, 1, . . . , t − 1, Gi+1 is a graph obtained from Gi by deleting at most two edges
from Gi, with no more than one edge being deleted from any connected component
of Gi.

For i = 0, 1, . . . , t − 1, the graph Gi+1 is obtained by deleting either one or two
edges from Gi. The former will be referred to as a unit deletion and as a unit step of
the procedure. The latter steps are referred to as doublet deletions. In the case when

38 JOHN GINSBURG AND BILL SANDS

w = 2, we will let f2(G) denote the number of steps used in an optimal procedure for
completely disconnecting G.

Suppose that a procedure for completely disconnecting a graph G takes t steps,
of which t1 are unit steps and t2 are doublet steps. Since every edge of G is deleted
at some step, we have t1 + 2t2 = |E(G)|. Therefore t = t1 + t2 = (|E(G)| + t1)/2.
In particular, every optimal procedure for G uses the same number of unit steps. We
will denote the number of unit steps in any optimal procedure for G by u2(G). We
thus have the following.

Lemma 3.1. Let G be a graph. Then f2(G) = (|E(G)|+ u2(G))/2.

We need two more simple lemmas before discussing Kn in earnest.

Lemma 3.2. Let G and H be disjoint graphs, and suppose that |E(H)| ≤ |E(G)|.
Suppose there is a procedure for completely disconnecting G which uses at most one
unit deletion. Then there is a procedure for completely disconnecting G ⊕ H which
uses at most one unit deletion.

Proof. We use induction on k = |E(H)|. If k = 0 there is nothing to prove.
Suppose k = 1, and let e be the single edge of H. There is a procedure for completely
disconnecting G which uses at most one unit deletion. If no unit deletions are used,
then delete the single edge e at the end of that procedure to give a procedure for
G ⊕ H which uses at most one unit deletion. If there is one unit deletion involved
at some step of the procedure for G, then we can delete the edge e together with the
single edge from G involved in this step. Carrying out the procedure for G with the
modification of this one step then gives an appropriate procedure for G⊕H.

Thus we suppose that k > 1 and that the statement is true for all graphs G⊕H,
where |E(H)| < k. Now consider a graph G ⊕ H when |E(H)| = k. There is a
procedure for G in which at most one unit deletion is involved. In the first step of
this procedure a set of at most two edges {e1, e2} is deleted from G where we allow
the possibility that e1 = e2. Clearly the graph G1 = (V (G), E(G) − {e1, e2}) also
can be completely reduced by a procedure which uses at most one unit deletion. Now,
choose edges f1 and f2 of H so that f1 and f2 are distinct if e1 and e2 are distinct,
and are identical if e1 and e2 are. In case the two edges are distinct, we can begin a
procedure for disconnecting G ⊕H by deleting e1 and f1 together on the first step,
and then e2 and f2 together on the second step. If the two edges are identical we
begin a procedure for G⊕H by deleting e1 and f1 together on the first step. Either
way, we will have reduced (in one or two doublet steps) G ⊕H to a graph G1 ⊕H1

where G1 is a graph which can be completely reduced by a procedure which uses at
most one unit deletion, and where H1 is a graph with fewer than k edges. We can
then apply the induction hypothesis to G1⊕H1 and obtain an appropriate procedure
for G⊕H.

Lemma 3.3. Let r and s be integers with 6 ≤ r ≤ s ≤ r + 2. Then u2(Kr ⊕Ks)
≤ 1.

Proof. This is trivial if r = s—we just pair off the edges of the two equal-sized
components Kr in any order whatsoever and then remove them two by two in this
order; no unit deletions are required.

Consider the second possibility, that s = r + 1. We note that there is a positive
integer p such that 2p ≤ r+ 1 and

(
r+1

2

)− (r2) = r ≤ 2
(
p
2

)
. In fact, it is easy to check

that, for r ≥ 6, p = b r+1
2 c satisfies these two conditions. Now consider the copy of

Kr+1 in the graph Kr ⊕ Kr+1. Let A1 and A2 be disjoint sets of vertices in Kr+1,
with |A1| = |A2| = p. Let E1 and E2, respectively, denote the set of edges of the
subgraphs induced by A1 and A2 (copies of Kp), and let E denote the set of all edges

COMPLETELY DISCONNECTING THE COMPLETE GRAPH 39

of Kr+1. We have that

|E − (E1 ∪ E2)| =
(
r + 1

2

)
− 2

(
p

2

)
≤
(
r

2

)
.

Let m = |E−(E1∪E2)|. Now, pair the m edges of E−(E1∪E2) with m of the edges
of the copy of Kr in Kr ⊕Kr+1. Delete these pairs of edges one after the other. This
involves no unit deletions and reduces Kr ⊕Kr+1 to the graph G = (Kp ⊕Kp)⊕H
where H is a subgraph of Kr such that |E(H)| ≤ |E(Kp ⊕ Kp)|. Since the graph
Kp ⊕Kp can obviously be completely reduced with no unit deletions, it follows from
Lemma 3.2 that we can continue and completely reduce G using at most one unit
deletion.

The final case is when s = r + 2. This we handle similarly to the second case.
One can handle the case when r = 6 or r = 7 directly and without difficulty. For
r ≥ 8 we proceed as follows. There is a positive integer p such that 2p ≤ r + 2 and(
r+2

2

)− (r2) ≤ 2
(
p
2

)
. One checks that p = b r+2

2 c satisfies these two conditions. As in
the above argument, we then pair off all the edges of Kr+2 which are not edges of a
copy of Kp ⊕Kp with edges of Kr. We then delete these pairs, and the remainder of
the argument is identical.

For the complete graph G = Kn, we will write f2(n) and u2(n) instead of f2(Kn)
and u2(Kn). As discussed in the previous section, in considering an optimal procedure
for completely disconnectingKn, we can assume that we first reduceKn to two disjoint
complete subgraphs Kk and Kn−k, and that no other edges of Kn are removed until
this much has been accomplished. This requires k(n− k) unit moves, after which the
procedure would continue to optimally disconnect the graph Kk ⊕Kn−k. Our main
concern here is what ratio of k to n is involved in the beginning part of an optimal
procedure. Unlike the case w =∞, we will find that the “starting ratio” should not be
1/2. Our results instead point to the unique (irrational) real root λ of the polynomial
equation λ = 2(1− λ)3. We note here that λ = .41024548 We will also make use
of the quantity

ε =
4λ2 − 5λ+ 2

λ(2λ2 − 6λ+ 5)
,

for which we note that ε = .5273194
But first let’s see where this number λ comes from. Our idea of how to disconnect

Kn is to separate it into two pieces whose size ratio is such that the smaller piece’s
edges can be used exactly to break the larger piece into this same size ratio, thereby
making a recursion possible. Thus, letting k = λn be the number of vertices in the
smaller piece, this piece will contain λn(λn − 1)/2 edges, and we would like these
edges to pair off exactly with the edges that must be removed to break Kn−λn into
pieces of sizes λ(n− λn) and (1− λ)(n− λn). This results in the equation

λn(λn− 1)

2
= λ(1− λ)n · (1− λ)2n.

Equating coefficients of n2 (and ignoring the smaller-order term) gives us the above
equation for λ.

So much for the intuitive reason for our consideration of λ; now for the details of
the proof.

Theorem 3.4. Let n ≥ 6 and k be positive integers such that λn + ε ≤ k ≤
n/2, where λ and ε are defined as above. Then there is a procedure for completely

40 JOHN GINSBURG AND BILL SANDS

disconnecting Kn, which begins by using k(n − k) unit deletions to reduce Kn to
Kk⊕Kn−k, and then which uses at most one more unit deletion in reducing Kk⊕Kn−k
to the empty graph.

Proof. Our proof is by induction on n. We can verify the conclusion directly for
6 ≤ n ≤ 11 without difficulty. In fact, for n = 7 and n = 9 the result actually holds
vacuously, since no integer k exists in the stated interval. The other four cases can
all be done in a similar way. We will show the arguments for n = 8 and n = 11 as
being typical. For n = 8, the inequality for k implies that 3.75 ≤ k ≤ 4 and so we
must have k = 4. In this case, after using (4)(4) = 16 unit deletions to reduce K8 to
K4⊕K4, we can clearly complete the job by reducing the two equal-sized components
two edges at a time, one from each. No more unit deletions are involved. For the
case n = 11, the inequality for k implies that 4.98 ≤ k ≤ 5.5 and so we must have
k = 5. In this case, we use (6)(5) = 30 unit deletions to reduce K11 to K6 ⊕K5. We
then carry out nine doublet deletions, in which we remove one edge from each of the
two graphs K6 and K5. We do this in such a way that the nine edges deleted from
K6 disconnect K6 into K3 ⊕K3, while the nine edges these are paired with from K5

can be chosen in any fashion from the
(

5
2

)
= 10 edges of K5. After this we will still

have one edge remaining from the K5, and we will also have the graph K3 ⊕K3. We
next disconnect the latter graph in three doublet steps, by pairing the edges from the
two copies of K3. This leaves the one edge from K5, which we do in a final unit step.
Thus only one unit step is required after the initial reduction from K11 to K6 ⊕K5.

Assume that n ≥ 12 and that the result holds for all positive integers less than n.
Let k be any integer satisfying the hypothesis, and put α = k/n. Our conditions on
k imply that λ < α ≤ 1/2. Now, consider the integers n′ = n− k and k′ = k − bλkc.
Note that n′ ≥ n/2 ≥ 6. We claim that λn′ + ε ≤ k′. This holds since

k′ = k − bλkc ≥ k − λk ≥ (λn+ ε)− λk = λ(n− k) + ε = λn′ + ε.

In order to apply the induction hypothesis to the integer n′ and the integer k′ we also
need to know that k′ ≤ n′/2, that is,

k − bλkc ≤ 1

2
(n− k).

We will assume this for the moment, and we will return later to modify the argument
in case this last condition fails. Thus, we apply the induction hypothesis to n′ and k′:
there is a procedure for completely disconnecting Kn−k which uses (k−bλkc)[(n−k)−
(k − bλkc)] unit deletions to disconnect Kn−k into H = K(n−k)−(k−bλkc) ⊕Kk−bλkc
and then continues to completely disconnect H with at most one more unit deletion
being employed.

We next show that
(
k
2

) ≥ k′(n′ − k′). This is equivalent to saying that

k(k − 1) ≥ 2(n− 2k + bλkc)(k − bλkc).

Put bλkc = λk − x where 0 ≤ x < 1, replace k by αn, and expand; then the desired
inequality is equivalent to

(5α2 − 2α− 6λα2 + 2λα+ 2λ2α2)n2 − (α− 6xα+ 4xλα+ 2x)n+ 2x2 ≥ 0.(2)

Using the fact that λ = 2(1−λ)3 we see that the coefficient of n2 in this last inequality
is equal to

COMPLETELY DISCONNECTING THE COMPLETE GRAPH 41

α(5α− 2− 6λα+ 2λ+ 2λ2α) = α[(5− 6λ+ 2λ2)(α− λ) + (2λ3 − 6λ2 + 7λ− 2)]

= α[(5− 6λ+ 2λ2)(α− λ)− 2(1− λ)3 + λ]

= α(α− λ)(2λ2 − 6λ+ 5).

Since we have that

(α− λ)n = k − λn ≥ ε =
4λ2 − 5λ+ 2

λ(2λ2 − 6λ+ 5)
,

and since 2λ2 − 6λ+ 5 ≥ 0, the inequality (2) will follow from

α(2λ2 − 6λ+ 5)εn ≥ (α− 6xα+ 4xλα+ 2x)n.

This is equivalent to

α(4λ2 − 5λ+ 2) ≥ λ(α+ 2x(−3α+ 2λα+ 1)),

which simplifies to

α(2λ2 − 3λ+ 1) ≥ λx(2λα− 3α+ 1).(3)

Now if 2λα − 3α + 1 ≤ 0, (3) will follow from the true inequality 2λ2 − 3λ + 1 > 0.
Conversely, if 2λα− 3α+ 1 > 0, then because 0 ≤ x < 1, (3) will follow from

α(2λ2 − 3λ+ 1) ≥ λ(2λα− 3α+ 1).

This last inequality is equivalent to α ≥ λ, and is therefore true.
We have therefore shown that

(
k
2

) ≥ k′(n′ − k′). This means that the number of
edges of the graphKk is at least as large as the numberm = k′(n′−k′)—the size of the
cutset C which must be deleted from Kn′ to reduce it to the graph H = Kn′−k′ ⊕Kk′ .
Now, consider the following procedure for completely disconnecting Kn. First use
k(n−k) unit steps to reduce Kn to Kn−k ⊕Kk. Then carry out m doublet deletions,
in each of which we delete one of the edges of C together with one of the edges of
the graph Kk. At the end of these m steps, all of the edges of C have been deleted,
and Kn′ has been reduced to H = Kn′−k′ ⊕ Kk′ , while m edges of the graph Kk

have been deleted from it, leaving some spanning subgraph L of Kk. The induction
hypothesis implies that a procedure exists to completely reduce H with at most one
more unit deletion. The fact that n− k ≥ k implies that the number of edges in the
graph L (that is, the number of edges of Kk minus m) is no larger than the number of
edges of the graph H (this being the number of edges of Kn−k minus m). Therefore
by Lemma 3.2, we can continue and completely reduce H⊕L using at most one more
unit deletion. Therefore the desired statement is shown to be true for n.

As mentioned in the preceding argument, in order to apply the induction hypoth-
esis, we needed to know that k′ ≤ n′/2, that is, k − bλkc ≤ 1

2 (n− k). This condition
may fail. In this case we would certainly have that n′ − k′ ≤ n′/2. We then can
reverse the roles of k′ and n′ − k′. Let k1 = n′ − k′. Thus k1 = (n− k)− (k − bλkc).
We have that k1 ≤ n′/2, and we also need that k1 ≥ λn′+ ε. This latter statement is
equivalent to (n−k)−(k−bλkc) ≥ λ(n−k)+ε. This would follow from the inequality
(n−k)−(k−(λk−1)) ≥ λ(n−k)+ε, which is equivalent to (1−λ)n ≥ 2(1−λ)k+1+ε;
that is,

n

2
≥ k +

1 + ε

2(1− λ)
= k + 1.2948773 . . . ,(4)

42 JOHN GINSBURG AND BILL SANDS

If this last condition holds, then we can instead apply the inductive hypothesis to the
integer n′ = n − k in place of n and apply k1 in place of k. As the argument above
shows, the number of edges of the graph Kk is at least as big as the number of edges
in a cutset of size k1(n′ − k1) = k′(n′ − k′) for the graph H = Kn′−k1 ⊕Kk1 , and so
the identical argument applies. Thus the only circumstance we have left to consider
is when condition (4) fails. Since by assumption we do have that n/2 ≥ k, this can
happen only if either n = 2k, n = 2k + 1, or n = 2k + 2. In all three of these cases,
the statement we want to prove follows from Lemma 3.3, since k ≥ 6.

We have the following immediate corollary of Theorem 3.4.
Corollary 3.5. Let n ≥ 6. Then

u2(n) ≤ dλn+ εe(n− dλn+ εe) + 1.

Proof. When k = 7 or 9, this says that u2(7) ≤ 4 · 3 + 1 = 13 and u2(9) ≤ 5 · 4 + 1
=21, respectively, both of which can be verified directly. For any other integer
n ≥ 6, dλn + εe satisfies the conditions for k in Theorem 3.4, and the statement
follows.

Note that Corollary 3.5 implies that, if n is sufficiently large and w = 2, then no
optimal procedure for completely disconnecting Kn can result by first proceeding to
divide Kn “in half,” that is, into two components of size dn/2e and bn/2c. This entails
at least dn/2ebn/2c unit deletions, a number which is roughly .25n2. The right-hand
side of Corollary 3.5 is of order λ(1− λ)n2 = (.24194412 . . .)n2.

Theorem 3.4 provides us with an upper bound on the size of an initial cutset with
which to completely disconnect a complete graph efficiently. After another simple
preliminary lemma, we will consider a lower bound.

Lemma 3.6. Let G and H be disjoint graphs. Then

u2(G⊕H) ≥ u2(G)− |E(H)|.
Proof. Consider an optimal procedure for completely disconnecting the graph

G⊕H, requiring m = u2(G⊕H) unit deletions. Each step of the procedure is one of
three types: one or two edges of G are deleted, or one or two edges of H are deleted,
or one edge eG from G is deleted together with one edge eH from H. Note that there
can be no more than |E(H)| steps of the third kind. Now, suppose we parallel the
procedure for G⊕H on G: whenever the first type of deletion step occurs we apply
this same deletion step to G; whenever the second type of deletion (edges of H only)
occurs we do nothing on G; whenever the third type of deletion step occurs, instead
of deleting the two edges {eG, eH} from G ⊕ H, we delete the single edge eG from
G. This parallel procedure then completely reduces G and there are no more than
|E(H)| additional unit deletion steps in this procedure than there were unit steps in
the original procedure. Thus we have a procedure for G with at most m + |E(H)|
unit steps. We therefore have u2(G) ≤ m+ |E(H)|.

Theorem 3.7. Let n ≥ 2. Then u2(n) ≥ λn(n− λn) = λ(1− λ)n2.
Proof. For n ≤ 4, the inequality follows from the easily calculated values u2(2) =

1, u2(3) = 3, u2(4) = 4. So we assume that n > 4 and that the inequality holds
for all integers which are ≥ 2 and smaller than n. Now, consider any procedure for
completely disconnecting Kn. We must show that the number of unit deletions used
is at least λ(1 − λ)n2. The procedure must begin by using k(n − k) unit steps in
reducing Kn to Kk ⊕ Kn−k, where k is some positive integer with 1 ≤ k ≤ n/2. If
k ≥ λn, then k(n − k) ≥ λn(n − λn), and so the desired inequality holds. So we
may as well assume that k < λn. By Lemma 3.6, the rest of the procedure, which

COMPLETELY DISCONNECTING THE COMPLETE GRAPH 43

completely disconnects Kk ⊕Kn−k, must use at least u2(n− k)− (k2) unit deletions.
Now, since 2 ≤ n − k < n, the induction hypothesis applies to the integer n − k,
and we have u2(n− k) ≥ λ(1− λ)(n− k)2. Therefore, no matter how the procedure
continues, the total number of unit deletions needed will be at least

k(n− k) + u2(n− k)−
(
k

2

)
≥ k(n− k) + λ(1− λ)(n− k)2 −

(
k

2

)
.

We see that what we wish to prove will follow from the inequality

k(n− k) + λ(1− λ)(n− k)2 −
(
k

2

)
≥ λ(1− λ)n2.

This is equivalent to

2k(n− k)− k(k − 1) ≥ 2λ(1− λ)(n2 − (n− k)2) = 2λ(1− λ)(2nk − k2).

Dividing through by k, we see that what we want is

[2− 4λ(1− λ)]n ≥ [3− 2λ(1− λ)] k − 1.

Since k < λn and 3− 2λ(1− λ) > 0, the desired inequality will follow from

(2− 4λ+ 4λ2)n ≥ (3− 2λ+ 2λ2)λn− 1.(5)

Expanding, we see that (5) is equivalent to (2− 7λ+ 6λ2 − 2λ3)n ≥ −1. Since

2− 7λ+ 6λ2 − 2λ3 = 2(1− λ)3 − λ = 0,

the result follows.
Corollary 3.8. Let n ≥ 6. Then
(i) 1

2

((
n
2

)
+ λn(n− λn)

) ≤ f2(n) ≤ 1
2

((
n
2

)
+ dλn+ εe(n− dλn+ εe) + 1

)
,

(ii) f2(n) ∼ (1
2 + λ(1− λ)

) (
n
2

)
as n→∞.

Proof. Statement (i) just combines the two inequalities established above (in
Corollary 3.5 and Theorem 3.7) with Lemma 3.1. Dividing through by

(
n
2

)
and taking

the limit as n→∞ gives (ii).
It is interesting to compare Corollary 3.8(ii) with the result we found in section 2

of this paper. If we allow an arbitrary number of edges to be deleted at each step of
a disconnecting procedure for Kn (w =∞), we saw in Corollary 2.3 that the ratio of
the number of steps required in an optimal procedure to the number of edges of Kn is
asymptotic to 2/3. Here we see that if we allow no more than 2 edges to be removed
at a time (w = 2), then this ratio is asymptotic to 1/2 + λ(1− λ) = .74194412

Another look at the preceding inequalities can provide us with additional infor-
mation. For instance, if we want to actually implement an optimal procedure for
completely disconnecting Kn, we must know what the starting value of k should be,
whereby we split Kn into Kk ⊕Kn−k. Our last result shows that, given any n (suit-
ably large), there are no more than two possible values for the starting value k. In
practice we would try each of them to determine the right one.

Theorem 3.9. Let n ≥ 32. Suppose that an optimal procedure for completely
disconnecting Kn begins by reducing Kn to Kk ⊕Kn−k, where k is a positive integer
such that k ≤ n/2. Then λn < k < λn + 2. In particular, k must be one of the
integers dλne or dλne + 1. Moreover, each of these possibilities occurs for infinitely
many values of n.

44 JOHN GINSBURG AND BILL SANDS

Proof. If a procedure for completely disconnecting Kn begins by reducing Kn to
Kk ⊕Kn−k, then there are at least k(n− k) unit deletions required in the procedure.
If n/2 ≥ k ≥ λn + 2, then we would have k(n − k) ≥ (λn + 2)(n − (λn + 2)). By
Corollary 3.5, and noting that λn+ ε+ 1 ≤ n/2 for n ≥ 18,

u2(n) ≤ dλn+ εe(n− dλn+ εe) + 1 ≤ (λn+ ε+ 1)(n− λn− ε− 1) + 1.

Thus the procedure could not be optimal if

(λn+ ε+ 1)(n− λn− ε− 1) + 1 < (λn+ 2)(n− λn− 2).

This simplifies to

(ε+ 1)(1− 2λ)n− (ε+ 1)2 + 1 < 2(1− 2λ)n− 4,

and then to

n >
5− (1 + ε)2

(1− ε)(1− 2λ)
≈ 31.436,

so if n ≥ 32 we conclude k < λn + 2. This establishes the right-hand part of our
inequality.

To establish the left-hand inequality, we proceed as follows. Suppose we have a
procedure for completely disconnecting Kn which begins by reducing Kn to Kk ⊕
Kn−k. Suppose that k ≤ λn− s, where we will eventually set s = 0. By Lemma 3.6,
once Kn has been split into Kk and Kn−k, there will still be at least u2(n− k)− (k2)
unit deletions required to finish the procedure. By Theorem 3.7, this number is at
least as big as λ(1 − λ)(n − k)2 − (k2). Therefore the total number of unit deletions
employed is at least

k(n− k) + λ(1− λ)(n− k)2 −
(
k

2

)
.

Suppose that 0 < t ≤ 2 and that dλn + εe ≤ λn + t ≤ n/2 (actually we will
only be using the values t = 2 and t = 1 when appropriate). Then by Corollary
3.5, an optimal procedure for completely disconnecting Kn will use no more than
(λn+ t)(n− λn− t) + 1 unit deletions. Thus if we can show that

k(n− k) + λ(1− λ)(n− k)2 −
(
k

2

)
> (λn+ t)(n− λn− t) + 1,(6)

then the procedure cannot be optimal. Now think of n as fixed, and allow k to be
nonintegral for the moment. The left-hand side of (6) is a quadratic function in the
variable k. The coefficient of k2 in this quadratic is λ(1−λ)− 3/2, which is negative.
Therefore the minimum value of the left side of (6) for k in the interval 1 ≤ k ≤ λn−s
occurs at one of the two end points of the interval. So, to establish (6), it is enough
to show that it holds for k = 1 and for k = λn− s.

For k = 1, (6) is

n− 1 + λ(1− λ)(n− 1)2 > λ(1− λ)n2 + t(1− 2λ)n+ 1− t2,
which simplifies to

[1− 2λ(1− λ)− t(1− 2λ)]n > 2− t2 − λ(1− λ).(7)

COMPLETELY DISCONNECTING THE COMPLETE GRAPH 45

But for t ≤ 2 the coefficient of n is at least 2λ2 + 2λ − 1 ≈ .157 > 0, so (7) will be
true for sufficiently large n. In fact when t = 2, the right side of (7) is negative and
thus (7) will hold for all n. When t = 1, one checks that (7) holds for all n > 2.

For k = λn− s, (6) becomes

(λn− s)(n− λn+ s) + λ(1− λ)(n− λn+ s)2 − 1

2
(λn− s)(λn− s− 1)

> (λn+ t)(n−λn− t) + 1,

which simplifies to[
λ(1− λ)3 − λ2

2

]
n2 +

[
3sλ− s+ 2sλ(1− λ)2 +

λ

2
− t(1− 2λ)

]
n

+ λ(1− λ)s2 − s2 − s(s+ 1)

2
+ t2 − 1 > 0.(8)

Since λ = 2(1 − λ)3, the coefficient of n2 is just 0. Furthermore, when s = .4 and
t = 2, the coefficient of n is

5.7λ+ .8λ(1− λ)2 − 2.4 ≈ .05 > 0

and the constant term is also positive, so (3) holds. Since dλn + εe ≤ λn + 2 ≤ n/2
for all n ≥ 23, this says that k ≤ λn− .4 cannot give rise to an optimal procedure. In
fact, it also says that k = bλnc cannot result in an optimal procedure (and so k > λn,
since k is actually an integer, remember) unless the fractional part of λn is less than
.4. But in this case (recalling that ε = .52 . . .), dλn + εe = dλne < λn + 1 ≤ n/2,
which means we are allowed to set t = 1. Now, putting s = 0 and t = 1 in (3), the
coefficient of n is 5λ/2 − 1 ≈ .0256 > 0 and the constant term is 0, so (3) holds and
the procedure is not optimal for k ≤ λn. Thus k > λn as claimed.

In the last part of this proof we will need the following familiar fact: the fractional
parts of the integer multiples of any fixed irrational number are dense in the unit
interval (for example, see Theorem 439, p. 376 of [3]).

To show that k = dλne + 1 gives a nonoptimal procedure for infinitely many n,
we let n be a sufficiently large positive integer so that the inequality

(λn+ 1)(n− λn− 1) + 1 <

(
λn+

3

2

)(
n− λn− 3

2

)
(9)

is true and also so that dλne = dλn + εe, which means that the fractional part of
λn is less than 1 − ε. There are infinitely many such n simply because λ < 1− ε, so
that consecutive integer multiples of λ cannot “jump the gap”; alternatively, we could
use the fact that λ is irrational and appeal to the theorem mentioned in the previous
paragraph. For each such n we have

dλn+ εe = dλne ≤ λn+ 1 < λn+
3

2
≤ dλn+ εe+ 1 ≤ dλne+ 1,

and from (9) and Corollary 3.5 we conclude that k = dλne + 1 cannot result in an
optimal procedure.

46 JOHN GINSBURG AND BILL SANDS

A similar method shows that k = dλne gives a nonoptimal procedure for infinitely
many n, but this time we have rather less room to maneuver. Since (as we have seen)
the coefficient of n in inequality (3) is positive when s = 0 and t = 1, it follows that
this must also be true if we let s be a sufficiently small (in absolute value) negative
number and t be greater than 1− s but sufficiently close to 1− s. For such a choice
of s and t, (3) will then hold for sufficiently large n. Now find n so that the fractional
part of λn is greater than 1 + s; again there exist infinitely many such n because λ is
irrational. Then dλne < λn− s, so

dλn+ εe ≤ dλne+ 1 < λn+ 1− s < λn+ t,

which shows that with this value of t we can use (3) to test whether the procedure
with k ≤ λn − s is optimal. Since (3) holds, any k ≤ λn − s, and, in particular,
k = dλne does not give an optimal procedure.

We conclude this section by illustrating some of the above results for a few values
of n. We will take n = 24, 33, and 34 as interesting case studies.

Let us consider the case n = 24. Here we calculate that λn = 9.845 We will
consider the possibility of completely disconnecting K24 by using each of the integers
k = 9, 10, 11, 12 as the starting value when we split K24 into Kk⊕K24−k. When we do
this with k = 9, the initial disconnection requires (15)(9) = 135 unit deletions. Now
one can show that any procedure for completely disconnecting K15 will need at least
(8)(7) = 56 unit deletions. Since

(
9
2

)
= 36, we see from Lemma 3.6 that proceeding

to reduce K9 ⊕K15 will require at least 56− 36 = 20 more unit steps. Thus, at least
135 + 20 = 155 unit deletions will be necessary if we use k = 9. If we begin instead by
splitting K24 into K10⊕K14 this will require (10)(14) = 140 unit deletions. From here
we can completely disconnect K10 ⊕K14 with 4 more unit steps as follows. We note
that

(
10
2

)
= 45 and that (7)(7) = 49. We now delete 90 edges from K10 ⊕K14 in 45

pairs, one from each component, by matching 45 of the 49 edges needed to split K14

into K7⊕K7 with the 45 edges of K10. After doing this what remains are four of the
49 edges plus all the edges of K7⊕K7. We then use four unit steps to delete the four
edges, and then we can finish off K7 ⊕K7 with no further unit steps involved. Note
that Lemma 3.6 implies we cannot completely disconnect K14 ⊕K10 with fewer than
four unit deletions. So, with k = 10 we have a procedure which needs 140 + 4 = 144
unit deletions, and this is the best we can do for this value of k. When we take k = 11
instead, our initial split is into K11 ⊕ K13, requiring (11)(13) = 143 unit deletions.
Lemma 3.3 shows that K11 ⊕K13 can then be finished with no more than one unit
step needed. Since the number of edges of K11 ⊕K13 is odd, one unit deletion will
in fact be necessary here. Thus, with k = 11 we can completely disconnect K24 by
a procedure which uses 143 + 1 = 144 unit deletions (and this is the best we can do
for this k). This is also the case for k = 12: splitting K24 into two equal components
K12 ⊕K12 requires (12)(12) = 144 unit deletions for the initial disconnection, after
which all the rest of the edges can be deleted in doublets one from each of the two
copies of K12. Values of k which are smaller than nine cannot even come close to 144.
So when n = 24, there are three different values of k with which one can implement
an optimal procedure : k = dλne = 10, k = dλne + 1 = 11, and k = dλne + 2 = 12.
By Theorem 3.9, when n ≥ 32 it is not possible for k = dλne + 2 to give an optimal
procedure. In fact, further checking reveals that n = 24 is actually the largest value
of n for which this can occur.

Next, let us consider the case n = 33. We calculate that λn = 13.538 By
Theorem 3.9 we know an optimal procedure for completely disconnecting K33 will

COMPLETELY DISCONNECTING THE COMPLETE GRAPH 47

begin by using one of the integers k = 14 or k = 15 as the starting value when we
split K33 into Kk ⊕K33−k. When we do this with k = 14, the initial disconnection
requires (19)(14) = 266 unit deletions. The number of edges of K14 is 91. Since
(9)(10) = 90, we can delete 90 pairs of edges, each consisting of one from the copy of
K14 and one from a cutset of size 90 in the copy of K19 which reduces the latter to
K10 ⊕K9. One edge remains from the copy of K14. Lemma 3.3 implies that we can
then delete all the edges of K10⊕K9 using at most one deletion. Since this latter graph
has an odd number of edges, in fact one unit deletion will be used. When this unit
deletion occurs, we can pair it with the one remaining edge from the copy of K14 and
delete these in one doublet step. This shows that, after the initial disconnection, no
further unit deletions are required, in all just 266 unit deletions. If instead we begin by
splitting K33 into K18⊕K15, this would already entail (18)(15) = 270 unit deletions.
So we see that in this case, an optimal procedure must begin with k = dλne = 14.

Finally, consider the case n = 34. Here we calculate that λn = 13.9483
By Theorem 3.9 we know an optimal procedure for completely disconnecting K34 will
begin by using one of the integers k = 14 or k = 15 as the starting value when we split
K34 into Kk⊕K34−k. When we do this with k = 14, the initial disconnection requires
(20)(14) = 280 unit deletions. The number of edges of K14 is 91. One can show that
any procedure for completely disconnecting K20 will require at least (10)(10) = 100
unit deletions. Therefore, by Lemma 3.6, after our initial disconnection, there will
still be at least 100− 91 = 9 further unit deletions required, giving a total of at least
280 + 9 = 289. Conversely, if we begin by splitting K34 into K15 ⊕ K19, the initial
stage requires (19)(15) = 285 unit deletions, and as Theorem 3.4 implies, at most one
more unit deletion will be necessary to complete the job. This will beat the 289 unit
deletions required for k = 14. We see that, for n = 34, an optimal procedure must
begin with k = dλne+ 1 = 15.

4. Conclusion. We end with some questions regarding the case w > 2, w finite.
It is clear that as w increases, the ratio of the number of steps in an optimal procedure
to the number of edges in Kn will decrease from .74194412 . . . (the ratio when w = 2)
toward 2/3 (the ratio when w = ∞). Does this ratio converge to 2/3 as w → ∞?
What is even less clear is this: What happens to the optimal value of k as a proportion
of n, the “starting ratio” referred to in section 3? For w = 2 it is λ = .41024548
Does it just approach 1/2 as w increases, or are there finite values of w for which it
has already been shown that the best procedure is to start by disconnecting Kn into
equal parts? For example, for w = 4 a reasonable-looking procedure is to start by
cutting Kn into two equal pieces using unit deletions, then use the above procedure
for w = 2 simultaneously on both pieces. Is this optimal?

REFERENCES

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, New
York, 1981.

[2] J. Ginsburg and B. Sands, An optimal algorithm for a parallel cutting problem, Ars Combin.,
to appear.

[3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford
University Press, Oxford, UK, 1979.

RECOGNIZING PERFECT 2-SPLIT GRAPHS∗

CHÍNH T. HOÀNG† AND VAN BANG LE‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 48–55

Abstract. A graph is a split graph if its vertices can be partitioned into a clique and a stable
set. A graph is a k-split graph if its vertices can be partitioned into k sets, each of which induces
a split graph. We show that the strong perfect graph conjecture is true for 2-split graphs and we
design a polynomial algorithm to recognize a perfect 2-split graph.

Key words. graph coloring, perfect graph

AMS subject classification. 05C15

PII. S0895480197329089

1. Introduction. A graph is a split graph if its vertices can be partitioned into a
clique and a stable set. Split graphs were studied in [14] and [11]. Split graphs form a
class of perfect graphs and can be recognized in polynomial time. A graph G is perfect
if for each induced subgraph H of G the chromatic number of H equals the number
of vertices in a largest clique of H. The strong perfect graph conjecture (SPGC),
proposed by Berge [1], states that a graph is perfect if and if only it does not contain
as an induced subgraph the odd chordless cycle with at least five vertices, called odd
hole, or the complement of such a cycle, called odd antihole (for more information on
perfect graphs, see [12] and [2].) Nowadays, graphs containing no odd holes and no
odd antiholes are called Berge graphs. It is not known whether perfect graphs and
Berge graphs can be recognized in polynomial time.

The purpose of this paper is to study a generalization of split graphs and its
relation to the SPGC. We shall call a graph a k-split graph if its vertices can be
partitioned into k sets, each of which induces a split graph. The graph C5 shows
that 2-split graphs are not necessarily perfect. We will show that the SPGC holds
for 2-split graphs and we will design a polynomial algorithm for recognizing perfect
2-split graphs.

Theorem 1. A 2-split graph is perfect if and only if it is Berge.

In the remainder of this section, we shall prove Theorem 1. In the next section,
we shall show that perfect 2-split graphs can be recognized in polynomial time.

A graph is minimal imperfect if it is not perfect but each of its proper induced
subgraphs is. The proof of Theorem 1 relies on several known results on minimal
imperfect graphs. First, Lovász [16] proved that

every minimal imperfect graph G has exactly ω(G) · α(G) + 1 vertices,(1)

where ω(G), respectively α(G), denotes the number of vertices in a largest clique,
respectively, stable set, of G. Equation (1) implies that

a graph is perfect if and only if it its complement is.(2)

∗Received by the editors October 20, 1997; accepted for publication (in revised form) May 7,
1999; published electronically January 13, 2000. This research was supported by NSERC.

http://www.siam.org/journals/sidma/13-1/32908.html
†School of Mathematical Sciences, Lakehead University, Thunder Bay, Ontario, Canada P7B-5E1

(chinh.hoang@lakeheadu.ca).
‡Fachbereich Informatik, Universität Rostock, Rostock, Germany (le@informatik.uni-rostock.de).

48

RECOGNIZING PERFECT 2-SPLIT GRAPHS 49

B
B
B
B
�
�
��!!
!!aaaa

�
�
��

��
��aaaa

L
L
LLs

s

c

c
s
s
c
c

Fig. 1. A perfect 2-split non-quasi-parity graph.

Next, a result of Tucker [19] shows that

ω(G) ≥ 4 and α(G) ≥ 4 for every minimal imperfect Berge graph G.(3)

Theorem 1 is a consequence of (1) and (3).

Proof of Theorem 1. The “only if” part is trivial. We shall prove the “if” part
by contradiction. Assume that there is an imperfect Berge graph G satisfying the
hypothesis of the theorem. Since G contains an induced subgraph that is minimal
imperfect, we may, without loss of generality, assume that G is minimal imperfect.
Let T be a set of vertices in G such that each of T and V (G) − T induces a split
graph. Let T be partitioned into a clique C and a stable set S. Then

|T | = |C|+ |S| ≤ ω(G) + α(G).

Similarly,

|G− T | ≤ ω(G) + α(G).

Hence by (1),

ω(G)α(G) + 1 = |G| ≤ 2(ω(G) + α(G)).

This and (3) give

1 ≤ 2

(
1

α(G)
+

1

ω(G)

)
− 1

ω(G)α(G)

< 2

(
1

α(G)
+

1

ω(G)

)
≤ 1,

which is a contradiction.

The class of perfect 2-split graphs contains all split graphs, all bipartite graphs,
and their complements. Therefore it is not contained in BIP∗ [8] and not in the class
of strongly perfect graphs [3]. Meyniel [17] established perfectness for a large class
of graphs, the class of “quasi-parity” graphs. An even pair is a pair of vertices such
that all chordless paths joining them have an even number of edges. A graph G is a
quasi-parity graph if for each induced subgraph H of G either H or its complement
contains an even pair. The graph in Figure 1 is a perfect 2-split graph that is not a
quasi-parity graph.

50 CHÍNH T. HOÀNG AND VAN BANG LE

2. Recognition algorithm. In this section, we shall show that perfect 2-split
graphs can be recognized in polynomial time. As usual, n and, respectively, m denote
the number of vertices, respectively edges, of a graph G. A (k, l) partition of a graph
G is a partition of its vertices into k stable sets and l cliques. A graph is a (k, l) graph
if its vertices admit a (k, l) partition. Thus k-split graphs are (k, k) graphs. (k, l)
graphs were first studied by Brandstädt [5], who remarked that deciding whether a
graph is a (k, l) graph is NP-complete whenever k ≥ 3 or l ≥ 3. However, he showed
[4] that finding a (2, 1) partition (respectively, (2, 2) partition) in a graph can be done
in O(n2m) (respectively, O(n10m)) time. Brandstädt pointed out that the algorithms
he gave in [5] are incorrect; however, his algorithms in [4] are correct. Brandstädt, Le,
and Szymczak [6] later designed an O((n+m)2) algorithm to recognize (2,1) graphs.
Recently, Feder et al. [10] gave a new algorithm to find a (2, 2) partition of a graph,
if it exists; their algorithm also runs in O(n10m) time.

We shall show that an odd hole in a (2, 2) graph G, if it exists, can be found in
O(n4m3) time. Since the complement of a (2, 2) graph is again a (2, 2) graph, an odd
antihole can also be detected in polynomial time. Thus, to determine if a given graph
G is a perfect 2-split graph, we first use the algorithm of Brandstädt to construct a
(2,2) partition of G (if such a partition exists) and then use our algorithm to test for
the existence of an odd hole or antihole in G. This shows that perfect 2-split graphs
can be recognized in polynomial time.

A chordless path, respectively cycle, on k vertices is denoted by Pk, respectively
Ck. The length of a path or a cycle is the number of its edges. We often write Pk
x1x2 · · ·xk for the path on vertices x1, x2, . . . , xk and edges xixi+1 (1 ≤ i < k); x1

and xk are called end-points of P . For the path P4 x1x2x3x4, the vertices x2, x3 are
called midpoints, the edges x1x2, x3x4 are called wings of that P4, and the edge x2x3

is called the rib of that P4. By NG(x) we denote the set of vertices adjacent to vertex
x in G; when there can be no confusion, we shall write N(x) = NG(x).

Let G be a graph on n vertices and m edges. To analyze our algorithm, we shall
need an upper bound on the number of Pk’s in G for a certain number k. Since each
edge ab can extend into a P3 in at most n ways, the number of P3’s in G is of order
O(nm). Since each edge ab can be the rib of at most n2 P4’s, the number of P4 in G
is of order O(n2m). Similarly, the number of P6’s is of order O(n4m).

The remainder of this section is devoted to showing that an odd hole (if it exists)
in a (2, 2) graph can be detected in polynomial time. An (x, y)-path is an induced
path whose end-points are vertices x and y. The parity of a path is the parity of its
number of edges. We note that the following two problems can obviously be solved
in O(n+m) time.
Problem Odd Path

Input: A (2, 0) graph G, and two nonadjacent vertices x, y in G.
Question: Is there an odd induced (x, y)-path in G?

Problem Even Path
Input: A (2, 0) graph G, and two nonadjacent vertices x, y in G.
Question: Is there an even induced (x, y)-path in G?

Finding an odd hole in (2,1) graphs. We shall describe an algorithm for
finding an odd hole in a (2,1) graph G. Let the vertices of G be partitioned into
stable sets S1, S2, and a clique C1. If G contains an odd hole H, then H must contain
one or two vertices in C1.

Step 1. Look for an odd hole H containing one vertex in C1.

RECOGNIZING PERFECT 2-SPLIT GRAPHS 51

For each vertex in C1, list all P3’s containing it as a midpoint. For each P3 abc
with b ∈ C1, a, c ∈ S1 ∪S2, abc extends into an odd hole if and only if there is an odd
induced (a, c)-path in the (2,0) subgraph of G induced by S1 ∪ S2 − (NG(b)−{a, c}).

Since the number of P3’s in G is of order O(nm), the complexity of this step is
O(nm2).

Step 2. Look for an odd hole H containing two vertices in C1.
For each pair of vertices b, c in C1, list all P4’s containing them as midpoints.

For each P4 abcd with b, c ∈ C1, a, d ∈ S1 ∪ S2, abcd extends into an odd hole if and
only if there is an even induced (a, d)-path in the (2,0) subgraph of G induced by
S1 ∪ S2 − ((NG(b) ∪NG(c))− {a, d}).

Since the number of P4’s in G is of order O(n2m), the complexity of this step is
O(n2m2). Thus the complexity of finding an odd hole in a (2,1) graph is O(n2m2).

Finding an odd hole in (2,2) graphs. Let the vertices of G be partitioned
into stable sets S1, S2 and cliques C1, C2. If there is an odd hole in S1 ∪ S2 ∪ Ci, for
i = 1, 2, then we can find it using the previous algorithm. So we may assume that
there is no odd hole in S1 ∪ S2 ∪ Ci, for i = 1, 2. Now, any odd hole H in G must
contain some vertex in C1 and some vertex in C2; we let Hi denote the set of vertices
in H ∩ Ci for i = 1, 2.

First, we can look for a C5 in G in O(n5) (actually, we can do slightly better).
Thus we may assume that G has no C5.

Step 1. Look for an odd hole H such that all the vertices in H ′ = H1 ∪H2 appear
consecutively in H.

In this case H ′ induces a Pk v1 . . . vk (k = 2, 3, 4) in G. Thus we need only to
test if this Pk extends into an odd hole. For each induced path P xv1 . . . vky with
x, y ∈ S1∪S2, P extends into an odd hole if and only if there is an even (respectively,
odd) induced (x, y)-path in the subgraph of G induced by S1 ∪ S2 − ((NG(v1) ∪
NG(v2) . . . ∪NG(vk))− {x, y}) if k is even (respectively, odd).

Since the number of P6’s in G is of order O(n4m), the complexity of this step is
O(n4m2).

Step 2. Look for an odd hole H such that not all vertices in H ′ = H1 ∪H2 appear
consecutively in H.

We shall test (i) whether there is a P3 abc with b ∈ Ci, a, c ∈ S1 ∪ S2, such that
abc extends into an odd hole; and (ii) whether there is a P4 abcd with b, c ∈ Ci, a, d ∈
S1 ∪ S2, such that abcd extends into an odd hole.

A P3 abc with b ∈ Ci, a, c ∈ S1 ∪ S2 is of type 1 if a, c ∈ Sj for j = 1, 2;
otherwise the P3 is of type 2. A P4 abcd with b, c ∈ Ci, a, d ∈ S1 ∪ S2 is of type 1 if
a ∈ Si, d ∈ Sj , i 6= j; otherwise the P4 is of type 2.

Substep 2.1. For each P3 abc of type 1 with b ∈ Ci, a, c ∈ Sj , we can test if
it extends into an odd hole in the following way. If abc does not extend into a P4,
then it does not extend into an odd hole. Now, consider a P4 of the form abcd. We
must have d ∈ Ci′ ∪ Sj′ , i 6= i′, j 6= j′. Let F be the subgraph of G induced by
Ci′ ∪ S1 ∪ S2 − (NG(b)∪NG(c)−{a, d}) and let F ′ be the graph obtained from F by
adding the edge ad. Since G contains no C5, the P4 abcd extends into an odd hole in
G if and only if there is an odd hole in F ′ (this odd hole must contain the edge ad by
our assumption that Ci′ ∪ S1 ∪ S2 contains no odd hole).

Since F ′ is a (2,1) graph, this problem can be solved in O(n2m2). Thus the
complexity of this substep is O(n3m3).

Substep 2.2. For each P4 abcd of type 1 with b, c ∈ Ci, a ∈ S1, d ∈ S2, let F be
the subgraph of G induced by Ci′ ∪ S1 ∪ S2 − (NG(b) ∪ NG(c) − {a, d}), i 6= i′, and

52 CHÍNH T. HOÀNG AND VAN BANG LE

let F ′ be the graph obtained from F by adding the edge ad. Since G contains no C5,
the P4 abcd extends into an odd hole in G if and only if there is an odd hole in F ′.

Since F ′ is a (2,1) graph, this problem can be solved in O(n2m2). Thus the
complexity of this substep is O(n4m3).

Now, we may assume that no P3 and no P4 of type 1 extend into a odd hole of
G. We claim that

G contains no odd hole.

Suppose that G contains an odd hole H. Since we are in Step 2, the vertices in
H ∩ (C1 ∪ C2) do not appear consecutively on H. Enumerate the vertices of H as
x1, . . . , xt, b1, . . . , bu, y1, . . . , yr, a1, . . . , as in the cyclic order with xi ∈ C1 for each
i, bi, ai ∈ (S1 ∪ S2) for each i, and yi ∈ C2 for each i. Define Q1 to be the path
asx1 . . . xtb1 and Q2 to be the path buy1 . . . yra1. Q1 and Q2 are a P3 or P4 of type 2.

Suppose that Q1 is a P3 of type 2. If Q2 is a P3 of type 2, then the path b1 . . . bu
has the same parity as the path a1 . . . as. However, then H has even length, which is
a contradiction. Thus Q2 must be a P4 of type 2. Now, the path b1 . . . bu has different
parity than the path a1 . . . as; then H has even length, which is a contradiction.

Thus we may assume that Q1, and by symmetry Q2, is a P4 of type 2. Now, it is
easy to see that the path b1 . . . bu has the same parity as the path a1 . . . as. However,
then H has even length, which is a contradiction. Thus, G cannot contain an odd
hole as claimed.

Optimizing perfect and nonperfect 2-split graphs. Grötschel, Lovász, and
Schrijver [13] designed a polynomial algorithm to find a largest clique and an optimal
coloring of a perfect graph. This important algorithm is a variation of the ellipsoid
method for linear programming and is unlike a typical combinatorial algorithm. Thus,
one may ask for a more combinatorial algorithm. With this in mind we shall comment
on the problem of optimizing 2-split graphs.

Let G be a graph with a (2,2) partition C1, C2, S1, S2, where the Ci’s are cliques
and the Si’s are stable sets. Since we can optimally color C1 ∪ C2, we can color G
with at most χ(G) + 2 colors (χ(G) denotes the chromatic number of G). We do not
know if there is a combinatorial algorithm to optimally color a perfect 2-split graph.

We shall show that a largest clique of a 2-split graph can be found in polynomial
time. It is well known that there is a combinatorial polynomial algorithm for finding
a largest stable set and a minimum clique cover of a bipartite graph (for example, see
[7, pp. 331–336]). We shall assume that the following function can be computed in
polynomial time.
function Find-Omega-Bip(G)

input: a graph G that is the complement of a bipartite graph.
output: a number Find-Omega-Bip(G)=ω(G).
The clique number of a (2,2) graph can be computed in polynomial time by the

following function.
function Find-Omega(G)

input: a (2,2) graph G with partition C1, C2, S1, S2, where the Ci’s are cliques and
the Si’s are stable sets.

output: a number Find-Omega(G)=ω(G).
begin
max := Find-Omega-Bip(C1 ∪ C2);
for each vertex b ∈ S1 ∪ S2 do

begin

RECOGNIZING PERFECT 2-SPLIT GRAPHS 53

k := Find-Omega-Bip (N(b) ∩ (C1 ∪ C2));
if k + 1 > max then max := k + 1;

end;
for each edge ab with a, b ∈ S1 ∪ S2, do

begin
k := Find-Omega-Bip (N(a) ∩N(b) ∩ (C1 ∪ C2));
if k + 2 > max then max := k + 2;

end;
return max;
end.

We are going to show that function Find-Omega correctly computes the clique
number of G. Let ω(C1∪C2) = k. Obviously, we have k ≤ ω(G) ≤ k+2. If ω(G) = k,
then the value returned by the function is obviously correct. If ω(G) = k+1, then any
largest clique of G must contain a vertex in B = S1 ∪ S2; such a clique can be found
by finding, for each vertex b ∈ B, a largest clique in N(b)∩(C1∪C2). If ω(G) = k+2,
then any largest clique of G must contain two adjacent vertices in B = S1∪S2; such a
clique can be found by finding, for each pair of adjacent vertices b1, b2 ∈ B, a largest
clique in N(b1) ∩ N(b2) ∩ (C1 ∪ C2). Thus function Find-Omega always returns the
correct value.

3. Perfect 3-split graphs. We have shown that the SPGC holds for 2-split
graphs and we provided a polynomial algorithm for recognizing perfect 2-split graphs.
A natural extension of this result would be to show that the SPGC holds for 3-split
graphs and, more generally, k-split graphs for any fixed k. We shall show that a
minimal imperfect Berge k-split graph cannot have many vertices. When there can
be no confusion we shall write ω = ω(G) and α = α(G).

Lemma 2. For any k ≥ 2, l ≥ 2, any minimal imperfect (k, l) graph has at most
kα+ lω − r vertices where r = min (k, l).

We shall need a result of Padberg [18], who showed that

if G is a minimal imperfect graph, then any ω-clique of G is disjoint
from precisely one α-stable set of G, and vice versa.

(4)

Proof of Lemma 2. Suppose that G is a minimal imperfect (k, l) graph. Let G
be partitioned into k stable sets S1, . . . , Sk and l cliques K1, . . . ,Kl. Then |V (G)| =∑ |Si|+∑ |Ki|.

If no stable set Si is a maximum stable set and no clique Ki is a maximum clique,
then the lemma holds trivially.

Suppose that some two cliques, say, K1 and K2, are ω-cliques. Then no stable
set Si can be an α-stable set; otherwise Si is disjoint from K1 and K2, which is a
contradiction to (4). Therefore, we have |V (G)| = ∑ |Si| +∑ |Ki| ≤ k(α − 1) + lω.
Similarly, if two stable sets Si and Sj are α-stable sets, then we have |V (G)| ≤
kα+ l(ω − 1). Thus the lemma holds in this case.

Now, assume that exactly one clique of {K1, . . . ,Kl} is a ω-clique and exactly
one stable set of {S1, . . . , Sk} is an α-stable set. We have, therefore, |V (G)| ≤ α +
(k − 1)(α − 1) + ω + (l − 1)(ω − 1) = kα + lω − (k + l) + 2. Since k ≥ 2 and l ≥ 2,
the lemma also holds in this case.

Theorem 3. 3-split Berge graphs are perfect if the SPGC holds for graphs with
at most 33 vertices. Furthermore, (2, 3) Berge graphs and (3, 2) Berge graphs are
perfect.

54 CHÍNH T. HOÀNG AND VAN BANG LE

Proof of Theorem 3. Let G be a 3-split Berge graph and suppose that G is not
perfect. Then G contains a minimal imperfect graph and so, without loss of generality,
we may assume that G is minimal imperfect. By (1) and Lemma 2, we have

|V (G)| = αω + 1 ≤ 3(α+ ω)− 3.(5)

By replacing G with its complement if necessary, we may assume that α ≥ ω. Now
(5) gives αω + 1 ≤ 6α− 3 and so ω ≤ 5. This and (3) imply

4 ≤ ω ≤ 5.(6)

From (5) and (6), it is easy to verify that the largest value that |V (G)| can have is
33 and this occurs when α = 8 and ω = 4 (for example, if ω = 4 and α = 9, then
αω+ 1 = 37 but 3(α+ ω)− 3 = 36, contradicting (5); similarly, when ω = 5 we must
have α = 5 and so |V (G)| = αω + 1 = 26).

Similarly, for the case k = 2, l = 3, we have |V (G)| ≤ 21. This occurs when
ω = 5, α = 4. (2,3) Berge graphs are perfect because the SPGC holds for graphs
with at most 24 vertices. (This unpublished proof is due to V. A. Gurvich and V. M.
Udalov, who announced it at the Perfect Graph Conference in Princeton, 1993, and
is also reported in [9]; [15] gives a proof that the SPGC holds for graphs with at most
20 vertices.) By (2), (3,2) Berge graphs are also perfect.

The complexity of recognizing perfect (3,2) graphs. We shall now com-
ment on the difficulty of recognizing Berge (3,2) graphs. Tucker [19] proved that Berge
K4-free graphs are perfect; in other words, they are 3-colorable. The problem of rec-
ognizing Tucker’s graphs is still open. 3-colorable graphs are (3,0) graphs. However,
determining if a graph is a (3, l) graph is at least as hard as determining if a graph
is a (3,0) graph, for any l ≥ 1. To see this, consider a graph G and a graph H that
is the union of G and l vertex-disjoint cliques on at least four vertices. Clearly, G is
a (3,0) graph if and only if H is a (3, l) graph, and G is Berge if and only if H is.
Thus, recognizing Berge (3,2) graphs is at least as hard as recognizing Berge K4-free
graphs. Thus, our algorithm for recognizing Berge (2,2) graphs seems to be the best
possible (in the sense that it is polynomial) given the current state of knowledge on
perfect graphs.

REFERENCES

[1] C. Berge, Les problèmes de coloration en théorie des graphes, Publ. Inst. Stat. Univ. Paris, 9
(1960), pp. 123–160.

[2] C. Berge and V. Chvátal, eds., Topics on Perfect Graphs, North-Holland, Amsterdam, 1984.
[3] C. Berge and P. Duchet, Strongly perfect graphs, in Topics on Perfect Graphs, C. Berge and

V. Chvátal, eds., North-Holland, Amsterdam, 1984, pp. 57–61.
[4] A. Brandstädt, Partitions of graphs into one or two independent sets and cliques, Report

105, Informatik Berichte, Fern Universität, Hagen, Germany, 1991.
[5] A. Brandstädt, Partitions of graphs into one or two independent sets and cliques, Discrete

Math., 152 (1996), pp. 47–54. See also Corrigendum, 186 (1998), p. 295.
[6] A. Brandstädt, V. B. Le, and T. Szymczak, The complexity of some problems related to

graph 3-colorability, Discrete Appl. Math., 89 (1998), pp. 59–73.
[7] V. Chvátal, Linear Programming, W. H. Freeman, New York, 1983.
[8] V. Chvátal, Star-cutsets and perfect graphs, J. Combin. Theory Ser. B, 39 (1985), pp. 189–199.
[9] V. Chvátal, Problems Concerning Perfect Graphs, Department of Computer Science, Rutgers

University, 1993, manuscript.
[10] T. Feder, P. Hell, S. Klein, and R. Motwani, Complexity of Graph Partition Problems,

manuscript.

RECOGNIZING PERFECT 2-SPLIT GRAPHS 55

[11] S. Foldes and P. L. Hammer, Split graphs, in Proceedings 8th Southeastern Conf. on Com-
binatorics, Graph Theory and Computing, Louisiana State University, Baton Rouge, LA,
1977, Congress. Numer. 19, Utilitas Math., Winnipeg, Manitoba, 1977, pp. 311–315.

[12] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[13] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica, 1 (1981), pp. 169–197.

[14] P. L. Hammer and B. Simeone, The splittance of a graph, Research Report CORR 77-39,
Department of Combinatorics and Optimization, University of Waterloo, Ontario, Canada,
1977.

[15] C. W. H. Lam, S. Swiercz, L. Thiel, and E. Regener, A computer search for (α, ω)-graphs,
in Proc. 9th Manitoba Conference on Numerical Mathematics and Computation, Congress.
Numer. 27, Utilitas Math., Winnipeg, Manitoba, 1980, pp. 285–289.

[16] L. Lovász, A characterization of perfect graphs, J. Combin. Theory Ser. B, 13 (1972), pp. 95–
98.

[17] H. Meyniel, A new property of critical imperfect graphs and some consequences, European J.
Combin., 8 (1987), pp. 313–316.

[18] M. Padberg, Perfect zero-one matrices, Math. Programming, 6 (1974), pp. 180–196.
[19] A. Tucker, Critical perfect graphs and perfect 3-chromatic graphs, J. Combin. Theory Ser. B,

23 (1977), pp. 143–149.

A BEST POSSIBLE DETERMINISTIC ON-LINE ALGORITHM FOR
MINIMIZING MAXIMUM DELIVERY TIME ON A SINGLE

MACHINE∗

J. A. HOOGEVEEN† AND A. P. A. VESTJENS‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 56–63

Abstract. We consider a single-machine on-line scheduling problem where jobs arrive over time.
A set of independent jobs has to be scheduled on the machine, where preemption is not allowed and
the number of jobs is unknown in advance. Each job becomes available at its release date, which is
not known in advance, and its characteristics, i.e., processing requirement and delivery time, become
known at its arrival. The objective is to minimize the time by which all jobs have been delivered.
We propose and analyze an on-line algorithm based on the following idea: As soon as the machine
becomes available for processing, choose an available job with highest priority, and schedule it if its
processing requirement is not too large. Otherwise, postpone the start of this job. We prove that
our algorithm has performance bound (

√
5 + 1)/2 ≈ 1.61803, and we show that there cannot exist a

deterministic on-line algorithm with a better performance ratio for this problem.

Key words. on-line algorithm, single-machine scheduling, worst-case analysis

AMS subject classification. 90B35

PII. S0895480196296823

1. Introduction. Until a few years ago, one of the basic assumptions made in
deterministic scheduling was that all of the information needed to define the problem
instance was known in advance. This assumption is usually not valid in practice,
however. Abandoning it has led to the rapidly emerging field of on-line scheduling;
for an overview, see Sgall [1998]. Two on-line models have been proposed. The first
one assumes that there are no release dates and that the jobs arrive in a list. The
on-line algorithm has to schedule the first job on this list before it sees the next job
on the list (e.g., see Graham [1966] and Chen, Van Vliet, and Woeginger [1994]).
The second model assumes that jobs arrive over time. Besides the presence of release
dates, the main difference between the models is that in the second model, jobs do
not have to be scheduled immediately upon arrival. At each time that the machine
is idle, the algorithm decides which one of the available jobs is scheduled, if any.
Within the second model, we can make a further distinction depending on whether
the characteristics of a job, e.g., its processing requirement, become known at its
arrival or not. The first variant has been adopted by Phillips, Stein, and Wein [1998],
Vestjens [1997], and Hall, et al. [1997]; Motwani, Phillips, and Torng [1994] and
Shmoys, Wein, and Williamson [1995] study the second variant. In this paper we
consider a single-machine on-line scheduling problem that falls in the first category
of the second model; that is, the jobs arrive over time, and the characteristics of each
job become known at its arrival time.

Our objective is to minimize the time by which all jobs have been delivered. In
this problem, after their processing on the machine, the jobs need to be delivered,

∗Received by the editors January 2, 1996; accepted for publication (in revised form) April 9, 1999;
published electronically January 13, 2000. The research leading to this paper was conducted when
both authors were working at Eindhoven University of Technology.

http://www.siam.org/journals/sidma/13-1/29682.html
†Department of Computer Science, Utrecht University, P.O. Box 80089, 3508 TB Utrecht, The

Netherlands (slam@cs.uu.nl).
‡Center for Quantative Methods CQM, P.O. Box 414, 5600 AK Eindhoven, The Netherlands

(Vestjens@cqm.nl).

56

A BEST POSSIBLE DETERMINISTIC ON-LINE ALGORITHM 57

which takes a certain delivery time. The corresponding off-line problem is strongly
NP-hard, but the preemptive version can be solved in polynomial time through an
on-line algorithm (e.g., see Lawler et al. [1993]). A well known on-line algorithm
for this problem is the ldt rule: choose from among the available jobs the one with
the largest delivery time; this algorithm solves the problem if all jobs are released
at the same time. For the case with unequal release dates, Kise, Iberaki, and Mine
[1979] prove that ldt has a performance guarantee of 2. The question is, of course,
can we do better from a worst-case point of view? In the remainder of the paper we
show that the answer is yes: we present a deterministic algorithm with worst-case
ratio (

√
5 + 1)/2 ≈ 1.61803. Moreover, we show that we cannot do any better: every

deterministic on-line algorithm has a worst-case ratio of at least that value. Recently,
Seiden (1998) has developed a randomized algorithm with worst-case bound 1.55370.
This algorithm randomly selects one of two deterministic algorithms and runs it.
Furthermore, Seiden has shown that no such algorithm can do better than 1.5.

Throughout the paper we use Jj to denote job j, and rj , pj , and qj to denote
the release date, processing requirement, and delivery time of Jj , respectively. We
denote by Sj(σ), Cj(σ), and Lj(σ), the starting time, completion time, and the time
by which Jj is delivered in schedule σ, respectively. We use σ to denote the schedule
produced by the heuristic and π to denote an optimal schedule.

2. Maximum delivery time. In this section, we present an on-line α-approxi-
mation algorithm for the single-machine scheduling problem of minimizing the time
by which all jobs have been delivered, where α = (

√
5+1)/2, and show that no on-line

algorithm can do better from a worst-case point of view. We start with the latter.
We prove the lower bound on the worst-case ratio by means of an example for which
any on-line algorithm will have at least the required ratio. Let Lmax(π) denote the
minimum time by which all jobs can be delivered, and let Lmax(σ) denote the time by
which all jobs are delivered in schedule σ, where σ is obtained through some on-line
algorithm.

Theorem 2.1. Any on-line algorithm has a worst-case ratio of at least α.

Proof. Consider the following situation. The first job arrives at time 0 and has
processing requirement p1 = 1 and delivery time q1 = 0. The on-line algorithm
decides to schedule the job at time S. Depending on S, either no jobs arrive any
more or one job with processing requirement p2 = 0 and delivery time q2 = 1 arrives
at time r2 = S + ε. In the first case it is optimal to start the only job at time zero,
giving Lmax(π) = 1, and we get a ratio of Lmax(σ)/Lmax(π) = (S + 1)/1; this implies
that to beat the ratio of 2, we must choose S < 1. In the second case it is optimal
to schedule J2 before J1, because S < 1, Lmax(π) = S + 1 + ε, and we get a ratio of
Lmax(σ)/Lmax(π) = (S + 2)/(S + 1 + ε). Hence,

Lmax(σ)

Lmax(π)
≥ max

{
S + 1,

S + 2

S + 1 + ε

}
.

If the on-line algorithm knew beforehand that the adversary would feed it one of these
two instances, then it could account for this optimally by choosing S so as to minimize
this expression. Obviously, any algorithm lacking this information does at least as
badly. Some simple algebra shows that the best choice for S is

S =
1

2
(
√

5 + 2ε+ ε2 − 1− ε).

58 J. A. HOOGEVEEN AND A. P. A. VESTJENS

This implies a worst-case ratio of

Lmax(σ)

Lmax(π)
≥ 1

2
(
√

5 + 2ε+ ε2 + 1− ε).

If we let ε tend to zero, then we get the desired ratio of α.
We can use the example of Theorem 2.1 to show that any on-line algorithm that

schedules a job as soon as the machine is available will have a worst-case ratio of at
least 2. Note that a simple algorithm like ldt already achieves this bound. If an
algorithm wants to guarantee a better performance bound, then it needs a waiting
strategy, which sometimes allows the algorithm to wait for more information; this
decreases the impact of a “wrong” decision by the algorithm, as the adversary has to
release jobs further into the future to disturb the algorithm. Therefore, we modify
the ldt rule and call the new rule the delayed ldt rule (d-ldt). The basic idea
behind the algorithm is that, if none of the available jobs has a “large” processing
requirement, then we schedule the job with the largest delivery time; otherwise, we
decide whether to schedule the big job, the job with the largest delivery time, or no
job at all.

Throughout this section, we use the following notation:
• p(S) denotes the total processing time of all jobs in S;
• A(t) is the set containing all jobs that have arrived at or before time t and

that have not been started by time t;
• B(t) is the set containing all jobs that arrived at or before time t and that

were not completed before the last idle time period before time t; if there is
no idle time before time t, then B(t) contains all jobs;
• p(t) denotes the index of the job with the largest processing time in A(t);
• q(t) denotes the index of the job with the largest delivery time in A(t).

The set A(t) can be interpreted as the set of jobs that still need to be entirely
processed at time t. The set B(t) can be interpreted as the set of all jobs in A(t)
plus the jobs scheduled in the block of contiguously scheduled jobs that is still being
processed at time t. We call a job Jj big at time t if pj > (α − 1)p(B(t)); this is
equivalent to αpj > p(B(t)), as α(α − 1) = 1. Since (α − 1) > 1

2 , there can be no
more than one big job at any time.

Algorithm d-ldt

Step 0. If the machine is idle and a job is available at time t, de-
termine q(t) and p(t); otherwise, wait until the machine is idle and a
job is available.
Step 1. If pp(t) ≤ (α−1)p(B(t)), then schedule Jq(t) and go to Step
0.
Step 2. If t+ p(A(t)) > rp(t) + αpp(t), then

Step 2a. if qq(t) > (α− 1)pp(t), then schedule Jq(t);
Step 2b. if qq(t) ≤ (α− 1)pp(t), then schedule Jp(t).

Step 3. If t+ p(A(t)) ≤ rp(t) + αpp(t), then
Step 3a. if q(t) 6= p(t), then schedule Jq(t);
Step 3b. if q(t) = p(t), then schedule any job but Jp(t).

Step 4. Go to Step 0.

Note that if only one job Jj is available and is marked as big at time t, then the
algorithm schedules no job and waits either until time rj + (α − 1)pj or until a new
job arrives, whichever happens first. If no job is big at the decision time t, then the
algorithm simply schedules job Jq(t), i.e., the job with the largest delivery time. If job

A BEST POSSIBLE DETERMINISTIC ON-LINE ALGORITHM 59

Jp(t) is big at time t, then the algorithm checks whether the available jobs can keep
the machine busy until time rp(t) + αpp(t). If this is not the case, then the algorithm
schedules the job with maximum delivery time, unless this is the big job; it schedules
some other job then. If the jobs can keep the machine busy long enough, then we can
permit scheduling the big job Jp(t), unless Jq(t) has a huge delivery time (more than
(α− 1)pp(t)).

We will prove that d-ldt has worst-case ratio α. In our proof, we work with a
smallest counterexample, where size is measured in terms of the number of jobs. Let
I be such a smallest counterexample, and let σ be the schedule created by d-ldt
for I. We abuse the notation I to denote the instance as well as the set of jobs in
the instance. Let Jl denote the first job in σ that assumes the value Lmax(σ). To
prove that such a counterexample cannot exist, we start by proving four structure
properties that the schedule σ for an alleged smallest counterexample must satisfy.

Observation 2.2. The schedule σ consists of a single block: it starts with a
nonnegative period of idle time after which all jobs are executed contiguously.

Proof. Suppose to the contrary that σ does not have this form. We then show
that either we can find a counterexample that consists of a smaller number of jobs,
or that this alleged counterexample is not a counterexample at all.

Suppose that σ consists of more than one block. Let B be the block in which Jl is
scheduled. Since the algorithm bases its choices on the set B(t), the existence of the
jobs that are completed before the start of block B does not influence the start time
of B and the order in which the jobs are executed. Therefore, we can remove all jobs
that are completed before the start of block B without changing the value Lmax(σ)
and without increasing Lmax(π). Similarly, we can remove all jobs from I that are
released after the start of Jl in σ. Therefore, we may assume that our counterexample
consists of the jobs from block B and the jobs that are available at the start of Jl in
σ but that are scheduled in another block.

Let SB and CB denote the start time of the first job and the completion time of
the last job in B. Since d-ldt inflicts unnecessary idle time only if there is one job
available that is marked big, we know that there is only one job in I that does not
belong to B and that this job, which we denote by Ji, is marked big at time CB , i.e.,
αpi > p(B(CB)) = pi + p(B).

Let J0 be the job that arrives first, which may be equal to Ji. Due to the working
of the algorithm, SB = min{r0 + (α− 1)p0, r1}, where r1 denotes the release date of
the second available job. Since Jl is a job in B, we know that Lmax(σ) = Ll(σ) =
Cl(σ) + ql ≤ CB + ql. If J0 is the first job scheduled in π, then Lmax(π) ≥ Ll(π) ≥
r0+p0+ql > SB+ql, from which we derive that Lmax(σ)−Lmax(π) < CB−SB = p(B).
If J0 is not the first job in π, then the first job in π cannot start before time r1 ≥ SB ,
which implies that Lmax(π) ≥ Ll(π) ≥ SB+pl+ql, and we again have that Lmax(σ)−
Lmax(π) ≤ CB − SB = p(B). Above, we have already shown that αpi > (p(B) + pi),
which implies that Lmax(σ)−Lmax(π) ≤ p(B) < (α− 1)pi ≤ (α− 1)Lmax(π), and we
conclude that I then does not correspond to a counterexample.

From now on, let J0 denote the job that arrives first in I. Without loss of
generality we may assume that r0 = 0.

Observation 2.3. For all Jj ∈ I \ {J0}, we have that pj ≤ (α− 1)p(I).

Proof. Suppose to the contrary that there does exist a job Jj with rj ≥ r0 that has
pj > (α−1)p(I), i.e., αpj > p(I). Then at time rj there are at least two jobs available,
which implies that the algorithm starts a job if it has not done so already. On the
basis of Observation 2.2, we may conclude that there is no idle time in the remainder

60 J. A. HOOGEVEEN AND A. P. A. VESTJENS

of the schedule. But since Jj is marked as big by the algorithm for any time t, this can
be the case only if the other jobs are able to keep the machine busy from time rj to
time rj+(α−1)pj . In that case, however, (α−1)pj ≤ p(I)−pj < αpj−pj = (α−1)pj ,
which is a contradiction.

Let Jk denote the last job scheduled in σ before Jl with a delivery time smaller
than ql, if it exists. LetG(l) denote the set of jobs containing Jl and all jobs between Jk
and Jl in σ if Jk exists, and all jobs scheduled before and including Jl in σ otherwise.
Note that, due to the definition of Jk, all jobs in G(l) have delivery time greater
than or equal to ql. As in Potts [1980], we shall refer to Jk as the interference job
for the schedule σ as it may delay the times at which the jobs in G(l) are delivered
by occupying the machine when at least one of the jobs in G(l) becomes available
for processing. We now show that the schedule σ contains an interference job and,
furthermore, that this job has a considerable processing requirement.

Observation 2.4. σ contains an interference job Jk.
Proof. Due to the definition of G(l), we have that

Lmax(π) ≥
∑
j∈G(l)

pj + ql.

The first job in σ starts at time (α − 1)p0, at the latest. If there is no interference
job, then G(l) contains all the jobs that have been scheduled in σ before time Cl(σ)
and, consequently,

Lmax(σ) = Cl(σ) + ql ≤ (α− 1)p0 +
∑
j∈G(l)

pj + ql.

Hence, Lmax(σ)− Lmax(π) ≤ (α− 1)p0 ≤ (α− 1)Lmax(π), which contradicts the fact
that we consider a counterexample.

Observation 2.5. pk > (α− 1)p(I).
Proof. Suppose that (α− 1)p(I) ≥ pk. We show that I then does not correspond

to a counterexample.
To show that I does not correspond to a counterexample, we must prove that

Lmax(σ) = Cl + ql = Sk(σ) + pk + p(G(l)) + ql ≤ αLmax(π). The difficulty lies in the
term (Sk(σ) + pk); we need to bound this. Therefore, we take a closer look at the
situation in σ at time Sk(σ).

There are three possible reasons why the algorithm selected Jk and not one of
the jobs from G(l):

(1) All jobs in G(l) have a release date larger than Sk(σ).
(2) Jk is big at time Sk(σ), and all of the jobs from G(l) that are available at

time Sk(σ) have a delivery time of at most (α− 1)pk; this corresponds to the
situation described in Step 2b.

(3) There is one job from G(l) available at Sk(σ), which we denote by Ji, that is
marked as big, and the algorithm is not allowed to start it; this corresponds
to the situation described in Step 3.

Case 1. In this case, we have that

Lmax(π) ≥ min
j∈G(l)

rj +
∑
j∈G(l)

pj + ql > Sk(σ) +
∑
j∈G(l)

pj + ql.

Hence, we deduce that Lmax(σ)− Lmax(π) < pk ≤ (α− 1)p(I) ≤ (α− 1)Lmax(π).

A BEST POSSIBLE DETERMINISTIC ON-LINE ALGORITHM 61

Case 2. Since the available jobs from G(l) have a delivery time of size no more
than (α − 1)pk and Jl is the job with minimum delivery time in G(l), we know that
ql ≤ (α− 1)pk.

Now consider π. If π does not have J0 as its first job, then processing in π will
start at the same time or later than in σ, which implies that Cmax(σ) ≤ Cmax(π). In
this case, we derive

Lmax(σ) = Ll(σ) = Cl(σ) + ql ≤ Cmax(σ) + (α− 1)pk

≤ Cmax(π) + (α− 1)pk ≤ Lmax(π) + (α− 1)pk ≤ αLmax(π).

Hence, I does not correspond to a counterexample in Case 2, unless J0 is scheduled
first in π. Then we have that Cmax(σ) ≤ Cmax(π) + (α− 1)p0, as the first job in σ is
started no later than time (α− 1)p0, and we obtain

Lmax(σ) = Ll(σ) = Cl(σ) + ql ≤ Cmax(σ) + (α− 1)pk

≤ Cmax(π) + (α− 1)p0 + (α− 1)pk ≤ Lmax(π) + (α− 1)(p0 + pk).

If J0 6= Jk, then p0 + pk ≤ p(I) ≤ Lmax(π), which implies that I does not correspond
to a counterexample then. Hence, we assume that J0 = Jk. Since π starts with J0, we
find that Lmax(π) ≥ p0 +p(G(l))+ql, which implies that Lmax(σ)−Lmax(π) ≤ S0(σ).
Since I forms a counterexample, we must have S0(σ) > (α − 1)p0. But this implies
that d-ldt must have applied Step 2a at least once. Consider the set Q containing
the jobs that were processed from time T to time S0(σ) in σ, where T is the start
time of the first job that is completed after time (α − 1)p0 in σ. Since the jobs in Q
were preferred to J0, all these jobs have delivery time more than (α− 1)p0 > ql. On
basis of the jobs in Q ∪G(l), we derive the following lower bound on Lmax(π), where
we keep in mind that J0 is scheduled first in π:

Lmax(π) ≥ p0 +
∑
j∈Q

pj +
∑
j∈G(l)

pj + min
j∈(Q∪G(l))

qj = p0 + p(Q) + p(G(l)) + ql.

Since Lmax(σ) = T + p(Q) + p0 + p(G(l)) + ql, we obtain

Lmax(σ)− Lmax(π) ≤ T ≤ (α− 1)p0,

and we conclude that I does not correspond to a counterexample in Case 2. Note
that the proof of Case 2 does not rely on the assumption that (α− 1)p(I) ≥ pk.

Case 3. The algorithm would have selected Ji if given a chance, as qi ≥ ql >
qk. Therefore, we must be in the situation of Step 3 of d-ldt, which implies that
Sk(σ) + pk ≤ ri + (α− 1)pi. We obtain

Lmax(π) ≥ min
j∈G(l)

rj +
∑
j∈G(l)

pj + ql = ri + p(G(l)) + ql.

Since Lmax(σ) = Cl + ql = Sk(σ) + pk + p(G(l)) + ql, we deduce that

Lmax(σ)− Lmax(π) ≤ Sk(σ) + pk − ri ≤ ri + (α− 1)pi − ri ≤ (α− 1)Lmax(π).

Since none of these three cases corresponds to a counterexample, we conclude that
our assumption was wrong and hence that Jk must have pk > (α− 1)p(I).

62 J. A. HOOGEVEEN AND A. P. A. VESTJENS

Corollary 2.6. Jk = J0.
So far, we proved several structural properties that the heuristic schedule for

a smallest counterexample must satisfy. Furthermore, we proved that the job that
arrives first is big for all times t, has a smaller delivery time than Jl, and is the last job
scheduled before Jl with a smaller delivery time than Jl. Finally, none of the other
jobs is big at any time t, and all jobs are scheduled contiguously. For our analysis
in Theorem 2.8, we still need one more lemma that proves a specific property on the
optimal schedule for the alleged smallest counterexample.

Lemma 2.7. Either J0 is the first job in π, or Cmax(π) ≥ Cmax(σ) ≥ αp0.
Proof. Let J1 be the first job other than J0 that becomes available. Since there are

two jobs available at time r1, the algorithm starts one of the jobs if the machine is still
idle. Therefore, if J0 is not the first job in π, the first job in σ starts no later than the
first job in π, and since there is no idle time in σ, we then have Cmax(σ) ≤ Cmax(π).
It is easily checked that Cmax(σ) ≥ αp0.

Theorem 2.8. The deterministic on-line algorithm d-ldt for minimizing Lmax

on a single machine has performance bound (
√

5 + 1)/2.
Proof. Suppose to the contrary that there exists an instance for which the al-

gorithm finds a schedule σ with Lmax(σ) > αLmax(π). Obviously, then there exists
a counterexample I with a minimum number of jobs. On basis of Observations 2.2
through 2.5, we may assume that the first job available in I, which is defined to be
J0, has p0 > (α− 1)p(I). Note that, due to Corollary 2.6, J0 is the last job before Jl
in σ with delivery time smaller than ql.

Just like in the proof of Observation 2.5, we will show that Lmax(σ) = Cl(σ)+ql =
Sk(σ) + pk + p(G(l)) + ql ≤ αLmax(π). Again, we take a closer look at the situation
in σ at time Sk(σ).

There are two possible reasons for starting J0 instead of a job from G(l) at
time S0(σ). The first one is that simply none of the jobs in G(l) was available, i.e.,
rj > S0(σ) for all Jl ∈ G(l). The second one is that the available jobs in G(l) have a
delivery time at most equal to (α − 1)p0 (the situation in Step 2b). We cover both
cases by distinguishing between

(1) rj > S0(σ) for all Jj ∈ G(l), and
(2) qj ≤ (α− 1)p0 for some Jj ∈ G(l).
Case 1. Since none of the jobs in G(l) is available at time S0(σ),

Lmax(π) > S0(σ) +
∑
j∈G(l)

pj + ql, and Lmax(σ) = S0(σ) + p0 +
∑
j∈G(l)

pj + ql.

Hence, Lmax(σ) − Lmax(π) < p0. If J0 is not the first job in π, then, according to
Lemma 2.7, Lmax(π) ≥ Cmax(π) ≥ αp0, which implies that Lmax(σ) − Lmax(π) <
(α − 1)Lmax(π). Therefore, we assume that J0 is the first job in π. Moreover, we
may assume that there is no job in I with delivery time greater than (α− 1)p0, as we
would obtain Lmax(π) ≥ αp0 then, from which we derive p0 ≤ (α − 1)Lmax(π). This
implies that Step 2a will not occur, and hence J0 is started as soon as it is eligible,
which event occurs at time (α− 1)p0 at the latest. All this leads to

Lmax(π) ≥ p0 +
∑
j∈G(l)

pj + ql,

and hence, Lmax(σ) − Lmax(π) ≤ S0(σ) ≤ (α − 1)p0 ≤ (α − 1)Lmax(π), which ruins
our counterexample.

A BEST POSSIBLE DETERMINISTIC ON-LINE ALGORITHM 63

Case 2. Since all jobs in G(l) have a delivery time that is at least as large as
ql, we have that ql ≤ (α − 1)p0. This leads to the same situation as examined in
Case 2 of Observation 2.5 for which we concluded that it was incapable of producing
a counterexample.

Since we have eliminated all possibilities, we conclude that there is no counterex-
ample to Theorem 2.8.

Acknowledgments. The authors want to thank Steve Seiden for pointing out a
hole in the proof of Observation 2.5 and two anonymous referees for their constructive
comments.

REFERENCES

[1] B. Chen, A. van Vliet, and G. J. Woeginger (1994), New lower and upper bounds for
on-line scheduling, Oper. Res. Lett., 16, pp. 221–230.

[2] R. L. Graham (1966), Bounds for certain multiprocessing anomalies, Bell System Tech. J.,
45, pp. 1563–1581.

[3] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein (1997), Scheduling to minimize
average completion time: Off-line and on-line approximation algorithms, Math. Oper.
Res., 22, pp. 513–544.

[4] H. Kise, T. Iberaki, and H. Mine (1979), Performance analysis of six approximation algo-
rithms for the one-machine maximum lateness scheduling problem with ready times, J.
Oper. Res. Soc. Japan, 22, pp. 205–224.

[5] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys (1993), Sequencing
and scheduling: Algorithms and complexity, in Logistics of Production and Inventory;
Handbooks Oper. Res. Management Sci. 4, S. C. Graves, P. H. Zipkin, and A. H. G.
Rinnooy Kan, eds., North-Holland, Amsterdam, pp. 445–522.

[6] R. Motwani, S. Phillips, and E. Torng (1994), Non-clairvoyant scheduling, Theoret. Com-
put. Sci., 130, pp. 17–47.

[7] C. Phillips, C. Stein, and J. Wein (1998), Minimizing average completion time in the
presence of release dates, Math. Programming (B), 28, pp. 199–223.

[8] C. N. Potts (1980), Analysis of a heuristic for one machine sequencing with release dates
and delivery times, Oper. Res. 28, pp. 1436–1441.

[9] S. S. Seiden (1998), Randomized Online Scheduling with Delivery Times, Report Woe-24,
Technical University Graz, Graz, Austria.

[10] J. Sgall (1998), On-line scheduling, in A. Fiat and G. J. Woeginger, eds., On-Line Algorithms:
The State of the Art, Lecture Notes in Comput. Sci. 14421, Springer, Berlin.

[11] D. B. Shmoys, J. Wein, and D. P. Williamson (1995), Scheduling parallel machines on-line,
SIAM J. Comput. 24, pp. 1313–1331.

[12] A. P. A. Vestjens (1997), On-line Machine Scheduling, Ph.D. thesis, Eindhoven University
of Technology, Eindhoven, The Netherlands.

MULTIPROCESSOR SCHEDULING WITH REJECTION∗

YAIR BARTAL† , STEFANO LEONARDI‡ , ALBERTO MARCHETTI-SPACCAMELA† ,
JIŘÍ SGALL§ , AND LEEN STOUGIE¶

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 64–78

Abstract. We consider a version of multiprocessor scheduling with the special feature that jobs
may be rejected at a certain penalty. An instance of the problem is given by m identical parallel
machines and a set of n jobs, with each job characterized by a processing time and a penalty. In
the on-line version the jobs become available one by one and we have to schedule or reject a job
before we have any information about future jobs. The objective is to minimize the makespan of the
schedule for accepted jobs plus the sum of the penalties of rejected jobs.

The main result is a 1 + φ ≈ 2.618 competitive algorithm for the on-line version of the problem,
where φ is the golden ratio. A matching lower bound shows that this is the best possible algorithm
working for all m. For fixed m we give improved bounds; in particular, for m = 2 we give a φ ≈ 1.618
competitive algorithm, which is best possible.

For the off-line problem we present a fully polynomial approximation scheme for fixed m and a
polynomial approximation scheme for arbitrary m. Moreover, we present an approximation algorithm
which runs in time O(n logn) for arbitrary m and guarantees a 2− 1

m
approximation ratio.

Key words. multiprocessor scheduling, on-line algorithms, competitive analysis, approximation
algorithms

AMS subject classification. 68Q25

PII. S0895480196300522

1. Introduction. Scheduling jobs on parallel machines is a classical problem
that has been widely studied for more than three decades [6, 12]. In this paper we
consider a version of the problem that has the special feature that jobs can be rejected
at a certain price.

We call this problem multiprocessor scheduling with rejection and use the abbre-
viation MSR. Given are m identical machines and n jobs. Each job is characterized
by its processing time and its penalty. A job can be either rejected, in which case its
penalty is paid, or scheduled on one of the machines, in which case its processing time
contributes to the completion time of that machine. The processing time is the same

∗Received by the editors March 13, 1996; accepted for publication (in revised form) May 7, 1999;
published electronically January 13, 2000. A preliminary version of this paper appeared in the
Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, Atlanta, GA,
January 28–30, 1996, SIAM, Philadelphia, 1996, pp. 95–103.

http://www.siam.org/journals/sidma/13-1/30052.html
†Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel (yairb@math.

tau.ac.il). The research of this author was supported in part by the Ben Gurion Fellowship, Israel
Ministry of Science and Arts.
‡Dipartimento di Informatica Sistemistica, Università di Roma “La Sapienza,” via Salaria 113,

00198-Roma, Italia (leonardi@dis.uniroma1.it, marchetti@dis.uniroma1.it). The research of this au-
thor was partly supported by ESPRIT BRA Alcom II under contract 7141, and by Italian Ministry
of Scientific Research Project 40% “Algoritmi, Modelli di Calcolo e Strutture Informative.”
§Mathematical Institute, AS CR, Žitná 25, 115 67 Prague 1, Czech Republic, and Department of

Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Re-
public (sgall@math.cas.cz). The research of this author was partially supported by grants A1019602
and A1019901 of GA AV ČR, postdoctoral grant 201/97/P038 of GA ČR, and cooperative research
grant INT-9600919/ME-103 from the NSF (USA) and the MŠMT (Czech Republic). Part of this
work was done at the Institute of Computer Science, Hebrew University, Jerusalem, Israel and was
supported in part by a Golda Meir Postgraduate Fellowship.
¶Department of Mathematics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eind-

hoven, The Netherlands (leen@win.tue.nl). The research of this author was supported by the Human
Capital Mobility Network DONET of the European Community.

64

MULTIPROCESSOR SCHEDULING WITH REJECTION 65

for all the machines, as they are identical. Preemption is not allowed; i.e., each job
is assigned to a single machine and once started is processed without interruption.
The objective is to minimize the sum of the makespan and the penalties of all rejected
jobs. Makespan (the length of the schedule) is defined as the maximum completion
time taken over all machines.

In the on-line version of MSR jobs become available one by one, and the decision
to either reject a job or to schedule it on one of the machines has to be made before
any information about following jobs is disclosed. In particular, there may be no other
jobs. On-line algorithms are evaluated by the competitive ratio; an on-line algorithm
is c-competitive if for each input the cost of the solution produced by the algorithm
is at most c times the cost of an optimal solution (cf. [14]).

The main goal of an on-line MSR algorithm is to choose the correct balance
between the penalties of the jobs rejected and the increase in the makespan for the
accepted jobs. At the beginning, it might have to reject some jobs if the penalty
for their rejection is small compared to their processing time. However, at a certain
point it would have been better to schedule some of the previously rejected jobs since
the increase in the makespan due to scheduling those jobs in parallel is less than the
total penalty incurred. In this scenario the on-line MSR problem can be seen as a
nontrivial generalization of the well-known Rudolph’s ski rental problem [11]. (In that
problem, a skier has to choose whether to rent skis for the cost of 1 per trip or to
buy them for the cost of c, without knowing the future number of trips. The best
possible deterministic strategy is to rent for the first c trips and buy afterwards. In our
problem, rejecting jobs is analogous to renting, while scheduling one job is analogous
to buying, as it allows us to schedule m − 1 more jobs of no bigger processing time
without extra cost.)

Our main result is a best possible, 1 + φ ≈ 2.618 competitive algorithm for the
on-line MSR problem, where φ = (1 +

√
5)/2 is the golden ratio. We prove that

no deterministic algorithm that receives m as input can achieve a better competitive
ratio independent of m.

For small values of m we give better upper and lower bounds. In particular, for
m = 2 we obtain a best possible, φ ≈ 1.618 competitive algorithm. For m = 3 we
obtain 2-competitive algorithms and show a lower bound of 1.839.

Our results should be compared with the current knowledge about on-line algo-
rithms for the classical multiprocessor scheduling problem. In that problem, each job
has to be scheduled; hence it is equivalent to a special case of our problem where
each penalty is larger than the corresponding processing time. Graham’s list schedul-
ing algorithm schedules each job on the currently least loaded machine and is 2− 1

m
competitive [7]. It is known that for m > 3, list scheduling is not optimal [5], and in
fact there exist 2− ε competitive algorithms for small constant ε > 0 [2, 10, 1]. The
best possible competitive ratio is known to be between 1.85 and 1.92 (see [1]), but
its precise value is unknown. In contrast, for the more general on-line MSR problem
we do find the optimal competitive ratio. More surprisingly, our algorithms achieving
the optimal competitive ratio schedule the accepted jobs using list scheduling, which
is inferior when rejections are not allowed!

Next we consider the off-line MSR problem. We present an approximation al-
gorithm with a 2− 1

m worst-case approximation ratio running in time O(n logn) for
arbitrary m. We also present a fully polynomial approximation scheme for MSR for
any fixed m and a polynomial approximation scheme for arbitrary m, i.e., where m is
part of the input.

66 BARTAL ET AL.

More explicitly, the approximation schemes give algorithms with running time
either polynomial in n and 1/ε but exponential in m, or polynomial in n and m
but exponential in 1/ε, where ε is the maximal error allowed. This implies that for
the more general problem with possible rejection of jobs we have algorithms that are
essentially as good as those known for the classical problem without rejection. In fact,
our algorithms are based on the techniques used for the problem without rejection,
namely, on the fully polynomial approximation scheme for fixed m [9] (based on a
dynamic programming formulation of the problem) and the polynomial approximation
scheme for arbitrary m [8].

Obviously, the MSR problem on a single machine is easily solved exactly by
scheduling every job whose processing time does not exceed its penalty, and for m ≥ 2
it is NP-hard to find the optimal solution, similarly as in the classical case without
rejections.

The on-line algorithms and lower bounds are presented in sections 3 and 4. Sec-
tion 5 contains the results of the off-line problem.

2. Notation. An instance of the MSR problem consists of a number of machines
m and a set of jobs J , |J | = n. We abuse the notation and denote the jth job in the
input sequence by j. Each job j ∈ J is characterized by a pair (pj , wj), where pj is
its processing time and wj is its penalty.

For a set of jobs X ⊆ J , W (X) =
∑
j∈X wj is the total penalty of jobs in X, and

M(X) =
∑
j∈X pj/m is the sum of the loads of the jobs in X, where the load of a job

j is defined by pj/m. The set B = {j | wj ≤ pj/m} contains jobs with penalty less
than or equal to their load.

Given a solution produced by an on-line or approximation algorithm, R denotes
the set of all rejected jobs, A denotes the set of all accepted job, and T denotes
the largest processing time of all accepted jobs. For their analogues in the optimal
solution we use ROPT , AOPT , TOPT , respectively. ZOPT denotes the total cost of
the optimal solution for a given instance of the problem, and ZH is the cost achieved
by algorithm H. An on-line algorithm ON is c-competitive if ZON ≤ c · ZOPT for
every input instance.

The golden ratio is denoted by φ = (
√

5 + 1)/2 ≈ 1.618. We will often use the
property of the golden ratio that φ− 1 = 1/φ.

Using list scheduling, the makespan of a schedule is bounded from above by the
processing time of the job that finishes last plus the sum of the loads of all other
scheduled jobs [7]. We denote this bound by CLS(X) for a set X of scheduled jobs.
If ` is the job in X that finishes last, then

CLS(X) = M(X − {`}) + p` ≤M(X) +

(
1− 1

m

)
T.(2.1)

3. On-line scheduling with rejections. In the first part of this section we
present an on-line MSR algorithm which works for arbitrary m and achieves the best
possible competitive ratio in that case. The corresponding lower bound is given in
section 4.2. For fixed m ≥ 3 this algorithm gives the best competitive ratio we are
able to achieve; however, we are not able to prove a matching lower bound. In the
second part we present a different algorithm which is best possible for the case of two
machines. The corresponding lower bound is given in section 4.1.

3.1. Arbitrary number of machines. Our algorithm uses two simple rules.
First, all jobs in the set B are rejected, which seems advantageous since their penalty

MULTIPROCESSOR SCHEDULING WITH REJECTION 67

is smaller than their load. The second rule is inspired by the relation of MSR to
the ski rental problem and states that a job is rejected unless its penalty added to
the total penalty of the hitherto rejected jobs would be higher than some prescribed
fraction of its processing time. This fraction parameterizes the algorithm; we denote
it by α.

Algorithm RTP(α) (Reject-Total-Penalty(α)).
(i) If a job from B becomes available, reject it.
(ii) Let W be the total penalty of all jobs from J − B rejected so far. If a job

j = (pj , wj) /∈ B becomes available, reject it if W + wj ≤ αpj , otherwise
accept it and schedule it on a least loaded machine.

In Theorem 3.1 we will prove that for given m, the algorithm is c-competitive if
c and α > 0 satisfy

c ≥ 1 +

(
1− 1

m

)
1

α
,(3.1)

c ≥ 2 + α− 2

m
.

To obtain a best possible algorithm for arbitrary m, we use α = φ − 1 ≈ 0.618.
Then c = 1 + φ satisfies the inequalities above. For a fixed m, the best c is obtained
if equality is attained in both cases. For m = 2 this leads to α =

√
2/2 ≈ 0.707 and

c = 1 +
√

2/2 ≈ 1.707, and for m = 3 we get α = 2/3 and c = 2. For general m we
obtain

α =
−(1− 2

m) +
√

5− 8
m + 4

m2

2
,

c = 1 +
(1− 2

m) +
√

5− 8
m + 4

m2

2
.

Theorem 3.1. The algorithm RTP(α) for m machines is c-competitive if c and
α satisfy (3.1).

Proof. First we notice that since our algorithm uses list scheduling for the accepted
jobs, its makespan is bounded by CLS(A) = (1− 1

m)T +M(A) (cf. (2.1)). Hence,

ZON ≤
(

1− 1

m

)
T +M(A) +W (R).

For any set S ⊆ R, the right-hand side of this inequality can be rewritten as a sum
of two terms:

ZON ≤ (M(A) +W (R− S) +M(S)) +

((
1− 1

m

)
T +W (S)−M(S)

)
.(3.2)

Now, we fix an off-line optimal solution. We use the above inequality for the set
S = (R − B) ∩ AOPT , the set of all jobs rejected by the algorithm in step (ii) and
accepted in the optimal solution. First, we bound the first term in (3.2). Notice that

M(A) = M(A ∩AOPT) +M(A ∩ROPT) ≤M(A ∩AOPT) +W (A ∩ROPT),(3.3)

since no job of the set B is accepted by the algorithm, and thus the load of each job
accepted by the algorithm is smaller than its penalty. Next we notice that S ⊆ AOPT ,
implying that

M(S) = M(AOPT ∩ S).(3.4)

68 BARTAL ET AL.

Since ROPT and AOPT is a partition of the set of all jobs, and B ⊆ R, we obtain

R− S = [(R ∩ROPT) ∪ (R ∩AOPT)]− [(R−B) ∩AOPT]

= (R ∩ROPT) ∪ (B ∩AOPT).(3.5)

From (3.5) and the definition of B we have

W (R−S) = W (B∩AOPT)+W (R∩ROPT) ≤M(B∩AOPT)+W (R∩ROPT).(3.6)

Inequalities (3.3), (3.4), and (3.6) together imply that

M(A) +W (R− S) +M(S) ≤M(AOPT) +W (ROPT) ≤ ZOPT .
To finish the proof, it is now sufficient to show

(3.7)(
1− 1

m

)
T +W (S)−M(S) ≤

(
1 + α− 2

m

)
TOPT +

(
1− 1

m

)
1

α
W (ROPT),

and notice that under our conditions (3.1) on c this is at most

(c− 1)TOPT + (c− 1)W (ROPT) ≤ (c− 1)ZOPT .

All jobs in S are scheduled in the optimal solution and hence have processing
time at most TOPT . The algorithm never rejects such a job if this would increase the
penalty above αTOPT , and hence

W (S) ≤ αTOPT .(3.8)

For any job j that was rejected by step (ii) of the algorithm we have wj ≤ αpj .
Summing over all jobs in S we obtain W (S) ≤ αmM(S), and hence

W (S)−M(S) ≤
(

1− 1

αm

)
W (S) ≤

(
1− 1

αm

)
αTOPT =

(
α− 1

m

)
TOPT .(3.9)

Thus, if T ≤ TOPT , (3.7) follows. If T > TOPT , let W be the penalty incurred
by the jobs rejected in step (ii) of the algorithm until it schedules the first job with
processing time T , job j say, having penalty wj . By the condition in step (ii) of the
algorithm, αT ≤ W + wj . Conversely, W + wj ≤ W (S) + W (ROPT), as all jobs
rejected in step (ii) are in S ∪ ROPT , and also the job with processing time T is in
ROPT , since T > TOPT . Thus,

(3.10) (
1− 1

m

)
T ≤

(
1− 1

m

)
1

α
(W (S) +W (ROPT))

≤
(

1− 1

m

)
TOPT +

(
1− 1

m

)
1

α
W (ROPT),

using (3.8). Adding (3.9) to (3.10) we obtain (3.7), which finishes the proof.
Choosing α = φ− 1 and c = φ+ 1, both inequalities in (3.1) are satisfied for any

m, which yields our main result. For arbitrarily large m these values are the best
possible.

MULTIPROCESSOR SCHEDULING WITH REJECTION 69

Theorem 3.2. Algorithm RTP(φ− 1) is (1 + φ)-competitive.
For any choice of m and α the bounds on c given by the inequalities (3.1) give a

tight analysis of Algorithm RTP(α), as shown by the following two examples. First,
consider the sequence of two jobs (1− 1

αm , α− 1
m) and (1−ε, 1

m) with ε > 0 arbitrarily
small. RTP(α) rejects the first job and accepts the second job, while in the optimal
solution both jobs are rejected. The competitive ratio attained on this sequence is
(1− ε+ (α− 1

m))/α, which for any α > 0 and m can be made arbitrarily close to the
first inequality of (3.1). Second, consider the sequence formed by one job (1, α), m−2
jobs (1, 1

m), and one job (1, 1). RTP(α) rejects the first m − 1 jobs and accepts job
(1, 1), while the optimal solution accepts all jobs. The competitive ratio is 2 +α− 2

m ,
leading to the second inequality of (3.1).

3.2. Two machines. To obtain a best possible, φ-competitive algorithm for two
machines we use another approach. We simply reject all jobs with penalty at most
α times their processing time, where α is again a parameter of the algorithm. Again
the optimal value is α = φ− 1 ≈ 0.618.

Algorithm RP(α) (Reject-Penalty(α)). If a job j = (pj , wj) becomes avail-
able, reject it if wj ≤ αpj , otherwise accept it and schedule it on a least loaded
machine.

Theorem 3.3. The algorithm RP(φ− 1) is φ-competitive for two machines.
Proof. If the algorithm does not schedule any job, then

ZON = W (J) ≤ 2(φ− 1)M(AOPT) +W (ROPT) ≤ 2(φ− 1)ZOPT ≤ φZOPT ,

and the theorem is proved.
Otherwise denote by ` a job that is finished last by the on-line algorithm. Since the

algorithm uses list scheduling, the makespan is bounded by CLS(A) = M(A−{`})+p`,
and therefore we have

ZON ≤W (R) +M(A− {`}) + p`.(3.11)

Notice that

(3.12)

W (R) = W (R ∩ROPT) +W (R ∩AOPT) ≤W (R ∩ROPT) + 2(φ− 1)M(R ∩AOPT)

by direct application of the rejection rule of algorithm RP(φ− 1).
For any job that is accepted by the algorithm, the rejection rule of RP(φ − 1)

implies that its load is not greater than its penalty. Therefore,

M(A− {`}) = M((A− {`}) ∩AOPT) +M((A− {`}) ∩ROPT)

≤M((A− {`}) ∩AOPT) +W ((A− {`}) ∩ROPT).(3.13)

Invoking (3.12) and (3.13) in (3.11) yields

ZON ≤W (ROPT − {`}) + 2(φ− 1)M(AOPT − {`}) + p`.(3.14)

We distinguish two cases. In the first case the optimal solution rejects job `. Since
` is scheduled by the algorithm, we have p` ≤ φw`, and therefore

ZON ≤ φW (ROPT) + 2(φ− 1)M(AOPT) ≤ φZOPT .

70 BARTAL ET AL.

In the second case ` is accepted in the optimal solution. Then, we use the identity
p` = 2(φ− 1)M({`}) + (1− (φ− 1))p` in (3.14) to obtain

ZON ≤ (2− φ)p` +W (ROPT) + 2(φ− 1)M(AOPT)

≤ (2− φ)ZOPT + 2(φ− 1)ZOPT = φZOPT ,

which completes the proof.
The same approach can be used for larger m as well. However, for m > 3 this is

worse than the previous algorithm. An interesting situation arises for m = 3. Choos-
ing α = 1/2 we obtain a 2-competitive algorithm, which matches the competitive ratio
of the algorithm RTP(2/3) for m = 3 in the previous subsection. Whereas RP(1/2)
rejects all jobs with penalty up to 1/2 of their processing time, RTP(2/3) rejects all
jobs with penalty up to 1/3 of their processing time and also jobs with larger penalty
as long as the total penalty paid (by the jobs with smaller or equal processing times)
remains at most 2/3 times the processing time. We can combine these two approaches
and show that for any 1/3 ≤ α ≤ 1/2, the algorithm that rejects each job with penalty
at most α times its processing time, and also if the total penalty is up to 1− α times
its processing time, is 2-competitive, too. However, no such combined algorithm is
better.

4. Lower bounds for on-line algorithms. In the first part of this section we
give the lower bound for a small number of machines. In particular it shows that the
algorithm presented in section 3.2 is best possible for m = 2. In the second part we
exhibit the lower bound for algorithms working for all m.

4.1. Small number of machines. Assume that there exists a c-competitive
on-line algorithm for m machines. We prove that c satisfies c ≥ ρ, where ρ is the
solution of the following equation:

ρm−1 + ρm−2 + · · ·+ 1 = ρm.(4.1)

For m = 2 we get ρ = φ, and hence prove that the algorithm RP(φ − 1) is best
possible. For m = 3 we get ρ ≈ 1.839, and so on. Notice that for arbitrary m this
proves only that the competitive ratio is at least 2.

Theorem 4.1. For any c-competitive algorithm for MSR on m machines, it holds
that c ≥ ρ, where ρ satisfies (4.1).

Proof. Given m, let ρ be the solution of (4.1). Consider an adversary providing
a sequence of jobs, all with processing time 1. The first job given has penalty w1 =
1/ρ. If the on-line algorithm accepts this job, the sequence stops and the algorithm
is ρ-competitive. Otherwise, a second job is given by the adversary with penalty
w2 = 1/ρ2. Again, accepting this job by the on-line algorithm makes the sequence
stop and the competitive ratio is ρ. Rejection makes the sequence continue with a
third job. This process is repeated for at most m − 1 jobs with penalties wj = 1/ρj

for 1 ≤ j = m − 1. If the on-line algorithm accepts any job in this sequence, job k
say, the adversary stops the sequence at that job, yielding a competitive ratio of the
on-line algorithm on this sequence of k jobs of

ZON

ZOPT
=

1 +
∑k−1
j=1

1
ρj∑k

j=1
1
ρj

= ρ,

since for any such k ≤ m− 1 in the optimal solution all jobs are rejected.

MULTIPROCESSOR SCHEDULING WITH REJECTION 71

Otherwise, if none of the first m − 1 jobs are accepted by the on-line algorithm,
another job is presented with penalty wm = 1. In the optimal solution all m jobs are
accepted and scheduled in parallel, giving cost 1. The on-line cost is equal to the sum
of the penalties of the first m− 1 jobs plus 1, independent of whether the last job is
accepted or rejected. Thus,

ZON

ZOPT
= 1 +

m−1∑
j=1

1

ρj
.

By (4.1), this is exactly ρ, and the theorem follows.

Corollary 4.2. For two machines, no on-line algorithm has competitive ratio
less than φ.

4.2. Arbitrary number of machines. Now we prove the lower bound on al-
gorithms working for arbitrary m. The sequence of jobs starts as in the previous
section, but additional ideas are necessary.

Theorem 4.3. There exists no on-line algorithm that is β-competitive for some
constant β < 1 + φ and all m.

Proof. All jobs in the proof have processing time 1. All logarithms are base 2. For
contradiction, we assume that the on-line algorithm is β-competitive for a constant
β < 1 + φ, and m is a sufficiently large power of two. Let ai = (logm)i+1, and

let k be the largest integer such that logm +
∑k
i=1 ai < m. Calculation gives k =

blogm/ log logmc − 1.

Consider again an adversary that intends to provide the following sequence of at
most m jobs (all with processing time 1):

1 job with penalty 1/(1 + φ),
1 job with penalty 1/(1 + φ)2,

...
1 job with penalty 1/(1 + φ)logm,
a1 jobs with penalty 1/a1,

...
ak jobs with penalty 1/ak.

As in the proof of Theorem 4.1 we argue that if the on-line algorithm accepts one
of the first logm jobs, the adversary stops the sequence and the competitive ratio is
1 +φ. Therefore, any β-competitive algorithm has to reject the first logm jobs. Now,
let bi be the number of jobs with penalty 1/ai that are rejected by the β-competitive
algorithm. The penalty the algorithm pays on those jobs is bi/ai. Since there are less
than m jobs, the optimal cost is at most 1. Thus the total penalty incurred by the
on-line algorithm has to be at most β, and in particular there has to exist ` ≤ k such
that b`/a` ≤ β/k < 3/k. Fix such `.

Now consider the following modified sequence of at most 2m jobs (again all with

72 BARTAL ET AL.

processing time 1):

1 job with penalty 1/(1 + φ),
1 job with penalty 1/(1 + φ)2,

...
1 job with penalty 1/(1 + φ)logm,
a1 jobs with penalty 1/a1,

...
a` jobs with penalty 1/a`,
M jobs with penalty 6,

where M = m+ 1−∑`
i=1(ai − bi).

The sequence is identical up to the jobs with penalty 1/a`, and hence the on-line
algorithm behaves identically on this initial subsequence. In particular, it also rejects
all first logm jobs paying a penalty of at least

∑logm
j=1 (1+φ)−j = (1−(1+φ)− logm)/φ ≥

φ− 1− 1/m for them. Then it also rejects bi jobs with penalty 1/ai, for i ≤ `, paying

penalty
∑`
i=1 bi/ai for them.

The on-line algorithm has to accept all jobs with penalty 6, since the adversary
will present at most 2m jobs, and hence scheduling them all would lead to a cost of
at most 2. By summing the numbers, it follows that the on-line algorithm schedules
exactly m + 1 jobs. Thus, its makespan is at least 2, and its total cost is at least
1 + φ− 1/m.

To finish the proof, it is sufficient to present a solution with cost 1+o(1). Consider
the solution that rejects

1 + logm jobs with penalty 1/a1,
b1 jobs with penalty 1/a2,
b2 jobs with penalty 1/a3,

...
b`−2 jobs with penalty 1/a`−1,

b`−1 + b` jobs with penalty 1/a`

and schedules all remaining jobs optimally. First we verify that this description is
legal, i.e., there are always sufficiently many jobs with given penalty. By definition,
bi ≤ ai ≤ ai+1. For sufficiently large m, we have 1+logm < a1, and due to our choice
of `, we also have b`−1 + b` ≤ a`−1 + 3a`/k ≤ a`.

In the presented schedule one more job is rejected than in the solution produced
by the on-line algorithm, and hence there are only m jobs to be scheduled. Thus, the
makespan is 1. The penalty paid is

1 + logm

a1
+
`−1∑
i=1

bi
ai+1

+
b`
a`

=
1 + logm

(logm)2
+

1

logm

`−1∑
i=1

bi
ai

+
b`
a`
.

The sum in the second term is less than the penalty paid by the on-line algorithm,
and hence this term is bounded by O(1/ logm). The last term is bounded due to our
choice of `; namely, it is O(1/k) = O(log logm/ logm). Thus, the total penalty paid
is O(log logm/ logm) = o(1), and the total cost is 1 + o(1).

MULTIPROCESSOR SCHEDULING WITH REJECTION 73

5. Off-line scheduling with rejection.

5.1. An approximation algorithm for arbitrary number of machines. In
this section we give a (2− 1

m)-approximation algorithm for MSR on m machines. Our
lower bounds imply that such a ratio cannot be achieved by an on-line algorithm.
The algorithm rejects all jobs in the set B = {j | wj ≤ pj/m}. From all other jobs it
accepts some number of jobs with the smallest processing time and chooses the best
among such solutions.

Algorithm APPROX.
(i) Sort all jobs in J − B according to their processing times in nondecreasing

order.
(ii) Let Si, 0 ≤ i ≤ |J − B|, be the solution that schedules the first i jobs from

J −B using list scheduling and rejects all other jobs. Choose the solution Si
with the smallest cost.

Note that step (ii) of the algorithm takes time O(n logm) (or O(n) in case m ≥ n),
as we can build the schedules incrementally, and the bookkeeping of penalties for re-
jected jobs is simple. Thus, the whole algorithm runs in time O(n logn), independent
of m. A performance analysis leads to the following worst-case ratio.

Theorem 5.1. Algorithm APPROX achieves ZH ≤ (2− 1
m)ZOPT , where ZH is

the cost of the solution found by the algorithm.
Proof. We assume that the jobs from J−B are ordered 1, 2, . . . , |J−B|, according

to the ordering given by step (i) of the algorithm. If the optimal solution rejects all
jobs from J −B, by the definition of B it is optimal to reject all jobs from B as well.
Thus the solution S0 that rejects all jobs is optimal and ZH = ZOPT .

Otherwise let ` be the last job from J − B accepted in the optimal solution.
Consider the solution S`, which schedules all jobs up to `. Let A = {1, . . . , `} be the
set of all jobs scheduled in S`. Job ` has the largest running time of all scheduled
jobs, and since we use list scheduling, the makespan of S` is at most

CLS(A) = M(A) +

(
1− 1

m

)
p` ≤M(A) +

(
1− 1

m

)
ZOPT .

Since the cost of the algorithm is at most the cost of S`, we have

ZH ≤W (J −A) +M(A) +

(
1− 1

m

)
ZOPT

= W (AOPT ∩ (J −A)) +W (ROPT ∩ (J −A)) +

M(ROPT ∩A) +M(AOPT ∩A) +

(
1− 1

m

)
ZOPT .

By the choice of `, AOPT∩(J−A) ⊆ B, and thusW (AOPT∩(J−A)) ≤M(AOPT∩(J−
A)). Moreover, since A does not contain any job of B, M(ROPT ∩A) ≤W (ROPT ∩A).
These observations inserted in the above inequality yield

ZH ≤W (ROPT) +M(AOPT) +

(
1− 1

m

)
ZOPT ≤

(
2− 1

m

)
ZOPT .

That the ratio is tight is shown by the following instance with m jobs (and m
machines): p1 = · · · = pm = 1, w1 = 1 − ε, and w2 = · · · = wm = 1

m (1 − ε). The
heuristic will reject all jobs resulting in ZH = (1+m−1

m)(1−ε). In the optimal solution
all jobs are accepted; hence ZOPT = 1. Therefore, ZH/ZOPT can be made arbitrarily
close to 2− 1

m .

74 BARTAL ET AL.

This example also shows that any heuristic that rejects all jobs in the set B has
a worst-case ratio no better than 2− 1

m , since there is no scheduling at all involved in
it. Thus, the only way in which an improvement might be obtained is by also possibly
accepting jobs in the set B.

5.2. A fully polynomial approximation scheme for fixed m. For the off-
line MSR problem there exists a fully polynomial approximation scheme for fixed
m. The proof uses a rounding technique based on dynamic programming, as was
developed in [9] for the classical makespan problem.

Lemma 5.2. The MSR problem with integer processing times and penalties can
be solved in time polynomial in n and (ZOPT)m.

Proof. We use dynamic programming. Let Mi represent the current load of
machine i, i = 1, . . . ,m. We compute for each M1, . . . ,Mm ≤ ZOPT the minimal
value of total penalty to be paid that can be achieved with these loads. We denote
this value after the first j jobs are rejected or scheduled by Wj(M1, . . . ,Mm) and
define it to be ∞ whenever Mi < 0 for some i. At the same time we compute the
minimal cost of a schedule that can be achieved with given loads M1, . . . ,Mm, denoted
Z(M1, . . . ,Mm). For M1, . . . ,Mm ≥ 0 these values can be computed recursively as
follows:

W0(M1, . . . ,Mm) = 0,

Wj(M1, . . . ,Mm) = min{wj +Wj−1(M1, . . . ,Mm),

min
i
Wj−1(M1, . . . ,Mi−1,Mi − pj ,Mi+1, . . . ,Mm)},

Z(M1, . . . ,Mm) = Wn(M1, . . . ,Mm) + max
i
Mi.

We compute the values in the order of increasing maxiMi. As soon as maxiMi reaches
the cost of the current optimal solution, which is the smallest value of Z computed
so far, we stop, as we know it is a global optimum.

Theorem 5.3. For any ε ≥ 0, there exists an ε-approximation algorithm for the
MSR problem that runs in time polynomial in the size of the input instance, nm and
1/εm.

Proof. Given an instance I of the MSR problem with n jobs and m machines, we
first use the approximation algorithm from section 5.1 to obtain the cost ZH . Now we
define an instance I ′ by rounding the processing times and the penalties of the jobs
in I. Namely, the processing time p′j and the penalty w′j of job j in I ′ are p′j = bpj/kc
and w′j = bwj/kc, where k = εZH/2n. We obtain the optimal solution of I ′ by the
dynamic programming algorithm presented in the proof of Lemma 5.2 and derive an
approximate solution for I by scheduling the respective jobs on the same machines as
in the optimal solution for I ′.

The cost ZA(k) of the approximate solution deviates from the optimal solution for
I by at most nk = εZH/2. Therefore, by applying the lower bound ZOPT ≥ ZH/2
we obtain

|ZA(k) − ZOPT |
ZOPT

≤ 2nk

ZH
= ε.

By Lemma 5.2 it follows that the running time of the approximation algorithm is
polynomial in n and (ZOPT (I ′))m. The theorem follows since ZOPT (I ′) ≤ ZOPT (I)/k
≤ 2ZH/k, and hence ZOPT (I ′) ≤ 4n/ε.

MULTIPROCESSOR SCHEDULING WITH REJECTION 75

5.3. A polynomial approximation scheme for arbitrary m. For arbitrary
m we will design a polynomial approximation scheme (PAS) based on the PAS for
the makespan problem in [8].

Given an instance with n jobs, m machines, and ε > 0, we are to find an ε-
approximate solution. As an upper bound U on the solution value we use the outcome
ZH of the heuristic presented in section 5.1. Notice that all jobs with pj > U will
be rejected. Thus, all jobs that are possibly scheduled have processing times in the
interval [0, U].

From Theorem 5.1 we have a lower bound on the optimal solution that we denote
by L = ZH/2 = U/2. We define the set S = {j | pj ∈ [0, εL/3]}, a set of jobs
with relatively small processing times. Let D = {j | j /∈ S}. The remaining interval
(εL/3, U] is partitioned into s ≤ 18d1/ε2e subintervals (l1, l2], (l2, l3], . . . , (ls, ls+1]
of length ε2L/9 each, with l1 = εL/3 and ls+1 ≥ U . Let Di be the set of jobs with
processing time in the interval (li, li+1], and let the jobs in each such set be ordered so
that the penalties are nonincreasing. As before, define the set B = {j | wj ≤ pj/m}.

First we will describe how, for any subset ∆ of D, we generate an approximate
solution with value ZH(ε)(∆). For any such set ∆ we determine a schedule for all the
jobs in ∆ with an ε/3-approximate makespan using the PAS in [8]. All other jobs in
D, i.e., all jobs in D −∆, are rejected. Jobs in the set S that have wj ≥ 1

mpj , i.e.,
jobs in the set S −B, are scheduled in any order according to the list scheduling rule
starting from the ε/3-approximate schedule determined before. The remaining jobs,
j ∈ S ∩ B, are considered in any order. Each next job is rejected if its assignment
to a least loaded machine would cause an increase of the makespan; otherwise it is
assigned to a least loaded machine as indicated by list scheduling.

This procedure is applied to every set D(y1, . . . , ys) ⊆ D, where D(y1, . . . , ys)
denotes the set that is composed of the first yi elements in the ordered set Di, i =
1, . . . , s. In this way an approximate solution ZH(ε)(D(y1, . . . , ys)) is found for each
set D(y1, . . . , ys). The minimum value over all these sets,

ZH(ε) = min
(y1,...,ys)

ZH(ε)(D(y1, . . . , ys)),

is taken as the output of our procedure.
Theorem 5.4. For any ε > 0 the algorithm H(ε) described above runs in time

polynomial in n and m and yields

ZH(ε)

ZOPT
≤ 1 + ε.

Proof. The proof consists of two steps. First, consider the set AOPT ∩D of jobs
in D that are accepted in the optimal solution. Applying the heuristic procedure
described above to this set of jobs yields the approximate solution ZH(ε)(AOPT ∩D).
We will prove that

ZH(ε)(AOPT ∩D)

ZOPT
≤ 1 +

ε

3
.(5.1)

In the second step we analyze how much the set AOPT∩D may differ fromD(y1, . . . , ys).
Assume that for i = 1, . . . , s, AOPT ∩D consists of yOPTi jobs from the set Di. These
yOPTi jobs are not necessarily the first yOPTi jobs in the ordered set Di, but we will
show that

ZH(ε)(D(yOPT1 , . . . , yOPTs)) ≤ ZH(ε)(AOPT ∩D) +
2

3
εL.(5.2)

76 BARTAL ET AL.

Inequalities (5.1) and (5.2) imply that

ZH(ε)(D(yOPT1 , . . . , yOPTs))

ZOPT
≤ 1 + ε.

Since, obviously, ZH(ε) ≤ ZH(ε)(D(yOPT1 , . . . , yOPTs)), the theorem follows.
In order to prove inequality (5.1) two cases are distinguished.
(1) The completion times of the various machines (in the heuristic solution corre-

sponding to ZH(ε)(AOPT ∩D)) differ by no more than εL/3. The resulting makespan
is the same as the makespan after scheduling the jobs in AOPT ∩D and S − B, and
due to our assumption it is at most M(AOPT ∩D) +M(S −B) + εL/3. The weight
of all rejected jobs is at most W (S ∩B) +W (D −AOPT). Thus

ZH(ε)(AOPT ∩D) ≤M(AOPT ∩D) +M(S −B) +
εL

3
+W (S ∩B) +W (D−AOPT).

Using the definition of the set B, we have for the optimal solution

ZOPT ≥M(AOPT ∩D) +M(S −B) +W (S ∩B) +W (D −AOPT).

From these two inequalities (5.1) follows immediately.
(2) The completion times of the machines differ by more than εL/3. Since the

processing time of each job in S is less than εL/3, we know that no job in the set S∩B
is rejected, and scheduling all jobs in S has not increased the makespan computed for
the set AOPT ∩D. Let CH(ε)(AOPT ∩D) and COPT (AOPT ∩D) denote, respectively,
the ε/3-approximate and the optimal makespan for the jobs in AOPT ∩ D. In this
case

ZH(ε)(AOPT ∩D) = CH(ε)(AOPT ∩D) +W (D −AOPT)

and

ZOPT ≥ COPT (AOPT ∩D) +W (D −AOPT).

Moreover, since we have used an ε/3-approximate algorithm for scheduling the jobs
in AOPT ∩D, we have

CH(ε)(AOPT ∩D) ≤
(

1 +
ε

3

)
COPT (AOPT ∩D).

Inequality (5.1) results from the above three inequalities.
In order to prove (5.2) we need to bound the extra error that might occur due to

the fact that AOPT ∩D 6= D(yOPT1 , . . . , yOPTs). Notice that, for any Di, i = 1, . . . , s,
the difference in processing time between any two jobs in Di is at most ε2L/9, and
that D(yOPT1 , . . . , yOPTs) contains the jobs with larger penalties in Di. The latter
implies that the extra error can be due only to the fact that the first yOPTi jobs in Di

have longer processing times than those in AOPT ∩Di. Since the processing time of a
job in D is at least εL/3 and U ≤ 2L, no more than 6/ε jobs from D are scheduled on
any machine. Therefore the overall extra contribution to the makespan due to the fact
that AOPT ∩ D 6= D(yOPT1 , . . . , yOPTs) can be no more than (6/ε)(ε2L/9) = 2εL/3,
which implies inequality (5.2).

This completes the proof of correctness of the approximation.
The running time of the algorithm is dominated by the time required to compute

the heuristic ZH(ε)(D(y1, . . . , ys)) for each possible set of values y1, . . . , ys, such that

MULTIPROCESSOR SCHEDULING WITH REJECTION 77

0 ≤ yi ≤ |Di|, i = 1, . . . , s. Since yi, i = 1, . . . , s, satisfies 1 ≤ yi ≤ n, there are at

most ns = O(n18d1/ε2e) possible sets of values y1, . . . , ys.

For each of these sets an ε-approximate schedule is computed using the algorithm
in [8], taking O((n/ε)d9/ε

2e); attaching the jobs in the set S just adds O(n2) time
to each of these computations. Hence, the overall running time of the algorithm is
O((n3/ε)d9/ε

2e). This establishes that the algorithm is a polynomial approximation
scheme for the problem with arbitrary m.

6. Open problems and recent developments. Some open problems remain.
For the on-line problem tight algorithms for the case of fixed m other than m = 2
are still to be established. For the off-line problem perhaps better heuristics may be
found by improving the rejection strategy proposed in the algorithm in section 5.1.

Seiden [13] has proved new results related to our problem. For the variant of
deterministic preemptive scheduling with rejection he gives a (4 +

√
10)/3 ≈ 2.387

competitive algorithm for any number of machines, thus showing that allowing pre-
emption can provably be exploited. Interestingly, this yields yet another 2-competitive
algorithm for three machines. Also, Seiden notes that our Theorem 4.1 yields a lower
bound for preemptive scheduling as well and hence yields a lower bound of 2 for gen-
eral number of machines. For two machines, this shows that our algorithm RP(φ− 1)
is best possible even among all preemptive algorithms. For three machines, an inter-
esting open problem is to establish whether preemption allows a better competitive
ratio. The best upper bound of 2 and the best lower bound of 1.839 for preemptive
algorithms still coincide with those shown in this paper for nonpreemptive algorithms.

Seiden [13] also studies randomized scheduling with rejection, both preemptive
and nonpreemptive. He gives algorithms which are better than deterministic for a
small number of machines, and in particular are 1.5-competitive for two machines,
both preemptive and nonpreemptive; this is best possible for two machines. In both
cases the question of whether randomized algorithms for any number of machines can
be better than their deterministic counterparts remains open.

Epstein and Sgall [4] presented polynomial time approximation schemes for re-
lated machines for various objectives, including MSR, thus generalizing the polynomial
time approximation scheme given in this paper.

Engels et al. [3] study scheduling with rejection where, in the objective, the
makespan is replaced by the sum of the completions times.

Acknowledgments. We thank Giorgio Gallo for having drawn our attention
to this scheduling problem. We thank the anonymous referees for numerous helpful
comments.

REFERENCES

[1] S. Albers, Better bounds for online scheduling, in Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, ACM, New York, 1997, pp. 130–139.

[2] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra, New algorithms for an ancient scheduling
problem, J. Comput. Systems Sci., 51 (1995), pp. 359–366.

[3] D. W. Engels, D. R. Karger, S. G. Kolliopoulos, S. Sengupta, R. N. Uma, and J. Wein,
Techniques for scheduling with rejection, in Proceedings of the 6th Annual European Sym-
posium on Algorithms, Lecture Notes in Comput. Sci. 1461, Springer-Verlag, New York,
1998, pp. 490–501.

[4] L. Epstein and J. Sgall, Approximation Schemes for Scheduling on Uniformly Related and
Identical Parallel Machines, Technical Report KAM-DIMATIA Series 98-414, Charles Uni-
versity, Prague, Czech Republic, 1998.

78 BARTAL ET AL.

[5] G. Galambos and G. J. Woeginger, An on-line scheduling heuristic with better worst case
ratio than Graham’s list scheduling, SIAM J. Comput., 22 (1993), pp. 349–355.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP–completeness, W. H. Freeman, San Francisco, CA, 1979.

[7] R. L. Graham, Bounds for certain multiprocessor anomalies, Bell System Tech., 45 (1966),
pp. 1563–1581.

[8] D. S. Hochbaum and D. B. Shmoys, Using dual approximation algorithms for scheduling
problems: Theoretical and practical results, J. Assoc. Comput. Mach., 34 (1987), pp. 144–
162.

[9] E. Horowitz and S. Sahni, Exact and approximate algorithms for scheduling non-identical
processors, J. Assoc. Comput. Mach., 23 (1976), pp. 317–327.

[10] D. R. Karger, S. J. Phillips, and E. Torng, A better algorithm for an ancient scheduling
problem, J. Algorithms, 20 (1996), pp. 400–430.

[11] R. M. Karp, On-line algorithms versus off-line algorithms: How much is it worth to know the
future?, in Proceedings of the IFIP 12th World Computer Congress. Vol. 1: Algorithms,
Software, Architecture, J. van Leeuwen, ed., Elsevier Science Publishers, Amsterdam, 1992,
pp. 416–429.

[12] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, Sequencing
and scheduling: Algorithms and complexity, in Handbooks in Operations Research and
Management Science, Vol. 4: Logistics of Production and Inventory, S. C. Graves, A. H. G.
Rinnooy Kan, and P. Zipkin, eds., North–Holland, Amsterdam, 1993, pp. 445–552.

[13] S. S. Seiden, More Multiprocessor Scheduling with Rejection, Technical Report Woe-16, De-
partment of Mathematics, TU Graz, Graz, Austria, 1997.

[14] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules, Comm.
Assoc. Comput. Mach., 28 (1985), pp. 202–208.

THE WEIGHT HIERARCHY OF HERMITIAN CODES∗

ANGELA I. BARBERO† AND CARLOS MUNUERA‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 79–104

Abstract. We compute the complete weight hierarchies of all Hermitian codes. The tools used
are the arithmetic of Hermitian curves and the order bound on the generalized Hamming weights.

Key words. linear codes, generalized Hamming weights, Hermitian codes

AMS subject classification. 94B27

PII. S089548019834342X

1. Introduction. Let Fq be the finite field with q elements. The support of a
linear code C over Fq is defined by

supp(C) = {i | xi 6= 0 for some x ∈ C}.

If C is an [n, k] code, for 1 ≤ r ≤ k, the rth generalized Hamming weight of C is defined
by

dr(C) = min{# supp(D) | D is a linear subcode of C with dim(D) = r}.

The sequence d1(C), . . . , dk(C), of generalized Hamming weights, or weight hierarchy
of C, was independently introduced by Helleseth, Kløve, and Mykkeleveit in [2], and
by Wei in [8], motivated by applications from cryptography. Since the publication
of the latter paper, the interest of coding theorists in the weight hierarchy has been
continually increasing and it now plays a central role in coding theory. Much is
known about it for several classes of codes: Hamming codes, Golay codes, cyclic
codes, algebraic geometric codes, etc. For an excellent survey on this field, we refer
the reader to [7].

Among algebraic geometric codes, those coming from Hermitian curves (Hermi-
tian codes) have been of primary interest. The reason for this interest comes from the
good properties of Hermitian curves: they have many rational points and a simple
arithmetic. Thus, Hermitian codes are seen, in some sense, as a prototype of algebraic
geometric codes. Their minimum distances were first obtained by Yang and Kumar in
[9]; later, Yang, Kumar, and Stichtenoth [10] and Munuera [4], [5] gave the values of
many higher weights in a number of cases. However, many other weights still remain
unknown.

Recently, Heijnen and Pellikaan [1] gave a new bound on higher Hamming weights.
This so-called order bound, which is a generalization of the Feng–Rao bound on the
minimum distance, allowed the determination of the complete hierarchy of q-ary Reed–
Muller codes. In this paper, by an exhaustive computation of the order bound, we
are able to obtain the weight hierarchy in full for all Hermitian codes.

∗Received by the editors August 10, 1998; accepted for publication (in revised form) August 2,
1999; published electronically January 13, 2000. This work was supported by the Junta de Castilla
y León under project VA 22/96 and DGICYT PB 95-063-0002-02.

http://www.siam.org/journals/sidma/13-1/34342.html
†Department of Applied Mathematics (ETS de Ingenieros Industriales), University of Valladolid,

Paseo del Cauce SN, 47005 Valladolid, Castilla, Spain (angbar@wmatem.eis.uva.es).
‡Department of Applied Mathematics (ETS de Arquitectura), University of Valladolid, Avda de

Salamanca SN, 47014 Valladolid, Castilla, Spain (cmunuera@modulor.arq.uva.es).

79

80 ANGELA I. BARBERO AND CARLOS MUNUERA

The organization of the paper is as follows. Hermitian codes and the main arith-
metical properties that we shall need are stated in section 2. In section 3 we obtain
a duality formula for the weight hierarchy. In section 4 we compute the order bound.
By using these tools we are able to determine the complete weight hierarchies of all
Hermitian codes. Then, abundant codes are treated in section 5 and nonabundant
ones in section 6. The hardest part of the paper is the computation of the order
bound. In [1] this is done for Reed–Muller codes by using deep results from extremal
poset theory. Here we present a direct proof, which can be generalized to a wide range
of codes and curves.

The paper ends with two appendices. Appendix A contains some tables that show
the obtained results. Finally, Appendix B contains an index of some notation used,
which can be useful to have at hand when reading through the paper.

2. Hermitian codes and the weight hierarchy. Let H be the curve defined
over Fq2 by the affine equation

vq + v = uq+1.

H is called the Hermitian curve. This is a nonsingular plane curve of genus g =
q(q − 1)/2. Over Fq2 , H has n = q3 affine points, denoted P1, . . . , Pn, plus one point
at infinity, denoted by Q. Thus, over Fq2 , H has the maximum possible number of
points allowed by the Weyl bound: it is a maximal curve.

Hermitian codes are defined as follows (see [4], [10]): Let L be the set of rational
functions on H over Fq2 having poles only at Q. For a nonnegative integer m let
L(mQ) be the subset of L of functions having a pole of order at most m. L(mQ) is a
vector space whose dimension, l(mQ), can be computed by using the Riemann–Roch
theorem. Finally, let D be the divisor obtained as the sum of all affine points on H.
For 1 ≤ m ≤ n+ 2g− 2, the Hermitian code C(m) is the image of the evaluation map

ev : L(mQ) −→ Fnq2 ; f 7→ (f(P1), . . . , f(Pn)).

In order to compute the weight hierarchy of Hermitian codes, we shall use the
arithmetic of the curve H, in particular, the Weierstrass semigroup of H at Q and the
order bound on the higher Hamming weights. This section is devoted to recalling the
facts from the arithmetic of H we shall need throughout the paper. Although these
results can be found in [10] and [4], we shall explain them briefly for the convenience
of the reader. The order bound will be treated in section 4.

We begin with two simple facts: For a ∈ Fq2 , it is easy to verify that

div(u− a) =
∑

bq+b=aq+1

(a, b)− qQ.

Analogously, for b ∈ Fq2 , such that bq + b 6= 0,

div(v − b) =
∑

aq+1=bq+b

(a, b)− (q + 1)Q.

From these relations we can deduce two important properties of Hermitian codes:
First, the Weierstrass semigroup S of H at the point Q contains q = −vQ(u) and
q + 1 = −vQ(v). Thus, the semigroup generated by q and q + 1 is contained in S,
〈q, q + 1〉 ⊆ S, and since both semigroups have the same genus g, we conclude that

WEIGHT HIERARCHY OF HERMITIAN CODES 81

S = 〈q, q+1〉. In particular S is symmetric, so (2g−2)Q is a canonical divisor. Then,
according to [6], the codes C(m) and C(n+ 2g − 2−m) are dual to each other.

Second, let us recall that the number α = l(mQ−D) = dim ker(ev) is called the
abundance of the code. Codes of positive abundance are called abundant. Since the
divisors D and nQ are equivalent, the codes C(m) are abundant for m ≥ n.

We shall usually write S as an enumeration of its elements in increasing order,
S = {ρ1, ρ2, ρ3, . . .}, with ρ1 = 0, ρ2 = q, ρ3 = q + 1, Each of these ρ’s is called a
pole number (or a nongap) at Q. It can be written uniquely as a linear combination of
q and q + 1 with nonnegative integer coefficients ρ = xq + y(q + 1), 0 ≤ x, 0 ≤ y < q.

Let us now deal with the weight hierarchy. Its three fundamental properties were
stated by Wei [8].

Proposition 2.1. If C is a linear code of length n and dimension k, then
(a) (the monotonicity) 1 ≤ d1(C) < d2(C) < · · · < dk(C) ≤ n;
(b) (the duality) if d1(C⊥), . . . , dn−k(C⊥) is the weight hierarchy of the dual of C,

then {d1(C⊥), . . . , dn−k(C⊥)} ∪ {n+ 1− d1(C), . . . , n+ 1− dk(C)} = {1, . . . , n};
(c) (the generalized Singleton bound) for r = 1, . . . , k, dr(C) ≤ n− k + r.
According to the duality property, it is enough to compute the generalized weights

of Hermitian codes C(m) for m ≥ b(n + 2g − 2)/2c. We shall return to this in more
detail in the next section.

For the sake of simplicity, from now on the rth weight of the code C(m) will be
written as dr(m) instead of dr(C(m)). As previously stated, these generalized weights
admit an arithmetical interpretation (concerning the arithmetic of H).

Proposition 2.2. Let C(m) be a Hermitian code of dimension k and abundance
α. For every r, 1 ≤ r ≤ k, we have

dr(m) = min{n− deg(D′) | 0 ≤ D′ ≤ D, l(mQ−D′) ≥ r + α}.

We say that an integer m has the property (*) if m is a pole number at Q,
m = xq + y(q + 1) with x, y ∈ Z, 0 ≤ x, 0 ≤ y < q, and either x ≤ q2 − q − 1 or
y = 0. If m verifies the property (*), then there is a divisor D′, 0 ≤ D′ ≤ D, such
that D′ ∼ mQ. From this fact and the previous arithmetical interpretation, we have
the following result ([4, Proposition 12]).

Proposition 2.3. Let C(m) be a Hermitian code of dimension k and abundance
α. For r = 1, . . . , k, we have

(a) dr(m) ≥ n−m+ ρr+α;
(b) if n−m+ ρr+α has the property (*), then dr(m) = n−m+ ρr+α.
Proof (sketch). For every positive integer r, we define the rth-gonality of H as

γr = min{deg(A) | A ∈ Div(H), l(A) ≥ r}.

Let D′ ≤ D be an effective divisor such that dr(m) = n−deg(D′). Then l(mQ−D′) ≥
r + α, so m− deg(D′) ≥ γr+α and thus dr(m) ≥ n−m+ γr+α. Since for Hermitian
curves we have γs = ρs for all s (see [4, Proposition 3]), then (a) is proved. Let us
prove (b). If n −m + ρr+α has the property (*), then, by using the expressions for
div(u − a) and div(v − b) given previously, we can obtain a divisor D′, 0 ≤ D′ ≤ D
such that (n −m + ρr+α)Q ∼ D′ (see [4, Proposition 11]). Since D ∼ nQ, we have
D′′ = D −D′ ∼ (m− ρr+α)Q, so l(mQ−D′′) = l(ρr+αQ) = r + α, and according to
Proposition 2.2, we have dr(m) ≤ n− deg(D′′) = deg(D′) = n−m+ ρr+α.

An immediate consequence of this proposition and the generalized Singleton
bound is the following.

82 ANGELA I. BARBERO AND CARLOS MUNUERA

Corollary 2.4. Let C(m) be a Hermitian code of dimension k and abundance
α. If r + α > g, then dr(m) = n− k + r.

Thus, we have to compute dr(m) only for r = 1, . . . , g − α. We shall also use the
nested character of the codes C(m) in the following way.

Proposition 2.5. For 1 ≤ m ≤ n+ 2g − 2 and 1 ≤ r ≤ dim C(m)− 1, we have

dr(m) ≤ dr(m− 1) ≤ dr+1(m).

3. Duality and the weight hierarchy. Let C be a linear [n, k] code and let
C⊥ be its dual. If d1, . . . , dk and d⊥1 , . . . , d

⊥
n−k are, respectively, the hierarchies of C

and C⊥, according to the Wei’s duality formula, given in Proposition 2.1, we have

{d⊥1 , . . . , d⊥n−k} = {1, . . . , n} \ {n+ 1− d1, . . . , n+ 1− dk}
that uniquely determines the hierarchy of C⊥ once the hierarchy of C is known. How-
ever, this formula has the disadvantage that it does not explicitly provide the values
d⊥r . In this section we deduce another duality formula which provides such values.

For r = 1, . . . , k, let us consider subcodes V1, . . . , Vk ⊆ C such that dimVr =
r,#suppVr = dr. Furthermore, for every subset I ⊆ {1, . . . , n}, let

C(I) = {x ∈ C | supp (x) ⊆ I},
k(I) = dim C(I),

k⊥(I) = dim C⊥(I).

Lemma 3.1. For all r, 1 ≤ r ≤ k, we have Vr = C(suppVr).
Proof. The proof follows from the definition of Vr.
Thus, the subcodes Vr are determined by their supports, Ir = suppVr. Given a set

I ⊆ {1, . . . , n} we shall denote by I∗ the complement of I, that is, I∗ = {1, . . . , n}\ I.
Proposition 3.2. For every set I ⊆ {1, . . . , n}, we have k(I) = k − n + #I +

k⊥(I∗).
Proof. Let L =

⋂
i6∈I(xi = 0). Then C(I) = C ∩ L and (C + L)⊥ = C⊥(I∗).

The statement follows from the dimension’s formula applied to the subspaces C and
L.

Definition 3.3. We say that a set I ⊆ {1, . . . , n} is a minimum support for C
(respectively, for C⊥) if #I = dk(I).

In order to simplify the exposition, from now on in this section, let us define
d0 = 0 and dk+1 = n+ 1.

Proposition 3.4. Let I ⊆ {1, . . . , n} and let r = k(I). If dr+1 > #I + 1, then
I∗ is a minimum support for C⊥.

Proof. Let us first assume r < k. According to Proposition 3.2, k⊥(I∗) =
n−k+r−#I. If I∗ is not a minimum support for C⊥, then there exists J ⊆ {1, . . . , n},
such that k⊥(J∗) = n−k+r−#I and #J∗ = #I∗− t, for some t > 0, so k(J) = r+ t
and dr+t ≤ #J = #I + t. In particular, by the monotonicity of the weight hierarchy,
we have dr+1 ≤ #I + 1, contradicting our assumption. In the case r = k, it suffices
to prove that when k(I) = k and #I < n, then I∗ is a minimum support for C⊥. If
this were not true, the same reasoning as in the former case proves that there exists
J such that k(J) = k + t for some t > 0, which is absurd.

For 0 ≤ r ≤ k, we shall write sr = dr+1 − dr. Clearly, sr ≥ 1. If sr ≥ 2, a subset
I ⊆ {1, . . . , n} is said to be associated with Ir whenever Ir ⊆ I and #(Ir \I) ≤ sr−2.

Proposition 3.5. If sr ≥ 2 and I is associated with Ir, then I∗ is a mimimum
support for C⊥.

WEIGHT HIERARCHY OF HERMITIAN CODES 83

Proof. Since Ir ⊆ I and #I ≤ dr+1 − 2, then we have k(I) = r, and the result
follows from Proposition 3.4.

For every r, 0 ≤ r ≤ k, such that sr ≥ 2, let us fix a set of sr − 1 supports
I0
r , . . . , I

sr−2
r associated with Ir, such that I0

r = Ir and #(Itr \ Ir) = t, 0 ≤ t ≤ sr − 2.
Let J = {Itr | 0 ≤ r ≤ k with sr ≥ 2, 0 ≤ t ≤ sr − 2}.

Theorem 3.6. The weight hierarchy of C⊥ is the set

{#I∗ | I ∈ J } = {n−#I | I ∈ J }.
Proof. Every I∗, I ∈ J , is a minimum support for C⊥ according to Proposition

3.4. Furthermore, all of them are different, because they have different cardinality.
Thus, it suffices to prove that #J = n− k. Since

#J =
k∑
r=0

(sr − 1) =
k∑
r=0

(dr+1 − dr − 1) = dk+1 − d0 − (k + 1) = n− k,

the result is proved.
Corollary 3.7. If 0 ≤ r ≤ k and sr ≥ 2, then for 0 ≤ t ≤ sr − 2, we have

d⊥n−k−dr+r−t = n− dr − t.
Proof. The proof follows from Proposition 3.2 and Theorem 3.6.
Remark 3.1. Note that, according to Theorem 3.6, the formula given in the

corollary provides the whole weight hierarchy of C⊥. Observe, furthermore, that
Wei’s duality formula also follows from the theorem. Another property that can be
derived from the theorem is that C⊥ verifies the chain condition whenever C does too.

4. Computing the order bound. As mentioned previously, the order bound
on the generalized Hamming weights has been introduced by Heijnen and Pellikaan
in [1]. Let us explain briefly how it works.

Let {f1, f2, . . .} be a basis of L such that −vQ(fi) < −vQ(fi+1) for all i, where
vQ is the valuation at Q. Note that −vQ(fi) = ρi, and thus S = {−vQ(f) | f ∈ L}.

For every positive integer l let us consider the Hermitian code

Cl = 〈ev(f1), . . . , ev(fl)〉⊥

and the set

A(l) = {ρi ∈ S | ρi + ρj = ρl+1 for some ρj ∈ S}.
For l1 < · · · < lr, define the set A(l1, . . . , lr) by

A(l1, . . . , lr) = A(l1) ∪ · · · ∪A(lr).

Definition 4.1. Let l be a positive integer. The number

dORDr (l) = min{#A(l1, . . . , lr) | l ≤ l1 < · · · < lr}
is called the order bound on the rth generalized weight of Cl.

Theorem 4.2 (Heijnen and Pellikaan [1]). For 1 ≤ l ≤ n+g and 1 ≤ r ≤ dimCl,
we have

dr(Cl) ≥ dORDr (l).

84 ANGELA I. BARBERO AND CARLOS MUNUERA

.

. .

. . .

. . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡

(0, 0)

(0, q − 1)

x

6

y
¡
¡¡�

qωx+ y = lω -

Lω(S)

Uω(S)

Fig. 4.1. Graphical representation of S.

The proof of this theorem can be found in [1, Theorem 3.14]. Note that Cl = (0)
if l > n+ g.

By using the notation stated in the previous section, given a Hermitian code C(m)
of dimension k, let m⊥ = n+ 2g − 2−m. Since C(m⊥) = C(m)⊥ we have C(m) = Cl
for l = l(m⊥Q). In particular, when m > 2g−2 (the case we consider in this paper) it
holds that l(m⊥Q) = dim C(m⊥) = n− k. Thus, in this range, m > 2g − 2, Theorem
4.2 can be written as

dr(m) ≥ dORDr (n− k)

for r = 1, . . . , k.
As we know, the Weierstrass semigroup, S, of H at the point Q, is generated by

q and q + 1, so every pole in S can be written uniquely as ρ = xq + y(q + 1) with
0 ≤ x, 0 ≤ y < q. In the following we shall denote poles by means of two-dimensional
coordinates, ρ = (x, y). In this way we can identify S with a plane region, as Figure 4.1
shows. For a better understanding, we recommend the reader to follow this reasoning
by using this graphical interpretation.

For an integer l, 0 ≤ l ≤ n + g, let ω = ρl+1 = (w1, w2) and let lω = w1 + w2.
Our goal in this section is to compute dORDr (l) for some convenient values of r and
l. To that end, and in order to simplify the exposition, if ρ is the (s + 1)th pole of
S, ρ = ρs+1, from now on we shall write A[ρ] instead of A(s). Thus, A[ρ] = {p ∈
S | there exists p′ ∈ S such that p+ p′ = ρ} = {p ∈ S | ρ− p ∈ S}. A[ρ] is called the
A-set corresponding to the pole ρ. We shall also writeA[p1, . . . , pr] = A[p1]∪· · ·∪A[pr].

Definition 4.3. Let ρ = (x, y) be a pole.
(a) We say that ρ is a type I pole if x ≤ q. Otherwise we say that ρ is a type II

pole.
(b) If ρ is a type II pole, the conjugate of ρ is the pole ρ = (x− q − 1, q − 1).
Observe that all poles on the line x = constant > q have the same conjugate.

WEIGHT HIERARCHY OF HERMITIAN CODES 85

¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡

¡
¡
¡
¡¡
sρ

Type I

¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡

¡
¡¡

¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡

sρ

s ρ̄Type II

Fig. 4.2. A-sets of poles.

Definition 4.4. If ρ = (x, y) is a pole, the (direct) shadow of ρ is the subset

S[ρ] = {(α, β) ∈ S | α ≤ x, β ≤ y}.
If p = (x, y) is a point in Z2 (not necessarily a pole), the inverse shadow of p is the
subset

S−1[p] = {(α, β) ∈ S | α > x, β > y}.
Remark 4.1. As we have seen, the direct shadow is defined only for poles, whereas

the inverse shadow is defined for points in general. From now on we shall consider
only inverse shadows of points in the set S = {(x, y) ∈ Z2 | −1 ≤ x,−1 ≤ y ≤ q−1}.
We shall denote by π the point π = (−1,−1). Observe that S−1[π] = S.

Proposition 4.5. Let ρ = (x, y) be a pole. Then

A[ρ] =

{
S[ρ] if ρ is type I;
S[ρ] ∪ S[ρ] if ρ is type II.

Proof. The inclusion S[ρ] ⊆ A[ρ] is clear. Conversely, if ρ = xq + y(q + 1) =
(x1q+y1(q+1))+(x2q+y2(q+1)) = p1 +p2, then either y1 +y2 = y or y1 +y2 = y+q.
In the first case, x1 + x2 = x, so p1, p2 ∈ S[ρ]; in the second case (which can happen
only when ρ is type II), y + 1 ≤ y1, y2 ≤ q − 1, x = x1 + x2 + q + 1, so A[ρ] =
S[ρ] ∪ S[ρ].

Remark 4.2. According to the preceding proposition, the A-set of a type I pole
is just a shadow, whereas the A-set of a type II pole is not (See Figure 4.2). This
difference comes not only from the semigroup structure itself but also from the repre-
sentation of S we are using. In fact, we can represent S not as a plane set, as Figure
4.1 shows, but embedded in the cylinder obtained from S, by identifying the lines

86 ANGELA I. BARBERO AND CARLOS MUNUERA

y = −1 and y = q − 1 and the points (x,−1) with (x − q − 1, q − 1), x > q. In this
way, every A-set is always an (extended) shadow.

Lemma 4.6. If ρ = (x, y) is a pole, then #S[ρ] = (x+ 1)(y + 1).
Proof. The proof is obvious.
Lemma 4.7. Let ρ = (x, y), ρ′ = (x′, y′) be two poles. Then S[ρ] ∩ S[ρ′] = S[ρ′′],

where ρ′′ = (min{x, x′},min{y, y′}). In particular, if ρ is a type II pole, then

S[ρ] ∩ S[ρ] = S[p],

where p = (x− q − 1, y).
Proof. The proof is a simple computation.
Proposition 4.8. Let ρ = (x, y) be a pole. Then

#A[ρ] =

{
(x+ 1)(y + 1) if ρ is type I;
(x+ 1)(y + 1) + (x− q)(q − 1− y) if ρ is type II.

Proof. The proof is a direct consequence of Proposition 4.5 and Lemmas 4.6 and
4.7.

Definition 4.9. Let T be a subset of S and ω as above.
(a) The ω-lower part of T is defined as

Lω(T) = {ρ ∈ T | ρ < ω}.
The ω-upper part of T is defined as

Uω(T) = {ρ ∈ T | ρ ≥ ω}.
(b) If p ∈ S, the ω-lower part of T with respect to p is defined as

L(p)
ω (T) = Lω(T) ∩ S−1[p].

The ω-upper part of T with respect to p is defined as

U (p)
ω (T) = Uω(T) ∩ S−1[p].

Graphically, Lω(T) is the part of T below the line x + y = lω plus the points
(x, lω − x) ∈ T , 0 ≤ x ≤ w1. Uω(T) is the rest of T .

For r = 1, 2, . . . , and p ∈ S, let

Pω(r, p) = {{p1, . . . , pr} ⊆ U (p)
ω (S) | the pi’s are all distinct}.

Then, by definition

dORDr (l) = min{#A[p1, . . . , pr] | {p1, . . . , pr} ∈ Pω(r, π)},
thus, if dORDr (l) = #A[p1, . . . , pr], roughly speaking, we say that #A[p1 . . . , pr] is
minimum in Pω(r, π).

Lemma 4.10. If r1 < r2, then dORDr1 (l) < dORDr2 (l).
Proof. For the proof it suffices to consider the case r1 = r, r2 = r + 1.
If dORDr+1 (l) = #A[p1, . . . , pr, pr+1] with p1 < · · · < pr < pr+1, then pr+1 6∈

A[p1, . . . , pr], so #A[p1, . . . , pr, pr+1] > #A[p1, . . . , pr] ≥ dORDr (l).
Proposition 4.11. If dORDr (l) = #A[p1, . . . , pr], then, for all i = 1, . . . , r, we

have Uω(A[pi]) ⊆ {p1, . . . , pr}.

WEIGHT HIERARCHY OF HERMITIAN CODES 87

Proof. If there exists p ∈ Uω(A[pi]) \ {p1, . . . , pr} for some i, then since p ∈
A[p1, . . . , pr], it holds that A[p1, . . . , pr] = A[p1, . . . , pr, p], so #A[p1, . . . , pr] cannot
be minimum in Pω(r, π), according to Lemma 4.10.

Thus, if #A[p1, . . . , pr] is minimum in Pω(r, π), then {p1, . . . , pr} is a union of
Uω-parts of A-sets. Throughout the paper we shall consider only sets {p1, . . . , pr} ∈
Pω(r, π) having the property of being Uω-parts of union of A-sets, and we shall write

P∗ω(r, p) = {{p1, . . . , pr} ∈ Pω(r, p) | {p1, . . . , pr} = Uω(A[p1, . . . , pr])}.

The poles pi ∈ {p1, . . . , pr} such that pi 6∈ A[pj] for all j = 1, . . . , r, with i 6= j, are
called maximal elements in the set. If pi1 , . . . , pit are the maximals in {p1, . . . , pr},
then A[p1, . . . , pr] = A[pi1 , . . . , pit]. Conversely, if #A[p1, . . . , pr] is minimum in
P∗ω(r, π), then

dORDr (l) = #A[p1, . . . , pr] = r + #Lω(A[p1, . . . , pr])

so #A[p1, . . . , pr] is minimum if and only if #Lω(A[p1, . . . , pr]) is minimum as well.
In the rest of this section we shall investigate this condition.

Definition 4.12. Let p1 = (x1, y1), p2 = (x2, y2) be two poles. A pole p =
(x, y) ∈ A[p1] ∩ A[p2] such that x+ y ≥ lω − 1 is called a link between p1 and p2. If,
furthermore, y = y2, then the link p is said to be from p1 to p2. If there exists a link
between p1 and p2, we say that these poles are joined (with respect to ω). In any other
case we say that these poles are separated (with respect to ω).

Definition 4.13. Let {p1, . . . , pr} ⊆ Uω(S) be a set of poles and let pi1 , . . . , pit
be the maximals of this set. {p1, . . . , pr} is called a block if

(a) {p1, . . . , pr} ∈ P∗ω(r, π); and
(b) there is a reordering, p∗1, . . . , p

∗
t of pi1 , . . . , pit such that p∗j−1 and p∗j are joined

for all j = 2, . . . , t.
If T ∈ P∗ω(s, π), a block {p1, . . . , pr} ⊆ T is called maximal in T (or simply

maximal when the set T is intended) if there is no other block in T containing it.
Let B = {p1, . . . , pr} be a block with maximals pi1 , . . . , pit . In what follows we

shall order these maximals as p∗1, . . . , p
∗
t , with p∗j = (x∗j , y

∗
j), in a way such that

(i) for all j = 2, . . . , t, there is a link from p∗j−1 to p∗j ; and
(ii) y∗j−1 > y∗j for all j = 2, . . . , t except at most in one case;

that is, we fix the order given by the links from the right to the left in the cylindrical
representation of S. Thus, either y∗1 > y∗2 > · · · > y∗t , or there exists j such that
y∗j > y∗j+1 > · · · > y∗t > y∗1 > · · · > y∗j−1. An enumeration of the maximals in
B verifying (i) and (ii) is called well-ordered. From now on, all enumerations of
maximals will be well-ordered.

Definition 4.14. Let B = {p1, . . . , pr} be a block with maximals p1, . . . , pt,
well-ordered. Let β = y1 and let

α =

{
xt if y1 > y2 > · · · > yt;
xt + q + 1 if yj−1 < yj for some (unique) j.

The pole b = (α, β) is called a vertex of the block B.
Remark 4.3. If p1, . . . , pt is a well-ordered enumeration of the maximals of some

block, and there is a link from pt to p1, then every cyclic permutation of p1, . . . , pt
is also well-ordered. Thus, in general, a well-ordered enumeration of the maximals
of one block is not unique, so the vertex of this block is also not uniquely defined.
Then, given a block, we can speak of a “vertex of the block with respect to a certain

88 ANGELA I. BARBERO AND CARLOS MUNUERA

well-ordered enumeration of its maximals.” However, note that the only case in which
a well-ordered enumeration of the maximals is not unique is the one mentioned above,
and in such a case Lω(A[p1, . . . , pt]) = Lω(S), so the computation of the order bound
is immediate. We remark, finally, that if all poles in the block are type I, then the
vertex is uniquely defined and it is also a type I pole.

Some important properties of blocks and their vertices are stated in the next
propositions.

Proposition 4.15. If B = {p1, . . . , pr} is a block with vertex b, then
A[p1, . . . , pr] ⊆ A[b].

Proof. Let p1 = (x1, y1), . . . , pt = (xt, yt) be a well-ordered enumeration of the
maximals in B, and let b = (α, β) be the vertex of B with respect to this enumeration.
We shall proceed by induction on t. If t = 1, then B = Uω(A[p1]) and the result
is clear. Let us assume the result is true for t − 1 and prove it for t > 1. Let
B′ = Uω(A[p1, . . . , pt−1]). Since the enumeration p1, . . . , pt−1 is well-ordered, then B′

is a block. Let b′ = (α′, β′) be a vertex of this block with respect to this enumeration.
By an induction hypothesis, B′ ⊆ A[b′], so it suffices to prove pt, b

′ ∈ A[b]. We have
to consider three cases:

Case 1. If y1 > · · · > yt, then x1 < · · · < xt, and α = xt, α
′ = xt−1, β = β′ = y1.

Thus pt, b
′ ∈ S[b] ⊆ A[b].

Case 2. If yt > y1 > · · · > yt−1, then xt < x1 < · · · < xt−1, and α = xt+q+1, α′ =
xt−1, β = β′ = y1. Furthermore, the link from pt−1 to pt is in S[pt−1] ∩ S[pt], so pt−1

is a type II pole. By definition of maximal, pt 6∈ S[pt−1], so xt > xt−1 − q − 1; thus
b′ ∈ S[b] and pt ∈ S[b].

Case 3. If yj > · · · > yt > y1 > · · · > yj−1 for some j ≤ t − 1, then xj <
· · · < xt < x1 < · · · < xj−1 and α = xt + q + 1, α′ = xt−1 + q + 1, β = β′ = y1, so
b′ ∈ S[b], pt ∈ S[b].

Proposition 4.16. If B = {p1, . . . , pr} is a block with vertex b, then
Lω(A[b]) = Lω(A[p1, . . . , pr]).

Proof. Let p1 = (x1, y1), . . . , pt = (xt, yt) be a well-ordered enumeration of the
maximals in B, and let b = (α, β) be its vertex with respect to this enumeration. After
the above proposition, it is enough to prove Lω(A[b]) ⊆ Lω(A[p1, . . . , pt]). Seeking a
contradiction, assume that there is a pole p = (x, y) ∈ Lω(A[b]) \ Lω(A[p1, . . . , pt]).
We shall consider three cases.

Case 1. If b is a type I pole, then all poles in B are also type I; henceforth y1 >
· · · > yt, so x1 < · · · < xt. Since p ∈ A[b] = S[b], we have x ≤ xt, y ≤ y1. If y ≤ yt,
then p ∈ S[pt], which is a contradiction. Thus, there exists j such that yj−1 ≥ y > yj .
Since p 6∈ S[pj−1], we have xj−1 < x, so xj−1 + yj ≤ x + y − 2 ≤ lω − 2, because
p ∈ Lω(S). Conversely, and since there is a link from pj−1 to pj , xj−1 + yj ≥ lω − 1,
which is again a contradiction.

Case 2. If b is a type II pole and y1 > · · · > yt, since S[b] = S[pt], then p 6∈ S[b],
and the same reasoning as in the previous case proves the result.

Case 3. If b is a type II pole and yj > · · · > yt > y1 > · · · > yj−1 for some j, then
xj < · · · < xt < x1 < · · · < xj−1. Since yj−1 < yj , then (xj−1−q−1, yj) is a link from
pj−1 to pj , hence xj−1−2 ≥ xj−1−q−1+yj ≥ lω−1, that is, xj−1 ≥ lω+1. Let us first
assume p ∈ S[b]. Let B′ be the block B′ = Uω(A[p1, . . . , pj−1]) and b′ = (xj−1, y1)
its vertex. Since p ∈ S[b], we have y ≤ y1. If x > xj−1, then lω + 1 ≤ xj−1 < x ≤
x+ y ≤ lω, a contradiction. Then x ≤ xj−1, hence p ∈ S[b′] \ A[p1, · · · , pj−1] and we
can apply the previous Case 2, getting a contradiction. Finally, if p ∈ S[b], we can
consider the block B′′ = Uω(A[pj−1, pj , · · · , pt]); with a similar reasoning we fall in a

WEIGHT HIERARCHY OF HERMITIAN CODES 89

contradiction again.
Proposition 4.17. Let T ∈ P∗ω(s, π). Every two maximal blocks in T have

separated vertices.
Proof. If B1, B2 are maximal blocks in T , having joined vertices b1 and b2, we can

find maximals p1 in B1 and p2 in B2 such that p1 and p2 are joined, in contradiction
with the fact of the blocks being maximal. Details, which are simple but rather
tedious, are left to the reader.

If dORDr (l) = #A[p1, · · · , pr], we know that the set {p1, . . . , pr} is a union of Uω-
parts of A-sets, so we are interested in finding the (minimum) value of
#Lω(A[p1, · · · , pr]). Now, according to Propositions 4.15, 4.16, and 4.17, it arises
that the simplest way for handling these poles is to consider them as grouped in
blocks. Next, we shall investigate how many blocks the set T = {p1, . . . , pr} can have.
To do this we shall distinguish two cases according to lω. From now on, all the blocks
we consider will be maximal. For the sake of simplicity, we shall simply write “block”
instead of “maximal block in {p1, . . . , pr}”.

4.1. The case lω ≤ q − 1. The first case we consider is lω ≤ q − 1. We begin
with a somewhat technical lemma.

Lemma 4.18. Assume lω ≤ q− 1 and let p = (x, y) ∈ S be such that L
(p)
ω (S) 6= ∅.

For a positive integer t, let us consider the set

Sω(t, p) = {ρ ∈ U (p)
ω (S) | #U (p)

ω (S[ρ]) ≥ t}.

If the function f(ρ) = #L
(p)
ω (S[ρ]), defined in Sω(t, p), attains its minimum at ρ ∈

Sω(t, p), then either (x+ 1, lω − x− 1) ∈ S[ρ] or (lω − y − 1, y + 1) ∈ S[ρ].
Proof. Up to changing coordinates, we can assume p = π = (−1,−1), so that

S−1[p] = S. If ρ = (α, β), we have to prove α ≥ lω or β ≥ lω. Seeking a contradiction,
suppose that α < lω and β < lω. Let ρ′ = (α′, β′) = (α + β − lω, lω). Note that
ρ′ ∈ S, since lω ≤ q − 1 and α + β ≥ lω, because ρ ∈ Uω(S). Furthermore, since
α′ + β′ = α + β and β′ > β, we have ρ′ > ρ, hence ρ′ ∈ Uω(S). On the other
hand, since β′ = lω, the same argument α′ + β′ = α + β implies that #Uω(S[ρ′]) ≥
#Uω(S[ρ]) ≥ t. Then ρ′ ∈ Sω(t, p). To end the proof we shall show that f(ρ) > f(ρ′).
Since f(ρ) = (α+ 1)(β+ 1)−#Uω(S[ρ]) and f(ρ′) = (α′+ 1)(β′+ 1)−#Uω(S[ρ′]) ≤
(α′ + 1)(β′ + 1)−#Uω(S[ρ]), it is enough to prove (α+ 1)(β + 1) > (α′ + 1)(β′ + 1).
From elementary calculus, we know that the function φ(u, v) = uv defined for positive
u, v on the line u + v = constant > 0 is increasing as |u − v| decreases. Since
|α′ − β′| = |α + β − 2lω| = 2lω − (α + β) > |α − β|, then f cannot have a minimum
at ρ.

Proposition 4.19. Assume lω ≤ q − 1. If dORDr (l) = #A[p1, . . . , pr], then
(a) there are at most two (maximal) blocks in the set {p1, . . . , pr}.
(b) If there are type II poles among p1, . . . , pr, then {p1, . . . , pr} form one block.
(c) In the case where there is one block with vertex b, then either (0, lω) ∈ S[b] or

(lω, 0) ∈ S[b].
(d) In the case where there are two blocks with vertices b1 and b2, then (0, lω) ∈

S[b1] and (lω, 0) ∈ S[b2].
Proof. (a) Assume there are h blocks in {p1, . . . , pr}, with vertices b1 =(α1, β1), . . . ,

bh = (αh, βh). The property of the blocks being maximal implies that the bi’s are
separated. In particular, all the α’s are different and all the β’s are different. Up
to reordering, write α1 < α2 < · · · < αh, so β1 > β2 > · · · > βh. Let us prove
that there are at most two blocks. If, on the contrary, h ≥ 3, take i, 1 < i < h.

90 ANGELA I. BARBERO AND CARLOS MUNUERA

Since bi and bi+1 are separated, αi + βi+1 < lω − 1 so, being αi−1 < αi, we have

αi−1 + βi+1 < lω − 2. Let p = (αi−1, βi+1). Since (αi−1 + 1, βi+1 + 1) ∈ L(p)
ω (S), it

holds that L
(p)
ω (S) 6= ∅. Since #A[p1, . . . , pr] = r + #Lω(A[p1, . . . , pr]) is minimum,

then so is #Lω(A[p1] ∪ · · · ∪ A[pr]) = #(Lω(A[b1]) ∪ · · · ∪ Lω(A[bh])). Note that
Lω(A[b1])∪ · · · ∪Lω(A[bh]) = Lω(S[b1])∪ · · · ∪Lω(S[bh]) if all vertices are type I, and
Lω(A[b1])∪ · · · ∪Lω(A[bh]) = Lω(S[b1])∪ · · · ∪Lω(S[bh])∪Lω(S[bh]) if there are type

II vertices. In any case, S[bi]∩ S−1[p] must be minimum in P∗ω(#U
(p)
ω (S[bi]), p); that

is, by using the notation as in Lemma 4.18, if s = #U
(p)
ω (S[bi]) = #Uω(S[bi]), the

function f , defined in Sω(s, p), attains its minimum at bi. Then, according to this
lemma, either (αi−1 + 1, lω − αi−1 − 1) ∈ S[bi] or (lω − βi+1 − 1, βi+1 + 1) ∈ S[bi]. If
(αi−1 + 1, lω − αi−1 − 1) ∈ S[bi], then βi ≥ lω − αi−1 − 1, so ρ = (αi−1, βi) is a link
between bi−1 and bi, and hence these poles are joined, in contradiction to the fact
of the blocks being maximal. If (lω − βi+1 − 1, βi+1 + 1) ∈ S[bi], a similar reasoning
proves that bi and bi+1 are joined, again in contradiction to the fact of the blocks
being maximal. Since this argument can be applied to every i, 1 < i < h, then there
are at most two blocks: those with vertices b1 and bh. This proves (a).

(b) If there are type II poles in the set {p1, . . . , pr}, then bh must be type II,
so Lω(A[b1]) ∪ · · · ∪ Lω(A[bh]) = Lω(S[b1]) ∪ · · · ∪ Lω(S[bh]) ∪ Lω(S[bh]), and the
same reasoning as done in part (a) for the ith vertex, 1 < i < h, can be extended to
1 ≤ i < h, proving that there exists just one block.

(c) If there is one block with vertex b, and b is type I, take p = (−1,−1), and
Lemma 4.18 implies the result. If b is type II, then clearly (lω, 0) ∈ S[b] and (0, lω) ∈
S[b].

(d) Finally, if there are two blocks, then all poles p1, . . . , pr, are type I. Let
b1 = (α1, β1) and b2 = (α2, β2) be vertices of these blocks, with α1 < α2, and let
p = (−1, β2). Again according to Lemma 4.18, we have (lw − β2 − 1, β2 + 1) ∈
S[b1] or (0, lω) ∈ S[b1]. Since the first possibility cannot happen because the blocks
are separated, we obtain (0, lω) ∈ S[b1]. A similar reasoning proves that (lω, 0) ∈
S[b2].

To compute the cardinalities of the sets Lω and Uω, we shall introduce the fol-
lowing function: for j = 0, 1, . . . , lω, define

δω(j) =

{
0 if (j, lω − j) ∈ Uω(S);
−1 if (j, lω − j) ∈ Lω(S).

Note that the function δω verifies δω(j) ≤ δω(j − 1), j = 1, . . . , lω. Conversely, for a
nonnegative integer j, let us define

σ(j) = 0 + 1 + · · ·+ j =
j(j + 1)

2
.

The following lemma will be useful in what follows.
Lemma 4.20. Assume lω ≤ q− 1, and let p = (x, y) be a pole such that y = q− 1

or x ≥ lω.
(a) If y = q − 1 and x ≤ lω, then

#Lω(S[p]) = (x+ 1)lω − σ(x)−
x∑
j=0

δω(j);

#Uω(S[p]) = (x+ 1)(q − lω) + σ(x) +
x∑
j=0

δω(j).

WEIGHT HIERARCHY OF HERMITIAN CODES 91

(b) If x ≥ lω and y ≤ lω, then

#Lω(S[p]) = (y + 1)lω − σ(y)−
y∑
j=0

δω(lω − j);

#Uω(S[p]) = (y + 1)(x− lω + 1) + σ(y) +

y∑
j=0

δω(lω − j).

(c) If x > q, and x+ y − q ≤ lω, then

#Lω(A[p]) = (x+ y − q + 1)lω − σ(x+ y − q)−
y∑
j=0

δω(lω − j)−
x−q−1∑
j=0

δω(j);

#Uω(A[p]) = (x+ y − q + 1)(q − lω) + σ(x+ y − q) + y + 1

+

y∑
j=0

δω(lω − j) +

x−q−1∑
j=0

δω(j).

(d) If x+ y − q ≥ lω, then Lω(A[p]) = Lω(S).
Proposition 4.21. Assume lω ≤ q − 1. For 1 ≤ r ≤ g, there is a set of poles,

{p1, . . . , pr} ∈ P∗ω(r, π), forming one block and such that dORDr (l) = #A[p1, . . . , pr].
Proof. Take r, 1 ≤ r ≤ g, and write dORDr (l) = #A[p′1, . . . , p

′
r]. If these poles

form one block, then there is nothing to prove. Otherwise p′1, . . . , p
′
r are all type I

and form two blocks, B1, B2, with vertices b1 = (α1, β1) and b2 = (α2, β2), such that
(0, lω) ∈ B1 and (lω, 0) ∈ B2, so α1 < α2 ≤ q. Let b = (α1 + β2 + 1, q − 1). Since
b1, b2 are separated, we have α1 + β2 < lω − 1 ≤ q− 2, so b is a type I pole. Since the
function δω verifies δω(j) ≤ δω(j − 1), j = 1, . . . , lω, we find

α1∑
j=0

δω(j) +

β2∑
j=0

δω(lω − j) ≤
α1+β2+1∑
j=0

δω(j).

Let b∗1 = (α1, q−1) and b∗2 = (q, β2). Then, for i = 1, 2 we have Lω(S[bi]) = Lω(S[b∗i])
and Uω(S[bi]) ⊆ Uω(S[b∗i]); hence, from the previous expressions for #Uω(S[b∗1]),
#Uω(S[b∗2]), and #Uω(S[b]), given in Lemma 4.20, a simple computation gives

#Uω(S[b]) ≥ #Uω(S[b∗1]) + #Uω(S[b∗2]) ≥ #B1 + #B2 = r.

Then, we can take a block B = {p1, . . . , pr} ⊆ Uω(S[b]). Since
#Lω(A[p′1, . . . , p

′
r]) = #L(S[b1]) + #Lω(S[b2]) −#S[p] = #L(S[b∗1])+ #Lω(S[b∗2]) −

#S[p] where p = (α1, β2), and again a simple computation shows that

#Lω(S[b∗1]) + #Lω(S[b∗2])−#S[p] ≥ #Lω(S[b]) ≥ #Lω(A[p1, . . . , pr]),

then B is the set we asked for.
Then, for all r ≥ 1, there exist poles p1, . . . , pr ∈ Uω(S), forming one block,

with (lω, 0) ∈ A[p1, . . . , pr] or (0, lω) ∈ A[p1, . . . , pr], and such that dORDr (l) =
#A[p1, . . . , pr]. If b = (α, β) is a vertex of this block, as we know, Lω(A[p1, . . . , pr]) =
Lω(A[b]). Additionally, if α < q and β < q − 1, let b∗ = (q, β) if (lω, 0) ∈ A[b], and

92 ANGELA I. BARBERO AND CARLOS MUNUERA

let b∗ = (α, q − 1) if (0, lω) ∈ A[b]. Then Lω(A[b]) = Lω(A[b∗]). This fact leads us to
consider the set

Bω = {p = (x, y) ∈ Uω(S) | x ≥ q or y = q − 1},
and for each r ≥ 1,

Bω(r) = {p ∈ Bω | #Uω(A[p]) ≥ r}.
Proposition 4.22. Assume lω ≤ q − 1. For a given r, 1 ≤ r ≤ g, let ρ ∈ Bω(r)

be such that

#Lω(A[ρ]) = min{#Lω(A[p]) | p ∈ Bω(r)}.
Then

dORDr (l) = r + #Lω(A[ρ]).

Proof. If this equality were not true, then there would exist poles p1, . . . , pr ∈
Uω(S) forming one block and such that #Lω(A[p1, . . . , pr]) < #Lω(A[ρ]). Let b be a
vertex of this block. If b ∈ Bω(r), then let b∗ = b; otherwise, if b 6∈ Bω(r), let b∗ ∈
Bω(r), defined as before. Then #Uω(A[b∗]) ≥ r and #Lω(A[b∗]) = #Lω(A[p1, . . . , pr])
< #Lω(A[ρ]), which is impossible by definition of ρ.

After the above result we are able to compute the order bound for the values of
r and l in which we are interested. Let us fix the integer a, −1 ≤ a ≤ q − 3. For a
nonnegative integer j, let

τ(a, j) = ja+ σ(j + 1).

For 1 ≤ j ≤ q − a − 3 and 0 ≤ i ≤ j − 1, let l = g − (a + 1)q + σ(a + 1) + j − i (or,
equivalently, let ω = (q − a− 2)q + (j − i)). Since in this case lω = q − a− 2 ≤ q − 1,
by using the previous results, next we shall compute dORDτ(a,j)+i(l).

Theorem 4.23. For −1 ≤ a ≤ q − 3, 1 ≤ j ≤ q − a− 3, and 0 ≤ i ≤ j − 1, with
the restriction 2j − i ≤ q − a− 3, we have

dORDτ(a,j)+i(g − (a+ 1)q + σ(a+ 1) + j − i) = (j + 1)(q − 1)− a+ i.

Proof. We shall use the criterion given in the above proposition, with the help of
the formulas stated in Lemma 4.20. Note that, since w = (q − a − 2)q + j − i, the
first j − i poles on the line x + y = lω = q − a − 2 are in Lω(S), and the remaining
lω + 1− j + i poles on this line are in Uω(S). This fact, together with the condition
2j ≤ q−a+ i− 3, allows us the computation of δω(j) and, consequently, of the values
for the cardinalities of Lω-sets and Uω-sets given in Lemma 4.20. Let us proceed in
several steps.

First, the minimum value of #Lω(A[p]) among the poles p on the line y = q − 1
such that #Uω(A[p]) ≥ r = τ(a, j) + i is attained at p−1 = (j, q − 1), for which

#Lω(A[p−1]) = (j + 1)(q − a− 1)− σ(j)− (j + 1).

Let us now study the lines x = q + t, t ≥ 0. If 0 ≤ t ≤ i, the minimum value of
#Lω(A[p]) among the poles p ∈ Bω(r) on the line x = q + t is attained at pt =
(q + t, j − t), for which

#Lω(A[pt]) = (j + 1)(q − a− 1)− σ(j)− (i+ 1).

WEIGHT HIERARCHY OF HERMITIAN CODES 93

Similarly, for i < t ≤ j, the minimum value of #Lω(A[p]) on the line x = q+ t is also
attained at pt = (q + t, j − t), and now

#Lω(A[pt]) = (j + 1)(q − a− 1)− σ(j)− t.

Finally, for every pole p in the region x > q+j, we haveA[p−1] ⊂ A[p], so Lω(A[p−1]) <
Lω(A[p]).

Then, by using the notation as in Proposition 4.22, it holds that ρ = p−1 =
(j, q − 1), and

dORDτ(a,j)+i(g − (a+ 1)q + σ(a+ 1) + j − i)
= τ(a, j) + i+ #Lω(A[ρ])

= τ(a, j) + i+ (j + 1)(q − a− 2)− σ(j)

= (j + 1)(q − 1)− a+ i.

Corollary 4.24. For −1 ≤ a ≤ q − 3, 1 ≤ j ≤ q − a − 3, and 0 ≤ i ≤ j − 1,
with the restriction 2j − i ≤ q − a− 3, we have

dτ(a,j)+i(n+ aq + (q − j + i− 1)) ≥ (j + 1)(q − 1)− a+ i.

Proof. The proof follows from Theorems 4.2 and 4.23.

4.2. The case lω ≥ q. The second case we consider is lω ≥ q. The process and
arguments used here are the same as in the former case: for all r, we can find a set of
poles p1, . . . , pr forming one block and such that dORDr (l) = r + #Lω(A[p1, . . . , pr]).
Thus, in order to avoid repetition, we state just the main results.

Theorem 4.25. For 2 ≤ a ≤ q, 0 ≤ j ≤ q−2, and 0 ≤ i ≤ j, with the restriction
2j − i ≤ q − a, we have

dORDσ(j)+i+1(g + (a− 1)q + a+ j − i− 1) = (a+ j)q + i− j.

Corollary 4.26. For 2 ≤ a ≤ q, 0 ≤ j ≤ q − 2, and 0 ≤ i ≤ j, with the
restriction 2j − i ≤ q − a, we have

dσ(j)+i+1(n− (a− 1)q − a+ i− j) ≥ (a+ j)q + i− j.

5. The weight hierarchy of abundant codes. Once the bounds given by
the order bound are known for some convenient values of r and l, in this section
we shall compute the hierarchies of all abundant codes, that is, of codes C(m) for
m = n, . . . , n + (q − 2)q (note that dim C(n + (q − 2)q) = n − 1). Every m in this
range can be written as m = n+ aq + b, with 0 ≤ a ≤ q − 2 and −1 ≤ b ≤ q − 2. If α
is the abundance of C(m), we have to compute d1(m), . . . , dg−α(m).

Let us recall that, for a nonnegative integer j, we write σ(j) = 0 + · · · + j =
j(j + 1)/2. Then g = σ(q − 1), ρσ(j) = (j − 1)(q + 1), j = 1, . . . , q, and ρσ(j)+1 = jq,
j = 0, . . . , q. In particular, the abundance of C(n + aq) is σ(a) + 1, a = 0, . . . , q − 2.
We shall also use the following notation: For 0 ≤ a ≤ q− 2 and 0 ≤ j ≤ q− a− 1, we
write ν(a, j) = τ(a, j)− 1 = j(a+ 1) + σ(j).

Let us begin with the case m = n+ aq, that is, b = 0.
Lemma 5.1. Let m = n+ aq, 0 ≤ a ≤ q− 2. If α is the abundance of C(m), then

ν(a, q − a− 1) > g − α. Furthermore, q − a− 1 is the minimum value of j for which
this property holds.

94 ANGELA I. BARBERO AND CARLOS MUNUERA

Proof.

ν(a, q − a− 1)− g + α = (q − a− 1)(a+ 1) + (1 + 2 + · · ·+ (q − a− 1))

−(1 + 2 + · · ·+ (q − 1)) + (1 + 2 + · · ·+ a) + 1

= (q − a− 1)(a+ 1)− (q − a− 1)a+ 1

= q − a > 0.

In the same way, we obtain ν(a, q − a− 2)− g + α = −a.
Lemma 5.2. Let m = n + aq, 0 ≤ a ≤ q − 2. Then, for 1 ≤ j ≤ q − a − 1, we

have

dν(a,j)(m) = jq + j.

Proof. Let α be the abundance of C(m). Then ρα = aq, so ρν(a,j)+α = (a+j)q+j
(note that a+ j ≤ q − 1). Thus

n−m+ ρν(a,j)+α = −aq + (j + a)q + j = jq + j

which verifies the property (*) (see section 2). Then, the result follows from Propo-
sition 2.3.

Lemma 5.3. Let m = n+ aq, 0 ≤ a ≤ q − 2. For 1 ≤ j ≤ q − a− 1, we have

dτ(a,j−1)(m) ≥ jq − a.
Proof. Let m′ = n+ aq + a and α = σ(a+ 1) be the abundance of C(m′). Since

C(m) = C(m′) and ρτ(a,j−1)+α = (a+ j)q, we have

dτ(a,j−1)(m) = dτ(a,j−1)(m
′) ≥ n−m′ + ρτ(a,j−1)+α = jq − a

and Proposition 2.3 implies the result.
Proposition 5.4. Let m = n + aq + b, 0 ≤ a ≤ q − 2, −1 ≤ b ≤ a, and let α

be the abundance of C(m). For every integer r, 1 ≤ r ≤ g − α, let j be the smallest
integer such that r ≤ ν(a, j). Then

dr(m) = j(q − a)− σ(j) + r.

Proof. Since C(m) = C(n + aq), we can restrict ourselves to the case b = 0.
According to Lemma 5.1, j ≤ q−a−1. Now, Lemmas 5.2 and 5.3 and the monotonicity
of the weight hierarchy imply

j + a = ν(a, j)− τ(a, j − 1) ≤ dν(a,j)(m)− dτ(a,j−1)(m) ≤ j + a

so we get equality. Thus, since τ(a, j − 1) ≤ r ≤ ν(a, j), we have

dr(m) = dν(a,j)(m)− (ν(a, j)− r) = j(q − a)− σ(j) + r.

Let us now deal with the case b ≥ a. Here we can assume a ≤ q−3. Furthermore,
if α is the abundance of C(n+ aq+ b), then ν(a, q− a− 2) = g−α, so it is enough to
consider j in the range 1 ≤ j ≤ q − a− 2.

Lemma 5.5. Let m = n + aq + b with 0 ≤ a ≤ q − 3 and a ≤ b ≤ q − 2. For
1 ≤ j ≤ q − a− 2, we have

dν(a,j)(m) =

{
jq + j + a− b if a ≤ b ≤ a+ j;
jq if b ≥ a+ j.

WEIGHT HIERARCHY OF HERMITIAN CODES 95

Proof. Let us assume first a ≤ b ≤ a + j, and let α be the abundance of C(m).
Then ρα = aq + a and ρν(a,j)+α = (a+ j)q + (a+ j), so

n−m+ ρν(a,j)+α = jq + j + a− b
verifies the condition (*); thus the result follows from Proposition 2.3. If b ≥ a + j,
according to this result and Proposition 5.4,

jq = dν(a,j)(n+ aq + a+ j) ≥ dν(a,j)(m) ≥ dν(a,j)(n+ (a+ 1)q) = jq

and we have equality.
Proposition 5.6. For 0 ≤ a ≤ q − 3, 2 ≤ j ≤ q − a− 2, and 0 ≤ i ≤ j − 2 such

that 2j < q − a+ i, we have

dν(a,j)−a−j+i(n+ aq + (q − j + i)) ≥ j(q − 1)− a+ i.

Proof. Since τ(a, j − 1) = ν(a, j)− a− j, this follows from Corollary 4.24.
The main result in this section is the following.
Theorem 5.7. Let m = n+ aq + b with 0 ≤ a ≤ q − 2, −1 ≤ b ≤ q − 2, and let

α be the abundance of C(m). For every integer r, 1 ≤ r ≤ g − α, let j be the smallest
integer such that r ≤ ν(a, j). Then

dr(m) =

j(q − a)− σ(j) + r if −1 ≤ b ≤ a;
j(q − a)− σ(j) + r + a− b if a ≤ b ≤ a+ j;
j(q − a− 1)− σ(j) + r if a+ j < b ≤ min{q − 2, q + a+ r − ν(a, j)};
j(q − a)− σ(j) + r + a− b if q + a+ r − ν(a, j) < b ≤ q − 2.

Proof. The case b ≤ a was treated in Proposition 5.4. If a ≤ b ≤ a + j, then
ρα = aq + a, so ρτ(a,j−1)+α = (a+ j)q, and

dτ(a,j−1)(m) ≥ n−m+ ρτ(a,j−1)+α = jq − b.
By using the monotonicity of the weight hierarchy and Lemma 5.5,

j + a = ν(a, j)− τ(a, j − 1) ≤ dν(a,j)(m)− dτ(a,j−1)(m) ≤ j + a

so we have equality, and since τ(a, j − 1) ≤ r ≤ ν(a, j),

dr(m) = dν(a,j)(m)− (ν(a, j)− r) = j(q − a)− σ(j) + r + a− b.
Let us assume now a+ j < b ≤ min{q − 2, q + a+ r − ν(a, j)}. If ν(a, j)− r ≤ a+ 1,
then min{q − 2, q + a+ r − ν(a, j)} = q − 2, and

dr(n+ aq + a+ j) ≥ dr(m) ≥ dr(n+ (a+ 1)q).

Since ν(a, j)− r ≤ a+ 1 implies r > ν(a+ 1, j − 1), according to the previous results

dr(n+ aq + a+ j) = dr(n+ (a+ 1)q) = j(q − a− 1)− σ(j) + r

and we have equality in the previous inequality. If ν(a, j)− r ≥ a+ 2, then min{q −
2, q + a + r − ν(a, j)} = q + a + r − ν(a, j). Observe that ν(a, 1) = a + 2, so this
case can happen only for j > 1. Let i = r − ν(a, j) + a + j. A simple computation
shows that q + a+ r − ν(a, j) = q − j + i. Furthermore, 0 ≤ i because j is minimum
with the property r ≤ ν(a, j), and i ≤ j − 2 because ν(a, j) − r ≥ a + 2. Since

96 ANGELA I. BARBERO AND CARLOS MUNUERA

r = ν(a, j) − a − j + i, we have q + a + r − ν(a, j) = q − j + i. Then, according to
Proposition 5.6 and the previous results,

j(q − a− 1)− σ(j) + r = dr(n+ aq + a+ j) ≥ dr(m)

= ≥ dr(n+ aq + q − j + i)

≥ j(q − a− 1)− σ(j) + r

and we get equality again.

Finally, let us assume q + a+ r − ν(a, j) < b ≤ q − 2 (so ν(a, j)− r ≥ a+ 2 and
j ≥ 2). Since ν(a, j) = τ(a, j−1)+a+j, we can write r = τ(a, j−1)+t, 0 ≤ t ≤ j−2.
Conversely, as we know, if α is the abundance of C(m), then ρτ(a,j−1)+α = (a + j)q,
and hence ρr+α = (a+ j)q + t. Consequently,

n−m+ ρr+α = (j − 1)q + (q − b+ t).

Now, one easily gets that 0 ≤ q− b+ t ≤ j − 1, so n−m+ ρr+α verifies the property
(*), and

dr(m) = n−m+ ρr+α = j(q − a)− σ(j) + r + a− b.

This finishes the proof.

Example 5.1. The values of dr(m) in the ranges n ≤ m ≤ n+ q−1 and 1 ≤ r ≤ 9
are summarized in Table A.1 (Appendix A). The values marked with a star are those
obtained with the order bound.

6. The weight hierarchy of nonabundant codes. Let us now study nonabun-
dant codes, that is, codes C(m) with m in the range 0 ≤ m ≤ n − 1. In this case it
will still be convenient to consider several subcases.

6.1. The range n−q ≤ m ≤ n−1. We can write m = n−q+b, 0 ≤ b ≤ q−1;
that is, we can keep the notation used in the previous section devoted to abundant
codes, with a = −1.

For b = q − 1 we have C(n − 1) = C(n), so the hierarchy of this code is already
known.

Proposition 6.1. For r = 1, . . . , g, we have dr(n− 1) = ρr+1.

For 0 ≤ b ≤ q − 2, we can apply the same technique and reasoning as in the case
of abundant codes (including the use of Corollary 4.24). Note that a = −1 implies
ν(a, j) = σ(j). Thus we have the following.

Theorem 6.2. Let m = n − q + b with 0 ≤ b ≤ q − 2. For every integer r,
1 ≤ r ≤ g, let j be the smallest integer such that r ≤ σ(j). Then

dr(m) =

 jq − σ(j − 1) + r − b− 1 if 0 ≤ b ≤ j − 1;
jq − σ(j) + r if j − 1 < b ≤ min{q − 2, q − 1 + r − σ(j)};
jq − σ(j − 1) + r − b− 1 if q − 1 + r − σ(j) < b ≤ q − 2.

Proof. The proof is straightforward from the proof of Theorem 5.7.

Example 6.1. Table A.2 in Appendix A summarizes the values of dr(m) in the
ranges n − q ≤ m ≤ n − 1 and 1 ≤ r ≤ 9. The values tagged with a star are those
obtained with the order bound.

WEIGHT HIERARCHY OF HERMITIAN CODES 97

6.2. The range n− q2 ≤ m < n− q. Write m = n− aq + b with 2 ≤ a ≤ q
and 0 ≤ b ≤ q − 1. We have to compute d1(m), . . . , dg(m).

Lemma 6.3. If 1 ≤ r ≤ g, n − q2 ≤ m < n − q, and n −m + ρr is a pole, then
dr(m) = n−m+ ρr.

Proof. First note that every pole p = xq + y(q + 1) ≤ n − q2 + q verifies the
condition (*), because otherwise x ≥ q2 − q and y ≥ 1, so

p ≥ (q2 − q)q + q + 1 = n− q2 + q + 1.

Since n−m+ ρr ≤ q2 + ρg < n− q2 + q, we have the result.

Conversely, according to Corollary 4.26, we have the following.

Proposition 6.4. For 2 ≤ a ≤ q, 1 ≤ j ≤ q − 1, and 1 ≤ i ≤ j such that
2j < q − a+ i, we have

dσ(j−1)+i(n− aq + (q − a+ i− j)) ≥ (a+ j − 1)q + i− j.

Lemma 6.5. For 1 ≤ r ≤ g, let j be the smallest integer such that r ≤ σ(j).
Then j ≤ q − 1.

Proof. r ≤ g = σ(q − 1).

Theorem 6.6. Let m = n− aq + b with 2 ≤ a ≤ q and 0 ≤ b ≤ q − 1. For every
integer r, 1 ≤ r ≤ g, let j be the smallest integer such that r ≤ σ(j). Then

dr(m) =

{
(a+ j − 1)q + r − σ(j) if j − 1 < b ≤ q − a+ r − σ(j);
(a+ j − 1)q + r − σ(j − 1)− b− 1 otherwise.

Proof. If j is the smallest integer such that r ≤ σ(j), then ρr = ρσ(j)−σ(j) + r =
(j−1)(q+1)−σ(j)+r, and hence dr(m) ≥ n−m+ρr = (a+j−1)q+r−σ(j−1)−b−1.
Let us assume first 0 ≤ b ≤ j − 1. By means of the monotonicity property, it suffices
to prove the equality dr(m) = n−m+ ρr for r = σ(j). Since

n−m+ ρσ(j) = aq − b+ (j − 1)q + (j − 1) = (a+ j − 1)q + (j − b− 1)

is a pole, because 0 ≤ j− b−1 ≤ a+ j−1, Lemma 6.3 implies the result and equality
holds. Let us assume now b > j − 1. If j − 1 < b ≤ q − a + r − σ(j), according to
Proposition 6.4,

(a+ j − 1)q + r − σ(j) = dr(n− aq + j − 1) ≥ dr(m)

≥ dr(n− aq + (q − a+ r − σ(j)))

≥ (a+ j − 1)q + r − σ(j)

and we get equality. If q−a+r−σ(j) < b ≤ q−a (so r < σ(j)), write r = σ(j−1)+t,
1 ≤ t ≤ j−1. Then ρr = (j−1)q+ t−1 and n−m+ρr = (a+ j−2)q+(q−b+ t−1).
Since q − a+ r− σ(j) < b, then 0 ≤ q − b+ t− 1 ≤ a+ j − 2, so n−m+ ρr is a pole
and the result follows again from Lemma 6.3. In the same way, if q − a < b ≤ q − 1,
then 0 ≤ q − b ≤ a − 1, so n − m = (a − 1)q + (q − b) is a pole and thus so is
n−m+ ρr = (a+ j − 1)q + r − σ(j − 1)− b− 1.

Example 6.2. Table A.3 summarizes the values of dr(m) in the ranges n− 2q ≤
m ≤ n− q− 1 and 1 ≤ r ≤ 9. The values marked with a star are those obtained with
the order bound.

98 ANGELA I. BARBERO AND CARLOS MUNUERA

6.3. The range 2q2 − 2q < m < n − q2. The weight hierarchy of codes in
this range follows very easily from Proposition 2.3. Since 2q2 − 2q = 2g, we have to
compute d1(m), . . . , dg(m).

Theorem 6.7. If 2q2 − 2q < m < n− q2, then, for r = 1, . . . , g, we have

dr(m) = n−m+ ρr.

Proof. According to Proposition 2.3, it suffices to show that n −m + ρr verifies
the property (*). Since n −m + ρr ≥ n −m > q2 > 2g, then n −m + ρr is a pole
number. Write n −m + ρr = xq + y(q + 1) with 0 ≤ x, 0 ≤ y ≤ q − 1. We have to
prove that either y = 0 or x ≤ q2 − q − 1. If, on the contrary, y 6= 0 and x ≥ q2 − q,
then

n−m+ ρr ≥ (q2 − q)q + q + 1 = n− q2 + q + 1,

and since ρr ≤ ρg = q2 − q − 2,

n−m+ q2 − q − 2 ≥ n− q2 + q + 1

which leads to m < 2q2 − 2q, in contradiction to our hypothesis on m.

6.4. The range 0 ≤ m ≤ 2q2 − 2q. Since 2q2 − 2q < (n + 2g − 2)/2, the
weight hierarchy of codes in this range can be obtained from the previously computed
ones by means of the duality property stated in Corollary 3.7.

Example 6.3. The values of dr(m)−n+ q2 in the ranges 2g− 1 ≤ m ≤ 2g+ q− 2
and 1 ≤ r ≤ 9 are summarized in Table A.4. The values marked with a star are those
obtained by means of the duality property stated in Corollary 3.7. The remaining
values are obtained by using Proposition 2.3. In order to explain how Corollary 3.7
can be used, we shall show the computation of d5(2g) and d6(2g). Let M = n − 2
and let K = dim C(M) = n− g− 1. Let r = σ(q− 3)− 2. According to Theorem 6.2,
we have dr(M) = q2 − 3q − 4 and dr+1(M) = q2 − 3q − 1, so sr = 3 and, according
to Corollary 3.7,

d5(2g) = n− dr(M)− 1 = n− q2 + 3q + 3,

d6(2g) = n− dr(M) = n− q2 + 3q + 4.

Appendix A. Tables.

WEIGHT HIERARCHY OF HERMITIAN CODES 99

T
a
b
l
e

A
.1

V
a

lu
es

o
f
d
r
(m

)
in

th
e

ra
n

ge
s
n
≤
m
≤
n

+
q
−

1
a

n
d

1
≤
r
≤

9
.

T
h

e
va

lu
es

m
a

rk
ed

w
it

h
a

st
a

r
a

re
th

o
se

o
bt

a
in

ed
w

it
h

th
e

o
rd

er
bo

u
n

d
.

9
3
q

+
3

3
q

+
2

3
q

+
1

3
q

3
q

··
·

3
q

3
q

3
q

8
3
q

+
2

3
q

+
1

3
q

3
q
−

1
3
q
−

1
··
·

3
q
−

1
3
q
−

1
3
q
−

1
7

3
q

+
1

3
q

3
q
−

1
3
q
−

2
3
q
−

2
··
·

3
q
−

2
3
q
−

2
∗

2
q

+
2

6
3
q

3
q
−

1
3
q
−

2
3
q
−

3
3
q
−

3
··
·

3
q
−

3
∗

2
q

+
2

2
q

+
1

5
2
q

+
2

2
q

+
1

2
q

2
q

2
q

··
·

2
q

2
q

2
q

4
2
q

+
1

2
q

2
q
−

1
2
q
−

1
2
q
−

1
··
·

2
q
−

1
2
q
−

1
2
q
−

1
3

2
q

2
q
−

1
2
q
−

2
2
q
−

2
2
q
−

2
··
·

2
q
−

2
2
q
−

2
∗

q
+

1
2

q
+

1
q

q
q

q
··
·

q
q

q
1

q
q
−

1
q
−

1
q
−

1
q
−

1
··
·

q
−

1
q
−

1
q
−

1

r
/
m

n
n

+
1

n
+

2
n

+
3

n
+

4
··
·

n
+
q
−

n
+
q
−

2
n

+
q
−

1

100 ANGELA I. BARBERO AND CARLOS MUNUERA

T
a
b
l
e

A
.2

V
a

lu
es

o
f
d
r
(m

)
in

th
e

ra
n

ge
s
n
−
q
≤
m
≤
n
−

1
a

n
d

1
≤
r
≤

9
.

T
h

e
va

lu
es

m
a

rk
ed

w
it

h
a

st
a

r
a

re
th

o
se

o
bt

a
in

ed
w

it
h

th
e

o
rd

er
bo

u
n

d
.

9
4
q

+
2

4
q

+
1

4
q

4
q
−

1
4
q
−

1
··
·

4
q
−

1
4
q
−

1
4
q
−

1
∗

3
q

+
3

8
4
q

+
1

4
q

4
q
−

1
4
q
−

2
4
q
−

2
··
·

4
q
−

2
4
q
−

2
∗

3
q

+
3

3
q

+
2

7
4
q

4
q
−

1
4
q
−

2
4
q
−

3
4
q
−

3
··
·

4
q
−

3
∗

3
q

+
3

3
q

+
2

3
q

+
1

6
3
q

+
2

3
q

+
1

3
q

3
q

3
q

··
·

3
q

3
q

3
q

3
q

5
3
q

+
1

3
q

3
q
−

1
3
q
−

1
3
q
−

1
··
·

3
q
−

1
3
q
−

1
3
q
−

1
∗

2
q

+
2

4
3
q

3
q
−

1
3
q
−

2
3
q
−

2
3
q
−

2
··
·

3
q
−

2
3
q
−

2
∗

2
q

+
2

2
q

+
1

3
2
q

+
1

2
q

2
q

2
q

2
q

··
·

2
q

2
q

2
q

2
q

2
2
q

2
q
−

1
2
q
−

1
2
q
−

1
2
q
−

1
··
·

2
q
−

1
2
q
−

1
2
q
−

1
∗

q
+

1
1

q
q

q
q

q
··
·

q
q

q
q

r
/
m

n
−
q

n
−
q

+
1

n
−
q

+
2

n
−
q

+
3

n
−
q

+
4
··
·

n
−

4
n
−

3
n
−

2
n
−

1

WEIGHT HIERARCHY OF HERMITIAN CODES 101

T
a
b
l
e

A
.3

V
a

lu
es

o
f
d
r
(m

)
in

th
e

ra
n

ge
s
n
−

2
q
≤
m
≤
n
−
q
−

1
a

n
d

1
≤
r
≤

9
.

T
h

e
va

lu
es

m
a

rk
ed

w
it

h
a

st
a

r
a

re
th

o
se

o
bt

a
in

ed
w

it
h

th
e

o
rd

er
bo

u
n

d
.

9
5
q

+
2

5
q

+
1

5
q

5
q
−

1
··
·

5
q
−

1
5
q
−

1
5
q
−

1
∗

4
q

+
4

4
q

+
3

8
5
q

+
1

5
q

5
q
−

1
5
q
−

2
··
·

5
q
−

2
5
q
−

2
∗

4
q

+
4

4
q

+
3

4
q

+
2

7
5
q

5
q
−

1
5
q
−

2
5
q
−

3
··
·

5
q
−

3
∗

4
q

+
4

4
q

+
3

4
q

+
2

4
q

+
1

6
4
q

+
2

4
q

+
1

4
q

4
q

··
·

4
q

4
q

4
q

4
q
∗

3
q

+
3

5
4
q

+
1

4
q

4
q
−

1
4
q
−

1
··
·

4
q
−

1
4
q
−

1
4
q
−

1
∗

3
q

+
3

3
q

+
2

4
4
q

4
q
−

1
4
q
−

2
4
q
−

2
··
·

4
q
−

2
4
q
−

2
∗

3
q

+
3

3
q

+
2

3
q

+
1

3
3
q

+
1

3
q

3
q

3
q

··
·

3
q

3
q

3
q

3
q
∗

2
q

+
2

2
3
q

3
q
−

1
3
q
−

1
3
q
−

1
··
·

3
q
−

1
3
q
−

1
3
q
−

1
∗

2
q

+
2

2
q

+
1

1
2
q

2
q

2
q

2
q

··
·

2
q

2
q

2
q

2
q
∗

q
+

1

r
/
m

n
−

2
q

n
−

2
q

+
1

n
−

2
q

+
2

n
−

2
q

+
3
··
·

n
−
q
−

5
n
−
q
−

4
n
−
q
−

3
n
−
q
−

2
n
−
q
−

1

102 ANGELA I. BARBERO AND CARLOS MUNUERA

T
a
b
l
e

A
.4

V
a

lu
es

o
f
d
r
(m

)
−
n

+
q
2

in
th

e
ra

n
ge

s
2
g
−

1
≤
m
≤

2
g

+
q
−

2
a

n
d

1
≤
r
≤

9
.

T
h

e
va

lu
es

ta
gg

ed
w

it
h

a
st

a
r

a
re

th
o

se
o

bt
a

in
ed

by
m

ea
n

s
o

f
th

e
d

u
a

li
ty

p
ro

pe
rt

y
(s

ec
ti

o
n

3
).

9
4
q

+
4

4
q

+
4
∗

4
q

+
4
∗

4
q

··
·

3
q

+
5

3
q

+
4

8
4
q

+
3

4
q

+
3
∗

4
q

4
q
−

1
··
·

3
q

+
4

3
q

+
3

7
4
q

+
2

4
q

4
q
−

1
4
q
−

2
··
·

3
q

+
3

3
q

+
2

6
3
q

+
4

3
q

+
4
∗

3
q

+
4
∗

3
q

··
·

2
q

+
5

2
q

+
4

5
3
q

+
3

3
q

+
3
∗

3
q

3
q
−

1
··
·

2
q

+
4

2
q

+
3

4
3
q

+
2

3
q

3
q
−

1
3
q
−

2
··
·

2
q

+
3

2
q

+
2

3
2
q

+
3

2
q

+
3
∗

2
q

2
q
−

1
··
·

q
+

4
q

+
3

2
2
q

+
2

2
q

2
q
−

1
2
q
−

2
··
·

q
+

3
q

+
2

1
q

+
2

q
q
−

1
q
−

2
··
·

3
2

r
/
m

2
g
−

1
2
g

2
g

+
1

2
g

+
2
··
·

2
g

+
q
−

3
2
g

+
q
−

2

WEIGHT HIERARCHY OF HERMITIAN CODES 103

Appendix B. Some notations used in this paper.

C(m) is the Hermitian code, image of the evaluation map that sends f ∈
L(mQ) into (f(P1), . . . , f(Pn)). (section 2)

Cl = 〈ev(f1), . . . , ev(fl)〉⊥ Hermitian code. (section 4)
dr(m) denotes de rth generalized weight of the code C(m). (section 2)
ρi is the ith element (pole) of the Weierstrass semigroup S. (section 4)
ρ̄ is the conjugate of a type II pole ρ. (Definition 4.3)
A[ρ] = {p ∈ S | there exists p′ ∈ S such that p + p′ = ρ} = {p ∈

S | ρ− p ∈ S}. A-set. (section 4)
A[p1, . . . , pr] = A[p1] ∪ · · · ∪A[pr]. (section 4)
lω = w1 + w2, where ω = ρl+1 = (w1, w2). (section 4)
S[ρ] = {(α, β) ∈ S | α ≤ x, β ≤ y}. (Direct) shadow of ρ = (x, y).

(Definition 4.4)
S−1[p] = {(α, β) ∈ S | α > x, β > y}. Inverse shadow of p = (x, y) ∈ S =

S ∪ π, where π = (−1,−1). (Definition 4.4)
Lω(T) = {ρ ∈ T | ρ < ω}. The ω-lower part of a subset T of S. (Definition

4.9)
Uω(T) = {ρ ∈ T | ρ ≥ ω}. The ω-upper part of a subset T of S. (Definition

4.9)

L
(p)
ω (T) = Lω(T) ∩ S−1[p]. The ω-lower part of T with respect to p ∈ S.

(Definition 4.9)

U
(p)
ω (T) = Uω(T) ∩ S−1[p]. The ω-upper part of T with respect to p ∈ S.

(Definition 4.9)

Pω(r, p) = {{p1, . . . , pr} ⊆ U (p)
ω (S) | the pi’s are all distinct}. (section 4)

P∗ω(r, p) = {{p1, . . . , pr} ∈ Pω(r, p) | {p1, . . . , pr} = Uω(A[p1, . . . , pr])}. (sec-
tion 4)

dORDr (l) = min{#A[p1, . . . , pr] | {p1, . . . , pr} ∈ Pω(r, π)}. Order bound of
the rth generalized weight of Cl. (section 4)

Bω = {p = (x, y) ∈ Uω(S) | x ≥ q or y = q − 1}. (subsection 4.1)
Bω(r) = {p ∈ Bω | #Uω(A[p]) ≥ r}. For each r ≥ 1. (subsection 4.1)

δω(j) =

{
0 if (j, lω − j) ∈ Uω(S)
−1 if (j, lω − j) ∈ Lω(S)

for j = 0, 1, . . . , lω. (subsection

4.1)

σ(j) = 0 + 1 + · · ·+ j = j(j+1)
2 , for a nonnegative integer j. (subsection

4.1)
τ(a, j) = ja+σ(j+1), for a nonnegative integer j, and where a is an integer

−1 ≤ a ≤ q − 3. (subsection 4.1)
ν(a, j) = τ(a, j)− 1 = j(a+ 1) +σ(j), 0 ≤ a ≤ q− 2, and 0 ≤ j ≤ q−a− 1.

(section 5)

REFERENCES

[1] P. Heijnen and R. Pellikaan, Generalized Hamming weights of q-ary Reed-Muller codes,
IEEE Trans. Inform. Theory, 44 (1998), pp. 181–197.

[2] T. Helleseth, T. Kløve, and J. Mykkeleveit, The weight distribution of irreducible cyclic
codes with block lengths n1((ql − 1)/N), Discrete Math., 18 (1977), pp. 179–211.

[3] T. Høholdt, J.H. van Lint, and R. Pellikaan, Algebraic geometry of codes, in Handbook
of Coding Theory, Vols. I and II, R.A. Brualdi, W.C. Huffman, and V. Pless, eds., North–
Holland, Elsevier, Amsterdam, 1998, pp. 871–961.

104 ANGELA I. BARBERO AND CARLOS MUNUERA

[4] C. Munuera, On the generalized Hamming weights of geometric Goppa codes, IEEE Trans.
Inform. Theory, 40 (1994), pp. 2092–2099.

[5] C. Munuera and D. Ramirez, The second and third generalized Hamming weights of Hermi-
tian codes, IEEE Trans. Inform. Theory, 45 (1999), pp. 709–713.

[6] H. Stichtenoth, Self-dual Goppa codes, J. Pure Appl. Algebra, 55 (1988), pp. 199–211.
[7] M. Tsfasman and S. Vladut, Geometric approach to higher weights, IEEE Trans. Inform.

Theory, 41 (1995), pp. 1564–1588.
[8] V.K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory, 37

(1991), pp. 1412–1418.
[9] K. Yang and P.V. Kumar, On the true minimum distance of Hermitian codes, in Coding

Theory and Algebraic Geometry, H. Stichtenoth and M.A. Tsfasman, eds., Lecture Notes
in Math. 1518, Springer-Verlag, Heidelberg, 1992, pp. 99–107.

[10] K. Yang, P.V. Kumar, and H. Stichtenoth, On the weight hierarchy of geometric Goppa
codes, IEEE Trans. Inform. Theory, 40 (1994), pp. 913–920.

WEIGHT DIVISIBILITY OF CYCLIC CODES, HIGHLY NONLINEAR
FUNCTIONS ON F2m , AND CROSSCORRELATION

OF MAXIMUM-LENGTH SEQUENCES∗

ANNE CANTEAUT† , PASCALE CHARPIN† , AND HANS DOBBERTIN‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 105–138

Abstract. We study [2m−1, 2m]-binary linear codes whose weights lie between w0 and 2m−w0,
where w0 takes the highest possible value. Primitive cyclic codes with two zeros whose dual satisfies
this property actually correspond to almost bent power functions and to pairs of maximum-length
sequences with preferred crosscorrelation. We prove that, for odd m, these codes are completely
characterized by their dual distance and by their weight divisibility. Using McEliece’s theorem we
give some general results on the weight divisibility of duals of cyclic codes with two zeros; specifically,
we exhibit some infinite families of pairs of maximum-length sequences which are not preferred.

Key words. cyclic codes, weight divisibility, Boolean functions, nonlinearity, almost bent func-
tions, m-sequences, crosscorrelation

AMS subject classifications. 11T71, 94B15, 94A55, 94A60

PII. S0895480198350057

1. Introduction. This paper presents a new theoretical approach for studying
the weight polynomials of binary cyclic codes with two zeros. Using Pless power mo-
ment identities [30] and some ideas due to Kasami [18], we point out the essential
role played by the weight divisibility of linear codes of length (2m − 1) and dimen-
sion 2m in the determination of their weight distributions. We especially focus on
[2m− 1, 2m]-linear codes which are optimal in the following sense: their weights lie in
the range [w0, . . . , 2

m−w0], where w0 takes the highest possible value. Most notably
we prove that, for odd m, these [2m − 1, 2m]-optimal codes are completely charac-
terized by their dual distance and by their weight divisibility. The use of McEliece’s
theorem [24] then reduces the determination of cyclic codes with two zeros whose
dual is optimal to a purely combinatorial problem. It especially provides a very fast
algorithm for finding such optimal cyclic codes, even for large lengths. These results
also enables us to exhibit some infinite families of cyclic codes with two zeros whose
dual is not optimal.

This result widely applies in several areas of telecommunications: binary cyclic
codes with two zeros whose dual is optimal in the previous sense are especially related
to highly nonlinear power functions on finite fields; they also correspond to pairs of
maximum-length sequences with preferred crosscorrelation. A function f from F2m

into F2m is said to achieve the highest possible nonlinearity if any nonzero linear
combination of its Boolean components is as far as possible from the set of Boolean
affine functions with m variables. When m is odd, the highest possible value for the
nonlinearity of a function over F2m is known and the functions achieving this bound
are called almost bent (AB). These functions play a major role in cryptography; in
particular, their use in the S-boxes of a Feistel cipher ensures the best resistance to

∗Received by the editors December 28, 1998; accepted for publication (in revised form) July 6,
1999; published electronically January 13, 2000.

http://www.siam.org/journals/sidma/13-1/35005.html
†INRIA, projet CODES, Domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex, France

(Anne.Canteaut@inria.fr, Pascale.Charpin@inria.fr).
‡German Information Security Agency, P.O. Box 20 03 63, D-53133 Bonn, Germany (dobbertin@

skom.rhein.de).

105

106 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

both differential and linear cryptanalyses. It was recently proved [6] that a function f
from F2m into F2m having maximal nonlinearity corresponds to an optimal code
of length (2m − 1) and dimension 2m. In particular when f is a power function,
f : x 7→ xs, this code is the dual of the cyclic code of length (2m − 1) whose zeros are
α and αs (α denotes a primitive element of F2m). Cyclic codes with two zeros whose
dual is optimal also appear in the study of maximum-length sequences (also called m-
sequences): the exponents s such that the permutation x 7→ xs over F2m has maximum
nonlinearity coincide with the values of the decimations such that the absolute value
of the crosscorrelation function between an m-sequence and its decimation by s is
minimum. In this case, any two sequences in the set consisting of all time-shifted
versions of an m-sequence and all time-shifted versions of its decimation by s can be
easily distinguished. Such pairs of m-sequences are then intensively used in many
communication systems, especially in code-division multiple access systems.

The next section recalls some properties of binary cyclic codes; it also exhibits
the link between the weight distribution of the duals of cyclic codes with two zeros
and both concepts of nonlinearity of a power function from F2m into F2m and of
crosscorrelation of a pair of m-sequences. In section 3 we develop a new theoretical
tool for studying the weight distribution of some linear codes, which generalizes some
ideas due to Kasami. This method provides new characterizations of AB power map-
pings and of pairs of m-sequences having some 3-valued correlation spectra, which
are presented in section 4. These characterizations use the weight divisibility of the
duals of cyclic codes with two zeros which can be derived from McEliece’s theorem.
Section 5 exhibits some general bounds on the weight divisibility of these codes. Most
notably we examine the cyclic codes with two zeros whose dual is at most 8-divisible.
Section 6 focuses on power functions x 7→ xs over F2m for odd m when the exponent s

can be written as s = 2
m−1

2 + 2i − 1. This set of exponents contains the values which
appear in both Welch’s and Niho’s conjectures. Here we prove that for most values

of i, x 7→ x2
m−1

2 +2i−1 is not AB on F2m . In section 7 we give some results on the
weight divisibility of the duals of cyclic codes with two zeros of length (2m− 1) when
m is not a prime. This leads to a very simple necessary condition on the values s of
the decimations providing preferred pairs of m-sequences; in this case we are able to
eliminate most values of s. We also give the exact weight divisibility of the duals of
the binary cyclic codes of length (2m−1) with a defining set {1, s} when m is even and
s mod (2

m
2 − 1) is a power of 2. All of these results notably generalize two recently

proved conjectures on the crosscorrelation of pairs of m-sequences [15, 31, 25, 3]. They
also imply that the conjectured almost perfect nonlinear (APN) function x 7→ xs with
s = 24g+23g+22g+2g−1 over F25g is not AB. Finally, we give some numerical results
which point out that our theoretical results directly provide the weight divisibility of
many infinite families of duals of cyclic codes with two zeros.

2. Cyclic codes with two zeros and related objects. We first give two
different formulations of the McEliece theorem which enable us to determine the
weight divisibility of the dual of a primitive binary cyclic code with two zeros. These
results will be extensively used in the paper.

2.1. Weight divisibility of cyclic codes. Here we consider primitive binary
cyclic codes. Let α denote a primitive element of F2m . Any cyclic code C of
length (2m − 1) can be defined by its generator polynomial whose roots are called
the zeros of the code. The defining set of C is then the set

I(C) = {i ∈ {0, . . . , 2m − 2}|αi is a zero of C}.

WEIGHT DIVISIBILITY OF CYCLIC CODES 107

Since C is a binary code, its defining set is a union of 2-cyclotomic cosets modulo (2m−
1), Cl(a), where Cl(a) = {2ja mod (2m − 1)}. From now on the defining set of a
binary cyclic code of length (2m − 1) is identified with the representatives of the
corresponding 2-cyclotomic cosets modulo (2m − 1).

Definition 2.1. A binary code C is 2`-divisible if the weight of any of its code-
words is divisible by 2`. Moreover, C is exactly 2`-divisible if, additionally, it contains
at least one codeword whose weight is not divisible by 2`+1.

The following theorem due to McEliece reduces the determination of the exact
weight divisibility of binary cyclic codes to a combinatorial problem.

Theorem 2.2 (see [24]). A binary cyclic code is exactly 2`-divisible if and only
if ` is the smallest number such that (` + 1) nonzeros of C (with repetitions allowed)
have product 1.

We now focus on primitive cyclic codes with two zeros and on the exact weight
divisibility of their duals. We denote by C1,s the binary cyclic code of length (2m −
1) with defining set Cl(1) ∪ Cl(s). The nonzeros of the cyclic code C⊥1,s are the

elements α−i with

i ∈ Cl(1) ∪ Cl(s).
Then (`+ 1) nonzeros of C⊥1,s have product 1 if and only if there exist I1 ⊂ Cl(s) and
I2 ⊂ Cl(1) with |I1|+ |I2| = `+ 1 and∏

k∈I1∪I2
α−k = 1

⇐⇒
∑

k∈I1∪I2
k ≡ 0 mod (2m − 1).

We consider both integers u and v defined by their 2-adic expansions: u =
∑m−1
i=0 ui2

i

and v =
∑m−1
i=0 vi2

i, where

ui =

{
1 if 2is mod (2m − 1) ∈ I1,
0 otherwise,

vi =

{
1 if 2i mod (2m − 1) ∈ I2,
0 otherwise.

Then we have

∑
k∈I1∪I2

k ≡
m−1∑
i=0

ui2
is+

m−1∑
i=0

vi2
i mod (2m − 1)

≡ 0 mod (2m − 1).

The size of I1 (resp., I2) corresponds to w2(u) =
∑m−1
i=0 ui (resp., w2(v)) which is the

2-weight of u (resp., v). McEliece’s theorem can then be formulated as follows.
Corollary 2.3. The cyclic code C⊥1,s of length (2m − 1) is exactly 2`-divisible if

and only if for all (u, v) such that 0 ≤ u ≤ 2m − 1, 0 ≤ v ≤ 2m − 1, and

us+ v ≡ 0 mod (2m − 1),

we have w2(u) + w2(v) ≥ `+ 1.

108 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

Since v ≤ 2m − 1, the equation

us+ v ≡ 0 mod (2m − 1)

can be written

v = (2m − 1)− (us mod (2m − 1)).

This leads to the following equivalent formulation.
Corollary 2.4. The cyclic code C⊥1,s of length (2m − 1) is exactly 2`-divisible if

and only if for all u such that 0 ≤ u ≤ 2m − 1,

w2(A(u)) ≤ w2(u) +m− 1− `,
where A(u) = us mod (2m − 1).

2.2. APN and AB functions. We now point out that some cryptographic
properties of power functions over F2m are related to the weight enumerators of cyclic
codes with two zeros.

Let f be a function from Fm2 into Fm2 . For any (a, b) ∈ Fm2 × Fm2 , we define

δf (a, b) = #{x ∈ Fm2 : f(x+ a) + f(x) = b},
λf (a, b) = |#{x ∈ Fm2 : a · x+ b · f(x) = 0} − 2m−1|,

where · is the usual dot product on Fm2 . These values are of great importance in
cryptography, especially for measuring the security of an iterated block cipher using
f as a round permutation. A differential attack [2, 21] against such a cipher exploits
the existence of a pair (a, b) with a 6= 0 such that δf (a, b) is high. Similarly, a linear
attack [22, 23] is successful if there is a pair (a, b) with b 6= 0 such that λf (a, b) is
high. The function f can then be used as a round function of an iterated cipher only
if both

δf = max
a6=0

max
b
δf (a, b),

λf = max
a

max
b6=0

λf (a, b)

are small. Moreover, if f defines the S-boxes of a Feistel cipher, the values of δf
and λf completely determine the complexity of differential and linear cryptanalyses
[29, 28].

Since x is a solution of f(X + a) + f(X) = b if and only if x+ a is a solution too,
δf is always even. Then we have the following.

Proposition 2.5. For any function f : Fm2 → Fm2 ,

δf ≥ 2.

In the case of equality, f is called almost perfect nonlinear (APN).
Proposition 2.6 (see [32, 7]). For any function f : Fm2 → Fm2 ,

λf ≥ 2
m−1

2 .

In the case of equality, f is called almost bent (AB).
Note that this minimum value for λf can be achieved only if m is odd. For even m,

some functions with λf = 2
m
2 are known and it is highly conjectured that this value

is the minimum [31, p. 603].

WEIGHT DIVISIBILITY OF CYCLIC CODES 109

From now on the vector space Fm2 is identified with the finite field F2m . The
function f can then be expressed as a unique polynomial of F2m [X] of degree at
most (2m − 1). Note that the values of δf and λf are invariant under both right and
left compositions by a linear permutation of F2m . Similarly, if f is a permutation,
δf = δf−1 and λf = λf−1 . We can then assume that f(0) = 0 without loss of
generality. Both APN property and nonlinearity can also be expressed in terms of
error-correcting codes. The proofs of the following results are developed by Carlet,
Charpin, and Zinoviev in [6].

Theorem 2.7. Let f be a function from F2m into F2m with f(0) = 0. Let Cf be
the linear binary code of length 2m − 1 defined by the parity-check matrix

Hf =

(
1 α α2 · · · α2m−2

f(1) f(α) f(α2) · · · f(α2m−2)

)
,(2.1)

where each entry is viewed as a binary vector and α is a primitive element of F2m .
Then

• If dim Cf = 2m − 1− 2m,

λf = max
c∈C⊥

f
,c6=0
|2m−1 − wt(c)|.

In particular, for odd m, f is AB if and only if for any nonzero codeword
c ∈ C⊥f ,

2m−1 − 2
m−1

2 ≤ wt(c) ≤ 2m−1 + 2
m−1

2 .

• λf = 2m−1 if and only if dim Cf > 2m − 1 − 2m or C⊥f contains the all-one
vector.
• f is APN if and only if the code Cf has minimum distance 5.

In particular, if f is a power function x 7→ xs over F2m , the code Cf is the cyclic
code of length (2m − 1) whose zeros are α and αs.

Tables 2.1 and 2.2 (resp., Tables 2.3 and 2.4) give all known and conjectured
values of exponents s (up to equivalence) such that the power function x 7→ xs is
APN (resp., has the highest known nonlinearity).

Table 2.1
Known and conjectured APN power functions xs on F2m with m = 2t+ 1.

Exponents s Status

Quadratic functions 2i + 1 with gcd(i,m) = 1, proven
1 ≤ i ≤ t [13, 27]

Kasami’s functions 22i − 2i + 1 with gcd(i,m) = 1, proven
2 ≤ i ≤ t [19]

Inverse function 22t − 1 proven
[27, 1]

Welch’s function 2t + 3 proven
[11]

Niho’s function 2t + 2
t
2 − 1 if t is even proven

2t + 2
3t+1

2 − 1 if t is odd [10]

Dobbertin’s function 24i + 23i + 22i + 2i − 1 if m = 5i conjectured
[10]

110 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

Table 2.2
Known and conjectured APN power functions xs on F2m with m = 2t.

Exponents s Status

Quadratic functions 2i + 1 with gcd(i,m) = 1, proven
1 ≤ i < t [13, 27]

Kasami’s functions 22i − 2i + 1 with gcd(i,m) = 1 proven
2 ≤ i < t [19, 17]

Dobbertin’s function 24i + 23i + 22i + 2i − 1 if m = 5i conjectured
[10]

Table 2.3
Known AB power permutations xs on F2m with m = 2t+ 1.

Exponents s Status

Quadratic functions 2i + 1 with gcd(i,m) = 1, proven
1 ≤ i ≤ t [13, 27]

Kasami’s functions 22i − 2i + 1 with gcd(i,m) = 1 proven
2 ≤ i ≤ t [19]

Welch’s function 2t + 3 proven
[5, 4]

Niho’s function 2t + 2
t
2 − 1 if t is even proven

2t + 2
3t+1

2 − 1 if t is odd [16]

Table 2.4
Known power permutations xs with highest known nonlinearity on F2m with m = 2t.

Exponents s Status

22t−1 − 1 proven
[20]

2i + 1 with gcd(i,m) = 2 proven
1 ≤ i < t,m ≡ 2 mod 4 [13]

22i − 2i + 1 with gcd(i,m) = 2 proven
1 ≤ i < t,m ≡ 2 mod 4 [19]∑t

i=0
2ik with t even, proven

0 < k < t such that gcd(k,m) = 1 [12]

2t + 2
t+1
2 + 1 proven

t odd [9]

2t + 2t−1 + 1 proven
t odd [9]

2t + 2
t
2 + 1 proven

t ≡ 2 mod 4 [12]

2.3. Crosscorrelation of a pair of binary m-sequences. A binary sequence
(ui)i≥0 generated by a linear feedback shift register (LFSR) of length m has maxi-
mal period when the feedback polynomial of the LFSR is primitive. Such a sequence
is called an m-sequence of length (2m − 1). From now on, a binary m-sequence of
length (2m− 1) is identified with the binary vector of length (2m− 1) consisting of its
first (2m − 1) bits. A further property of m-sequences is that they are almost uncor-
related with their cyclic shifts. This property is important in many communication

WEIGHT DIVISIBILITY OF CYCLIC CODES 111

systems (such as radar communications or transmissions using spread-spectrum tech-
niques) since it is often required that a signal be easily distinguished from any time-
shifted version of itself. It is well known that for any m-sequence u of length (2m− 1)
there exists a unique c ∈ F2m \ {0} such that

∀i, 0 ≤ i ≤ 2m − 2, ui = Tr(cαi),

where α is a root of the feedback polynomial of the LFSR generating u (i.e., α is a
primitive element of F2m) and Tr denotes the trace function from F2m to F2.

When a communication system uses a set of several signals (usually corresponding
to different users), it is also required that each of these signals be easily distinguished
from any other signal in the set and its time-shifted versions. This property is of
great importance, especially in code-division multiple access systems. The distance
between a sequence u and all cyclic shifts of another sequence v can be computed
with the crosscorrelation function.

Definition 2.8. Let u and v be two different binary sequences of length N . The
crosscorrelation function between u and v, denoted by θu,v, is defined as

θu,v(τ) =
N−1∑
i=0

(−1)ui+vi+τ .

The corresponding crosscorrelation spectrum is the vector (T−N , . . . , TN) with

Tω = #{τ, 0 ≤ τ ≤ N − 1, θu,v(τ) = ω}.

Since θu,v(τ) = N − 2wt(u+ στv), where σ denotes the cyclic shift operator, the
above mentioned applications use pairs of sequences (u, v) such that |θu,v(τ)| is small
for all τ ∈ {0, . . . , N − 1}.

If u and v are two different binary m-sequences of length (2m−1), there exists an
integer s in {0, . . . , 2m − 2} and a pair (c1, c2) of nonzero elements of F2m such that

∀i, 0 ≤ i ≤ 2m − 2, ui = Tr(c1α
i) and vi = Tr(c2α

si) .

If c1 = c2, the sequence v is said to be a decimation by s of u. Writing c1 = αj1 and
c2 = αj2 , the crosscorrelation function for the pair (u, v) is given by

θu,v(τ) =
2m−2∑
i=0

(−1)Tr(αi+j1+αsi+j2+τ) =
∑

x∈F∗
2m

(−1)Tr(ατ
′
[αj1−τ

′
x+xs]) ,

where τ ′ = j2 + τ . It follows that the corresponding crosscorrelation spectrum does
not depend on the choice of j2. It is then sufficient to study the pairs (u, v), where v
is a decimation by s of u.

We now recall the well-known link between the crosscorrelation spectrum of pairs
of binary m-sequences and the weight distribution of the duals of some cyclic codes
with two zeros.

Proposition 2.9. Let m and s be two positive integers such that gcd(s, 2m−1) =
1 and s is not a power of 2. Let (T−2m+1, . . . , T2m−1) be the crosscorrelation spectrum
between an m-sequence of length (2m−1) and its decimation by s. Let (A0, . . . , A2m−1)
be the weight enumerator of the dual of the binary cyclic code C1,s of length (2m − 1)

112 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

with defining set {1, s}. Then we have that Tω = 0 for all even values of ω and for
odd ω:

Tω = A2m−1−ω+1
2

for all ω 6∈ {−1, 2m − 1},
T−1 = A2m−1 − 2(2m − 1),

T2m−1 = 0.

In particular, if ω0 is the smallest positive integer such that

T−ω = Tω = 0for all ω such that ω > ω0,

then we have

ω0 = 2m − 1− 2w0,

where w0 is the largest integer such that 0 < w0 ≤ 2m−1 and

Aw = A2m−w = 0 for all w such that 0 < w < w0.

Proof. The code C⊥1,s consists of all codewords c = (c0, . . . , c2m−2), where

ci = Tr(aαi + bαsi) with a, b ∈ F2m .

If either a or b equals zero, c is a codeword of the simplex code of length (2m − 1).
In this case, its Hamming weight is 2m−1 except for a = b = 0. Using that θu,v(τ) =
2m − 1− 2wt(u+ στv), we obtain the expected result.

Using Theorem 2.7 we see that

ω0 = −1 + 2 max
c∈C⊥1,s,c6=0

|2m−1 − wt(c)|

= 2λs − 1,

where λs is the linearity of the power permutation x 7→ xs over F2m . In particular,

when m is odd the lowest possible value for ω0 is 2
m+1

2 − 1 and the values of s for
which this bound is reached exactly correspond to the exponents s such that x 7→ xs

is an AB permutation over F2m .

3. Weight polynomials of linear codes of length 2m − 1 and dimen-
sion 2m. As previously seen, both notions of nonlinearity of a function from F2m

into F2m and of crosscorrelation spectrum of a pair of binary m-sequences of length
(2m − 1) are related to the weight polynomials of some linear binary codes of length
(2m−1) and dimension 2m. Here we give some general results on the weight distribu-
tions of linear codes having these parameters. Our method uses Pless power moment
identities [30] and some ideas due to Kasami [18, Thm. 13] (see also [6, Thm. 4]).

Theorem 3.1. Let C be a [2m − 1, 2m]-linear code which does not contain the
all-one vector 1 = (1, . . . , 1). Assume that the minimum distance of the dual code C⊥
is at least 3. Let A = (A0, . . . , A2m−1) (resp., B = (B0, . . . , B2m−1)) be the weight
enumerator of C (resp., C⊥). Then, for any positive integer x ≤ 2m−1, we have

2m−1−1∑
w=1

(w − 2m−1)2
(
(w − 2m−1)2 − x2

)
(Aw +A2m−w)

= 22m−2
[
6(B3 +B4) + (2m − 1)(2m−1 − x2)

]
.

Most notably this implies the following:

WEIGHT DIVISIBILITY OF CYCLIC CODES 113

(i) If w0 is such that for all 0 < w < w0

Aw = A2m−w = 0,

then

6(B3 +B4) ≤ (2m − 1)
[
(2m−1 − w0)2 − 2m−1

]
,

where equality holds if and only if Aw = 0 for all w 6∈ {0, w0, 2
m−1, 2m−w0}.

(ii) If w1 is such that for all w1 < w < 2m−1

Aw = A2m−w = 0,

then

6(B3 +B4) ≥ (2m − 1)
[
(2m−1 − w1)2 − 2m−1

]
,

where equality holds if and only if Aw = 0 for all w 6∈ {0, w1, 2
m−1, 2m−w1}.

Proof. The main part of the proof relies on the first Pless power moment identi-
ties [30]. The first four power moment identities on the weight distribution of a code
of length 2m − 1 and dimension 2m are

n∑
w=0

wAw = 22m−1(2m − 1),

n∑
w=0

w2Aw = 23m−2(2m − 1),

n∑
w=0

w3Aw = 22m−3
(
(2m − 1)2(2m + 2)− 3!B3

)
,

n∑
w=0

w4Aw = 22m−4
(
2m(2m − 1)(22m + 3 · 2m − 6) + 4! (B4 − (2m − 1)B3)

)
.

Let us consider the numbers I` =
∑2m−1
w=1 (w − 2m−1)`Aw. Since for ` even

(w − 2m−1)` = ((2m − w)− 2m−1)` ,

we have for any even `

I` =
2m−1∑
w=1

(w − 2m−1)`Aw =
2m−1−1∑
w=1

(w − 2m−1)`(Aw +A2m−w).

Note that the codeword of weight zero is not taken into account in the sum above.
Recall that C does not contain the all-one codeword.

By using the four power moments, we obtain the following values for I2 and I4:

I2 = 22m−2(2m − 1),

I4 = 22m−2
[
6(B3 +B4) + 2m−1(2m − 1)

]
.

Let x be a positive integer and let I(x) denote the value of I4 − x2I2. We have

I(x) =
2m−1−1∑
w=1

(w − 2m−1)2
(
(w − 2m−1)2 − x2

)
(Aw +A2m−w)

= 22m−2
[
6(B3 +B4) + (2m − 1)(2m−1 − x2)

]
.

114 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

The wth term in this sum satisfies

(w − 2m−1)2
(
(w − 2m−1)2 − x2

)
< 0 if 0 < |2m−1 − w| < x
= 0 if w ∈ {2m−1, 2m−1 ± x}
> 0 if |2m−1 − w| > x.

This implies that, if Aw = A2m−w = 0 for all w such that 0 < w < w0, all the
terms in I(2m−1 − w0) are nonpositive. Then we have

6(B3 +B4) + (2m − 1)
[
2m−1 − (2m−1 − w0)2

] ≤ 0

with equality if and only if all terms in the sum are zero. This can happen only when
Aw = 0 for all w 6∈ {0, w0, 2

m−1, 2m − w0}.
Similarly, if Aw = A2m−w = 0 for all w such that w1 < w < 2m−1, all the terms

in I(2m−1 − w1) are positive. Then we have

6(B3 +B4) + (2m − 1)
[
2m−1 − (2m−1 − w1)2

] ≥ 0

with equality if and only if all terms in the sum are zero, i.e., if Aw = 0 for all
w 6∈ {0, w1, 2

m−1, 2m − w1}.
This theorem obviously gives an upper bound on the value of w0 for which all

nonzero weights of C lie between w0 and 2m − w0.
Corollary 3.2. Let C be a [2m − 1, 2m]-linear code which does not contain the

all-one vector 1 = (1, . . . , 1). Assume that the minimum distance of the dual code C⊥
is at least 3. Let w0 be the smallest w such that 0 < w < 2m−1 and

Aw +A2m−w 6= 0.

Then

w0 ≤ 2m−1 − 2
m−1

2

and equality holds if and only if the weight of every codeword in C belongs to {0, 2m−1,

2m−1±2
m−1

2 }. In this case the weight distribution of C is the same as the weight distri-
bution of the dual of the 2-error-correcting Bose–Chaudhuri-Hocquenghem (BCH) code,
i.e.,

Weight: w Number of words: Aw

0 1
2m−1 − 2(m−1)/2 (2m − 1)(2m−2 + 2(m−3)/2)

2m−1 (2m − 1)(2m−1 + 1)
2m−1 + 2(m−1)/2 (2m − 1)(2m−2 − 2(m−3)/2)

Proof. The first statement directly results from the previous theorem. Moreover,

if w0 = 2m−1 − 2
m−1

2 , then Aw0 , A2m−1 , and A2m−w0 are the only unknown values in
the weight distribution of C. They are then completely determined by inverting the
linear system formed by Aw0

+ A2m−1 + A2m−w0
= 22m − 1 and the first two Pless

power moments identities.
Pless power moment identities also imply that if all nonzero codewords of a [2m−

1, 2m] code have Hamming weight in the set {2m−1±W, 2m−1}, the weight distribution
of this code is unique as long as its dual has minimum distance at least 3.

WEIGHT DIVISIBILITY OF CYCLIC CODES 115

Proposition 3.3. Let C be a [2m − 1, 2m]-linear code which does not con-
tain the all-one vector 1 = (1, . . . , 1). Assume that the minimum distance of the
dual code C⊥ is at least 3. Assume that the weight of every codeword in C lies in

{0, 2m−1, 2m−1 ±W}. Then W is divisible by 2d
m−1

2 e. Moreover, the weight distribu-
tion of C is completely determined:

Weight: w Number of words: Aw

0 1

2m−1 −W 2m−2(2m−1)(2m−1+W)
W 2

2m−1 (2m−1)((2m+1)W 2−22m−2)
W 2

2m−1 +W 2m−2(2m−1)(2m−1−W)
W 2

In particular, the number B3 (resp., B4) of codewords of weight 3 (resp., 4) in C⊥ is
given by

B3 =
(2m − 1)(W 2 − 2m−1)

3 · 2m−1
,

B4 =
(2m − 1)(2m−2 − 1)(W 2 − 2m−1)

3 · 2m−1
.

Proof. Let A = (A0, . . . , A2m−1) (resp., B = (B0, . . . , B2m−1)) be the weight
enumerator of C (resp., C⊥). By hypothesis, B1 = B2 = 0. Using the first two Pless
power moment identities, we obtain

A2m−1−W +A2m−1 +A2m−1+W = 22m − 1,

(2m−1 −W)A2m−1−W + 2m−1A2m−1 + (2m−1 +W)A2m−1+W = 22m−1(2m − 1),

(2m−1 −W)2A2m−1−W + 22m−2A2m−1 + (2m−1 +W)2A2m−1+W = 23m−2(2m − 1).

Inverting this linear system gives the expected weight distribution. By writing
the third and fourth Pless power moment identities, we can compute the number of
codewords of weights 3 and 4 in C⊥:

B3 =
(2m − 1)(W 2 − 2m−1)

3 · 2m−1
,

B4 =
(2m − 1)(2m−2 − 1)(W 2 − 2m−1)

3 · 2m−1
.

Since B3 is an integer, we have that 2m−1 divides W 2− 2m−1 and then W is divisible

by 2d
m−1

2 e.

4. AB functions, 3-valued crosscorrelation functions, and weight
divisibility.

4.1. A new characterization of AB functions. Let us now suppose that m
is odd, m = 2t + 1. We give a necessary and sufficient condition on f : F2m → F2m

to achieve the highest possible nonlinearity.

Theorem 4.1. Let m be an odd integer and C be a [2m−1, 2m]-linear code which
does not contain the all-one vector 1 = (1, . . . , 1). Assume that the minimum distance

116 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

of the dual code C⊥ is at least 3. Let A = (A0, . . . , A2m−1) be the weight enumerator
of C and let w0 be the smallest w such that 0 < w < 2m−1 and

Aw +A2m−w 6= 0.

Then

w0 = 2m−1 − 2
m−1

2

if and only if the minimum distance of the dual code C⊥ is 5 and C is 2
m−1

2 -divisible.
Proof. This condition is sufficient because, if

w0 = 2m−1 − 2
m−1

2 ,

the code C has the same weight distribution as the 2-error-correcting BCH code (ac-
cording to Corollary 3.2).

This condition is also necessary since, for any w such that 2m−1 − 2
m−1

2 < w <

2m−1, both integers w and 2m−1−w are not divisible by 2
m−1

2 . The condition on the
divisibility of the weights of C then implies that

Aw +A2m−w = 0 for all w such that 2m−1 − 2
m−1

2 < w < 2m−1 .

If B3 = B4 = 0, the lower bound given in Theorem 3.1(ii) (applied with w1 = 2m−1−
2
m−1

2) is reached. Then the weight of every codeword in C lies in {0, 2m−1, 2m−1 ±
2
m−1

2 }.
Corollary 4.2. Let m be an odd integer and let f be a function from Fm2

into Fm2 such that λf 6= 2m−1. Then f is AB if and only if f is APN and the code C⊥f
defined in Theorem 2.7 is 2

m−1
2 -divisible.

When f is a power function, f : x 7→ xs, the corresponding code Cf is the binary
cyclic code C1,s of length (2m − 1) with defining set {1, s}. The weight divisibility
of the corresponding dual code can therefore be obtained by applying McEliece’s
theorem, as expressed in Corollary 2.4. This leads to the following characterization
of AB power functions.

Corollary 4.3. Let m = 2t+ 1. Assume that the power function f : x 7→ xs on
F2m satisfies λf 6= 2m−1. Then f is AB on F2m if and only if f is APN on F2m and

∀u, 1 ≤ u ≤ 2m − 1, w2(A(u)) ≤ t+ w2(u),(4.1)

where A(u) = us mod (2m − 1).
Note that λf = 2m−1 means that there exists a linear combination of the Boolean

components of f which is an affine function.
Condition (4.1) is obviously satisfied when w2(u) ≥ t+1. Moreover, if gcd(s, 2m−

1) = 1 (i.e., if x 7→ xs is a permutation), the condition also holds for all u such that
w2(u) = t. Using that

A(u2i mod (2m − 1)) = 2iA(u) mod (2m − 1),

we deduce that condition (4.1) must be checked only for one element in each cyclotomic
coset. Note that if u is the smallest element in its cyclotomic coset and w2(u) < t, we
have u ≤ 2m−2 − 1.

This result provides a fast algorithm for checking whether an APN power function

is AB and then for finding all AB power functions on F2m . There are roughly 2m−1

m

WEIGHT DIVISIBILITY OF CYCLIC CODES 117

cyclotomic representatives u such that w2(u) ≤ t, and each test requires one modular
multiplication on m-bit integers and two weight computations. Condition (4.1) can
then be checked with approximately 2m elementary operations and at no memory
cost.

4.2. A new characterization of some pairs of m-sequences with 3-valued
crosscorrelation. We now suppose that m is even, m = 2t, and we are interested
in the values of s such that the crosscorrelation function between an m-sequence of
length (2m− 1) and its decimation by s takes the following three values: −1, 2W − 1,
and −2W − 1. From Proposition 2.9, this means that the weight of every codeword
in C⊥1,s lies in {0, 2m−1, 2m−1 +W, 2m−1−W}. Proposition 3.3 then implies that W is
divisible by 2t. When W is a power of 2, we have W = 2t+e. The [2m − 1, 2m]-codes
whose weights lie in {0, 2m−1, 2m−1±2t+e} are then completely characterized by their
weight divisibility and by the number of codewords of weights 3 and 4 in their dual.

Theorem 4.4. Let m = 2t be an even integer and C be a [2m−1, 2m]-linear code
which does not contain the all-one vector 1 = (1, . . . , 1). Assume that the minimum
distance of the dual code C⊥ is at least 3. Let A = (A0, . . . , A2m−1) be the weight
enumerator of C and let e be an integer. The weight of every codeword in C lies in
{0, 2m−1, 2m−1 ± 2t+e} if and only if C is 2t+e-divisible and the number B3 (resp.,
B4) of codewords of weight 3 (resp., 4) in C⊥ satisfies

B3 =
(2m − 1)(22e+1 − 1)

3
,

B4 =
(2m − 1)(2m−2 − 1)(22e+1 − 1)

3
.

Proof. Applying Proposition 3.3 shows that this condition is sufficient. It is also
necessary since, for any w such that 2m−1 − 2t+e < w < 2m−1, both integers w and
2m−1 − w are not divisible by 2t+e. The condition on the divisibility of the weights
of C then implies that

Aw +A2m−w = 0 for all w such that 2m−1 − 2t+e < w < 2m−1.

For the given values of B3 and B4, we have

6(B3 +B4) = 2m−1(2m − 1)(22e+1 − 1).

It follows that the lower bound given in Theorem 3.1(ii) (applied with w1 = 2m−1 −
2t+e) is reached. The weight of every codeword in C then lies in {0, 2m−1, 2m−1±2t+e}
and there is at least a codeword in C having any of these weights since a code with
these parameters has at least three different nonzero weights [15, Thm. 4.1].

By applying McEliece’s theorem (Corollary 2.4), we derive a necessary and suf-
ficient condition to obtain a pair of m-sequences with crosscorrelation values in {−1,
−1 ± 2t+1+e}. Note that if e = 0, ω0 = maxτ |θu,v(τ)| equals 2t+1 − 1, which is the
smallest known value for ω0. In this case, the 3-valued crosscorrelation function is said
to be preferred and the corresponding (u, v) is called a preferred pair of m-sequences.

Corollary 4.5. Let m = 2t be an even integer and s a positive integer such that
gcd(s, 2m − 1) = 1 and s is not a power of 2. Let e be a positive integer and C1,s be
the binary cyclic code of length (2m− 1) with defining set {1, s}. The crosscorrelation
function between an m-sequence of length (2m−1) and its decimation by s takes exactly
3 values, −1, −1 + 2t+1+e, and −1− 2t+1+e if and only if the number B3 (resp., B4)

118 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

of codewords of weight 3 (resp., 4) in C1,s satisfies

B3 =
(2m − 1)(22e+1 − 1)

3
,

B4 =
(2m − 1)(2m−2 − 1)(22e+1 − 1)

3
,

and

∀u, 1 ≤ u ≤ 2m − 1, w2(A(u)) ≤ t− 1− e+ w2(u),

where A(u) = us mod (2m − 1).
In particular, the crosscorrelation function is preferred if and only if

B3 =
(2m − 1)

3
, B4 =

(2m − 1)(2m−2 − 1)

3
,

and

∀u, 1 ≤ u ≤ 2m − 1, w2(A(u)) ≤ t− 1 + w2(u).

5. Some general results on the weight divisibility of C⊥1,s. We now show
that the weight divisibility of the dual of the cyclic code C1,s is conditioned by the
2-weight of s. Most notably this implies that C⊥1,s has a low exact weight divisibility
only for particular values of s.

5.1. Upper and lower bounds on the weight divisibility of C⊥1,s. We

first give some general lower and upper bounds on the exact divisibility of C⊥1,s which
depend on the 2-weight of s. The 2-weight of s obviously gives an upper bound on the
weight divisibility of C⊥1,s (obtained for u = 1 in Corollary 2.4). Using this result, we
immediately recover the condition on the degree of AB functions given in [6, Thm. 1]
in the particular case of power functions.

Corollary 5.1. Let C1,s be the binary cyclic code of length (2m−1) with defining
set {1, s}. If C⊥1,s is 2`-divisible, then

` ≤ m− w2(s).

Most notably this implies the following:
• For odd m, if the power permutation f : x 7→ xs is AB on F2m , then

w2(s) ≤ m+ 1

2
;

• for even m, if the crosscorrelation function between an m-sequence of length
(2m−1) and its decimation by s takes the values −1, 2

m
2 +1+e−1,−2

m
2 +1+e−1,

then

w2(s) ≤ m

2
− e.

The 2-weight of s also provides a lower bound on the divisibility of C⊥1,s: the

cyclic code C⊥1,s of length (2m − 1) is a subcode of the punctured Reed–Muller code

of length (2m − 1) and of order w2(s), which is exactly 2`-divisible with ` = b m−1
w2(s)c.

When gcd(2m − 1, s) = 1, this bound can be slightly improved.

WEIGHT DIVISIBILITY OF CYCLIC CODES 119

Corollary 5.2. Let m and s be two positive integers such that s ≤ 2m − 1 and
gcd(2m − 1, s) = 1. Let C1,s be the binary cyclic code of length (2m − 1) with defining
set {1, s}. Then C⊥1,s is 2`-divisible with ` = d m−1

w2(s)e.
Proof. We use McEliece’s theorem as expressed in Corollary 2.3. Let u and v be

two integers in {0, . . . , 2m − 1} such that us + v ≡ 0 mod (2m − 1). Here we prove
that

w2(u) + w2(v) ≥
⌈
m− 1

w2(s)

⌉
+ 1.(5.1)

Since s ≤ 2m − 2, we have that

us+ v = K(2m − 1), where K lies in {1, . . . , 2m − 1}.
By writing

K(2m − 1) = (K − 1)2m + [(2m − 1)− (K − 1)] ,

we obtain that

w2(K(2m − 1)) = w2(K − 1) +m− w2(K − 1) = m

since 0 ≤ K − 1 ≤ 2m − 1. It follows that w2(us+ v) = m. We now write that

w2(us+ v) ≤ w2(us) + w2(v) ≤ w2(u)w2(s) + w2(v)

and we get

w2(u)w2(s) + w2(v) ≥ m.
We therefore obtain

w2(u) + w2(v) ≥ m− (w2(s)− 1)w2(u).(5.2)

Case 1. w2(u) ≤ d m−1
w2(s)e − 1.

Let m− 1 = qw2(s) + r with 0 ≤ r < w2(s). We have⌈
m− 1

w2(s)

⌉
=

{
q if r = 0;
q + 1 otherwise.

When r = 0, inequality (5.2) gives

w2(u) + w2(v) ≥ m− (w2(s)− 1)(q − 1)

≥ m− w2(s)q + q + w2(s)− 1

≥ 1 + q + w2(s)− 1

≥ q + 1

≥
⌈
m− 1

w2(s)

⌉
+ 1.

When r > 0, inequality (5.2) gives

w2(u) + w2(v) ≥ m− (w2(s)− 1)q

≥ 1 + r + q

≥ q + 2

≥
⌈
m− 1

w2(s)

⌉
+ 1.

120 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

Case 2. w2(u) = d m−1
w2(s)e.

Since gcd(2m − 1, s) = 1, there is no integer u < 2m − 1 satisfying us ≡
0 mod (2m − 1). This implies that w2(v) ≥ 1, and therefore

w2(u) + w2(v) ≥
⌈
m− 1

w2(s)

⌉
+ 1.

Case 3. w2(u) ≥ d m−1
w2(s)e+ 1.

In this case, inequality (5.1) obviously holds.

5.2. Cyclic codes C⊥1,s with a small weight divisibility. We now focus on

the values of s for which the exact weight divisibility of C⊥1,s is small, i.e., for which

C⊥1,s is exactly 2`-divisible with ` ∈ {1, 2, 3}.
If gcd(s, 2m−1) = 1, the only values of s such that C⊥1,s is exactly 2-divisible satisfy

w2(s) = m−1 [15, Thm. 4.7]; they all lie in the cyclotomic coset defined by (2m−1−1).
In this case C⊥1,s is the dual of the Melas code; its weights are all even integers w such

that |w − 2m−1
2 | ≤ 2

m
2 [20]. The following proposition similarly exhibits all values of

s such that C⊥1,s is exactly 4-divisible.
Proposition 5.3. Let m and s be two positive integers such that gcd(s, 2m−1) =

1. Let C1,s be the binary cyclic code of length (2m − 1) with defining set {1, s}.
(i) C⊥1,s is exactly 2-divisible if and only if w2(s) = m− 1.

(ii) C⊥1,s is exactly 4-divisible if and only if either w2(s) = m − 2 or w2(s−1) =
m − 2, where s−1 is the only integer in {0, . . . , 2m − 1} such that s−1s ≡
1 mod (2m − 1).

Proof.
(i) This was proved by Helleseth [15].
(ii) Suppose that w2(s) < m − 1. In this case, C⊥1,s is at least 4-divisible. Ac-

cording to McEliece’s theorem (Corollary 2.3) C⊥1,s is exactly 4-divisible if
and only if there exists a pair of integers (u, v) in {0, . . . , 2m − 1} such that
us + v ≡ 0 mod (2m − 1) and w2(u) + w2(v) = 3. Since gcd(s, 2m − 1) = 1,
we have w2(v) ≥ 1. It follows that (w2(u), w2(v)) ∈ {(1, 2), (2, 1)}.

If w2(u) = 1 and w2(v) = 2, such a pair exists if and only if w2(s) =
m − 2; s then lies in the same cyclotomic coset as 2m−1 − 2i − 1 for some
i ∈ [0, . . . , 2m − 1]. If w2(u) = 2 and w2(v) = 1, such a pair exists if and
only if there exists an element s′ ∈ Cl(s) and two distinct integers i1 and i2
in [0, . . . ,m− 1] such that

−(2i1 + 2i2)s′ ≡ 1 mod (2m − 1)

⇐⇒ (2m − 2i1 − 2i2 − 1)s′ ≡ 1 mod (2m − 1).

It follows that s′ is the inverse modulo (2m−1) of an element whose 2-weight
equals m− 2.

We now prove that if gcd(2m−1, s) = 1 and if C⊥1,s is exactly 8-divisible, s should
satisfy the following necessary condition.

Proposition 5.4. Let m and s be two positive integers such that gcd(2m−1, s) =
1. Let C1,s be the binary cyclic code of length (2m− 1) with defining set {1, s}. If C⊥1,s
is exactly 8-divisible, then s satisfies one of the following conditions:

(i) w2(s−1) = m− 3, where s−1 is the only integer in {0, . . . , 2m − 1} such that
s−1s ≡ 1 mod (2m − 1);

WEIGHT DIVISIBILITY OF CYCLIC CODES 121

(ii) dm−2
2 e ≤ w2(s) ≤ m− 3.

Proof. Proposition 5.3 implies that C⊥1,s is 8-divisible if and only if w2(s) ≤ m− 3
and w2(s−1) ≤ m− 3. Let us assume that this condition is satisfied. We now use the
same technique as in the previous proof: C⊥1,s is exactly 8-divisible if and only if there
exists a pair of integers (u, v) ∈ {0, . . . , 2m − 1} such that us + v ≡ 0 mod (2m − 1)
and w2(u) + w2(v) = 4. Since gcd(s, 2m − 1) = 1, we have that (w2(u), w2(v)) ∈
{(1, 3), (2, 2), (3, 1)}.

• If (w2(u), w2(v)) = (1, 3), then w2(s) = m− 3.
• If (w2(u), w2(v)) = (3, 1), then w2(s−1) = m− 3 (the proof here is the same

as the proof of Proposition 5.3(ii)).
• If (w2(u), w2(v)) = (2, 2), we use inequality (5.2) proved in Corollary 5.2:

w2(u)w2(s) + w2(v) ≥ m.

It follows that

w2(s) ≥ m− 2

2
.

Note that Corollary 5.1 and Proposition 5.3 imply that C⊥1,s is exactly 8-divisible
when w2(s) = m− 3 or w2(s−1) = m− 3.

Open problem 5.5. For any `, 1 ≤ ` ≤ bm−1
2 c, does there exist an s such that

w2(s) = m− ` and the cyclic code C⊥1,s of length (2m − 1) is exactly 2`-divisible?

6. Weight divisibility of the code C⊥1,s of length (22t+1 − 1) with s =

2t + 2i− 1. In his 1968 paper [14], Golomb mentioned a conjecture of Welch stating
that for m = 2t + 1, the crosscorrelation function between a binary m-sequence of
length (2m − 1) and its decimation by s = 2t + 3 takes on precisely the three values
−1,−1±2t+1. Niho [26] stated a similar conjecture for s = 2t+ 2

t
2 −1 when t is even

and s = 2t + 2
3t+1

2 − 1 when t is odd. These conjectures equivalently assert that, for
these values of s, the power function x 7→ xs is AB over F2m . Note that all of these
exponents s can be written as 2t + 2i − 1 for some i. Since both Welch’s and Niho’s
functions are APN [11, 10], Corollary 4.3 leads to a new formulation of Welch’s and
Niho’s conjectures.

Conjecture 6.1. Let m = 2t+ 1 be an odd integer. For all u such that 1 ≤ u ≤
2m − 1, we have

w2((2t + 2i − 1)u mod (2m − 1)) ≤ t+ w2(u)(6.1)

for the following values of i: i = 2, i = t/2 for even t, and i = (3t+ 1)/2 for odd t.
Previously, we proved that condition (6.1) is satisfied in the Welch case (i =

2) [5, 4]. More recently, Hollmann and Xiang used this formulation for proving Niho’s
conjecture [16]. Here we focus on all other values of s which can be expressed as s =
2t+2i−1 for some i. We prove that for almost all of these values C⊥1,s actually contains
a codeword whose weight is not divisible by 2t. This result is derived from both of the
following lemmas which give an upper bound on the exact weight divisibility of C⊥1,s.

Lemma 6.2. Let m = 2t+1 be an odd integer and s = 2t+2i−1 with 2 < i < t−1.
Let C1,s be the binary cyclic code of length (2m − 1) with defining set {1, s}. If 2`

denotes the exact divisibility of C⊥1,s, we have
• if t ≡ 0 mod i and i 6= t/2, then ` ≤ t− 1;
• if t ≡ 1 mod i, then ` ≤ t− i+ 2;

122 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

• if t ≡ r mod i with 1 < r < i, then ` ≤ t− i+ r.
Proof. Let t = iq+r with r < i and A(u) = (2t+2i−1)u mod 2m − 1. McEliece’s

theorem (Corollary 2.4) implies that C⊥1,s is at most 2`-divisible if there exists an
integer u ∈ {0, . . . , 2m − 1} such that

w2(A(u)) = w2(u) + 2t− `.
Here we exhibit an integer u satisfying this condition for the announced values of `.

• We first consider the case r 6= 0. Let u = 2t + 2r−1
∑q
k=1 2ik + 1. Then

w2(u) = q + 2 and we have

A(u) = 22t + 2t+r−1

q∑
k=1

2ik + 2t + 2t+i − 2t + 2r−1
(

2(q+1)i − 2i
)

+ 2i − 1

= 22t + 2t+r−1

q∑
k=1

2ik + 2t+i + (2t+i−1 − 2i+r−1) + (2i − 1).(6.2)

If r > 1, we have for all k such that 1 ≤ k ≤ q,
t+ i < t+ r − 1 + ik ≤ 2t− 1.

We then deduce that all terms in (6.2) are distinct. It follows that

w2(A(u)) = 1 + q + 1 + (t− r) + i

= w2(u) + t− r + i.

If r = 1, we obtain

A(u) = 22t + 2t
q∑

k=2

2ik + 2t+i+1 + 2t+i−1 − 1.

In this case

w2(A(u)) = 1 + (q − 1) + 1 + (t+ i− 1)

= w2(u) + t+ i− 2.

• Suppose now that r = 0 and i 6= t/2. Since i < t, we have q > 2. Let

u = 2t+i + 2t+2 + 2t + 2i+2
∑q−2
k=0 2ik + 1. Using that i > 2, we deduce that,

for all k ≤ q − 2,

i+ 2 + ik ≤ i(q − 1) + 2

≤ t− i+ 2 < t.

It follows that w2(u) = q + 3. Let us now expand the corresponding A(u):

A(u) ≡ 22t+i + 22t+2 + 22t + 2t+i+2

q−2∑
k=0

2ik + 2t + 2t+2i − 2t+i + 2t+i+2

−2t+2 + 2t+i − 2t + 2i+2
(

2(q−1)i − 1
)

+ 2i − 1

= 2i−1 + 2 + 22t + 2t+i+2

q−2∑
k=1

2ik + 2t+2i + 2t+i+3 + 2i+2
(

2(q−1)i − 1
)

+2i − 1

= 22t +

q−3∑
k=0

2t+2+(k+2)i + 2t+2i + 2t+i+3 − 2i+2 + 2i + 2i−1 + 1.(6.3)

WEIGHT DIVISIBILITY OF CYCLIC CODES 123

If i > 2, all values of k such that 0 ≤ k ≤ q − 3 satisfy

t+ 2i < t+ 2 + (k + 2)i < 2t.

We then deduce that, if q > 2, all the terms in (6.3) are distinct except if
i = 3. It follows that, for any i > 3,

w2(A(u)) = 1 + (q − 2) + 1 + (t+ 1) + 3

= w2(u) + t+ 1.

For i = 3, we have

A(u) = 22t +

q−3∑
k=0

2t+3k+8 + 2t+7 − 25 + 23 + 22 + 1.

In this case

w2(A(u)) = 1 + (q − 2) + (t+ 2) + 3

= t+ q + 4

= w(u) + t+ 1.

Lemma 6.3. Let m = 2t+ 1 be an odd integer s = 2t + 2i− 1 with t+ 1 < i < 2t.
Let C1,s be the binary cyclic code of length (2m − 1) with defining set {1, s}. If 2`

denotes the exact divisibility of C⊥1,s, we have

• if t+ 1 < i < 3t+1
2 , then ` ≤ m− i;

• if 3t+1
2 < i < 2t− 1, then ` ≤ 2(m− i)− 1;

• if i = 2t− 1, then ` ≤ 3.
Proof. Let A(u) = (2t + 2i − 1)u mod (2m − 1). Exactly as in the proof of the

previous lemma, we exhibit an integer u ∈ {0, . . . , 2m − 1} such that

w2(A(u)) = w2(u) + 2t− `

for the announced values of `. We write i = t+ j, where 1 < j < t.
• We first consider the case t + 1 < i < 3t+1

2 . Let u = 2t + 2j−1 + 1. Then
w2(u) = 3 and

A(u) ≡ 22t + 2t+j−1 + 2t + 22t+j + 2t+2j−1 + 2t+j − 2t − 2j−1 − 1

= 22t + 2t+2j−1 + 2t+j + 2t+j−1 − 1.(6.4)

Since j < t+1
2 , we have that 2t > t + 2j − 1. All the terms in (6.4) are

therefore distinct. We deduce

w2(A(u)) = 3 + (t+ j − 1)

= w2(u) + i− 1.

• We now focus on the case 3t+1
2 < i ≤ 2t − 1. Let u = 2t + 2j + 1. Then

w2(u) = 3 and

A(u) = 22t + 2j−1 − 2t + 2t+j + 22j−t−1 − 2j + 2t + 2t+j − 1

= 22t + 2t+j+1 − 2j−1 + 22j−t−1 − 1.(6.5)

124 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

Since t+1
2 < j < t, we have 0 < 2j − t − 1 < j − 1. If j 6= t − 1, all the

exponents in (6.5) are distinct. It follows that

w2(A(u)) = 1 + (t+ 2) + (2j − t− 1)

= w2(u) + 2(i− t)− 1.

If j = t− 1, we have

A(u) = 22t+1 − 2j−1 + 22j−t−1 − 1.

In this case

w2(A(u)) = (2t+ 1)− (t− j)
= w2(u) + 2t− 3.

For i = 2t− 1, we actually obtain the exact divisibility of C⊥1,s.
Proposition 6.4. Let m > 3 be an odd integer. The dual of the binary cyclic

code of length (2m− 1) with defining set {1, 2m−2 + 2
m−1

2 − 1} is exactly 23-divisible.

Proof. Let s = 2m−2 +2
m−1

2 −1. The previous lemma implies that C⊥1,s is at most
23-divisible. Since

(2
m+1

2 + 1)s ≡ 2
m−3

2 (2
m−1

2 − 1) mod (2m − 1),

we obtain that gcd(2m−1, s) divides both (2m−1) and (2
m−1

2 −1) which are coprime.
It follows that gcd(2m − 1, s) = 1.

From Proposition 5.3 we know that the divisibility of C⊥1,s is less than 23 if either
w2(s) ≥ m − 2 or w2(s−1) ≥ m − 2. None of these conditions is satisfied here:

w2(s) = m+1
2 and s−1 lies in the same cyclotomic coset as 2m−2 − 2

m−1
2 − 1 since

(2m−2 − 2
m−1

2 − 1)(2m−2 + 2
m−1

2 − 1) ≡ (2m−2 − 1)2 − 2m−1 mod (2m − 1)

≡ 2m−4 mod (2m − 1).

It follows that w2(s−1) = m− 3 and therefore that C⊥1,s is exactly 8-divisible.

From Lemmas 6.2 and 6.3 we deduce that C⊥1,s is not 2t-divisible for most values

of s = 2t + 2i − 1.
Theorem 6.5. Let m = 2t + 1 be an odd integer and let s = 2t + 2i − 1 with

i ∈ {1, . . . , 2t}. Let C1,s be the binary cyclic code of length (2m − 1) with defining set
{1, s}. The only values of i such that C⊥1,s is 2t-divisible are 1, 2, t2 , t, t + 1, 3t+1

2 , 2t,
and maybe t− 1.

Proof. If i 6∈ {1, 2, t2 , t − 1, t, t + 1, 3t+1
2 , 2t}, C⊥1,s is not 2t-divisible since the

upper bounds given in both previous lemmas are strictly less than t. Moreover, C⊥1,s
is 2t-divisible for i ∈ {1, 2, t2 , t, t+ 1, 3t+1

2 , 2t}:
• i = 1 corresponds to a quadratic value of s.
• i = 2 corresponds to the Welch’s function.
• i = t corresponds to the inverse of a quadratic exponent since (2t+1− 1)(2t +

1) ≡ 2t mod 2m − 1.
• i = t+ 1 corresponds to a Kasami’s function since 2t(2t+1 + 2t − 1) ≡ 22t −

2t + 1 mod 2m − 1.
• i = 2t gives an s which is in the same 2-cyclotomic coset as 2t+1 − 1.
• i = t

2 or i = 3t+1
2 corresponds to Niho’s function.

WEIGHT DIVISIBILITY OF CYCLIC CODES 125

The only unresolved case is then i = t − 1. In accordance with our simulation
results we formulate the following conjecture.

Conjecture 6.6. Let m = 2t + 1 be an odd integer, m > 3. The dual of the
binary cyclic code of length (2m − 1) with defining set {1, 2t + 2t−1 − 1} is exactly
2t-divisible.

Note that an equivalent assertion is that the binary cyclic code of length (2m−1)
with defining set {1, 2t+2 + 3} is exactly 2t-divisible, since 2t+2 + 3 lies in the same
cyclotomic coset as the inverse of 2t+2t−1−1. We checked this conjecture by computer
for m ≤ 39. Note that it is obviously satisfied for m = 5 and m = 7 since the function
x 7→ xs for s = 2t + 2t−1 − 1 corresponds, resp., to a quadratic function and to the
Welch function. On the contrary it is known that the corresponding function is not
APN when 3 divides m since C1,s has minimum distance 3 in this case.

Proposition 6.7 (see [8]). Let m = 2t + 1 be an odd integer, m > 3. The
binary cyclic code of length (2m− 1) with defining set {1, 2t + 2t−1− 1} has minimum
distance 3 if and only if m ≡ 0 mod 3. In this case, the number of codewords of
weight 3 is

B3 = 2m − 1.

Proof. This comes from [8, Thm. 5]. This cyclic code has minimum distance 3 if
and only if

gcd(m, t− 1) = 1.

Since m = 2t − 1, it follows that gcd(m, t − 1) = 3 when m ≡ 0 mod 3 and that
gcd(m, t− 1) = 1 otherwise.

Table 6.1 gives the weight distributions of C⊥1,s, where s = 2t + 2t−1 − 1 for
m ∈ {9, 11, 13} and the corresponding number B3 (resp., B4) of codewords of weight 3
(resp., 4) in C1,s.

Table 6.1
Weight distribution of some codes C⊥1,s with s = 2t + 2t−1 − 1.

m s B3 B4 w Aw

9 23 511 9709 224 4599
240 55188
256 146657
272 55188
288 511

11 47 0 180136 960 45034
992 900680
1024 2368379
1056 835176
1088 45034

13 95 0 2981524 3968 745381
4032 14055756
4096 38030813
4160 13531532
4224 745381

7. Weight divisibility of C⊥1,s when m is not a prime. We now focus on
the binary cyclic codes C1,s of length (2m − 1) when m is not a prime. We show
that in this case the weight divisibility of C⊥1,s is closely related to the exact weight

divisibility of the cyclic code C⊥1,s0 of length (2g − 1) where g is a divisor of m and
s0 = s mod (2g − 1).

126 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

7.1. A general result. We first derive a lower and an upper bound on the
exact weight divisibility of C⊥1,s from the exact weight divisibility of the code C⊥1,s0 of
length (2g−1). These bounds allow us to give a necessary condition on the decimations
which provide preferred pairs of m-sequences of length (2m − 1) when m is not a
prime. This general condition generalizes the Sarwate–Pursley conjecture [31, 25] on
the nonexistence of preferred pairs of m-sequences of length (2m−1) when 4 divides m.

Theorem 7.1. Let g be a divisor of m. Let C1,s be the binary cyclic code of
length (2m−1) with defining set {1, s} and C0 the binary cyclic code of length (2g−1)
with defining set {1, s0}, where s0 = s mod (2g − 1). Assume that C⊥0 is exactly 2`-
divisible. Then we have the following:

(i) C⊥1,s is 2`-divisible. In particular, if there exists i such that s ≡ 2i mod

(2g − 1), then C⊥1,s is 2g−1-divisible.

(ii) C⊥1,s is not 2
m
g (`+1)-divisible.

Proof. Let s = s0 + a(2g − 1). Here we use McEliece’s theorem as expressed in
Corollary 2.3.

(i) Let u and v be two integers in {0, . . . , 2m − 1} such that us+ v = k(2m − 1).
Then we have

us+ v = au(2g − 1) + (us0 + v) = k(2m − 1).

This implies that

us0 + v ≡ 0 mod (2g − 1).

Let u0 = u mod (2g − 1) and v0 = v mod (2g − 1). For any integer x, we have
w2(x) ≥ w2(x mod (2g − 1)): by writing x = x22g + x1 with 0 ≤ x1 < 2g, we
obtain that x mod (2g − 1) = x1 + x2. It follows that

w2(x mod (2g − 1)) = w2(x1 + x2)

≤ w2(x1) + w2(x2) = w2(x).

This implies that

w2(u) + w2(v) ≥ w2(u0) + w2(v0) ≥ `+ 1

since C⊥0 is 2`-divisible.
(ii) If C⊥0 is exactly 2`-divisible, there exists a pair of integers (u0, v0) with u0 ≤

2g − 1 and v0 ≤ 2g − 1 such that

u0s0 + v0 ≡ 0 mod 2g − 1 and w2(u0) + w2(v0) = `+ 1.

Let us now consider both integers u and v defined by

u = u0
2m − 1

2g − 1
and v = v0

2m − 1

2g − 1
.

For s = s0 + a(2g − 1), the pair (u, v) satisfies

us+ v = ua(2g − 1) + us0 + v

= u0a(2m − 1) +
2m − 1

2g − 1
(u0s0 + v0)

≡ 0 mod (2m − 1).

WEIGHT DIVISIBILITY OF CYCLIC CODES 127

Since 2m−1
2g−1 =

∑m/g−1
i=0 2ig and both u0 and v0 are less than 2g − 1, we have

w2(u) + w2(v) =
m

g
(w2(u0) + w2(v0)) =

m

g
(`+ 1).

We then deduce that C⊥1,s is not 2
m
g (`+1)-divisible.

Corollary 7.2. Let g be a divisor of m. Let C1,s be the binary cyclic code of
length (2m−1) with defining set {1, s} and C0 the binary cyclic code of length (2g−1)
with defining set {1, s0}, where s0 = s mod (2g − 1). If C⊥1,s is 2b

m
2 c-divisible, then C⊥0

is 2b
g
2 c-divisible.

Proof. We denote by 2` the exact divisibility of C⊥0 . Following Theorem 7.1(ii),

we have that C⊥1,s is not 2
m
g (`+1)-divisible. If C⊥1,s is 2b

m
2 c-divisible, it therefore follows

that ⌊m
2

⌋
≤ m

g
(`+ 1)− 1.

For odd m, this gives

`+ 1 ≥ g(m+ 1)

2m
>
g − 1

2

since (m+ 1)g > m(g − 1).
For even m, we similarly get

`+ 1 ≥ g(m+ 2)

2m
>
g

2
≥
⌊g

2

⌋
.

This implies in both cases that ` ≥ b g2c; C⊥0 is then 2b
g
2 c-divisible.

We now deduce a necessary condition on the values of the decimations which
provide preferred pairs of m-sequences (or equivalently on the exponents which cor-
respond to AB power permutations when m is odd).

Proposition 7.3. Let m and s be two positive integers such that gcd(2m−1, s) =
1 and s is not a power of 2. The pair formed by an m-sequence of length (2m − 1)
and its decimation by s is not preferred if there exists a divisor g of m with g > 2
satisfying one of the following conditions:

1. ∃i, 0 ≤ i < g, s ≡ 2i mod (2g − 1);
2. s0 = s mod (2g − 1) 6= 2i and the dual of the cyclic code of length (2g − 1)

with defining set {1, s0} is not 2b
g
2 c-divisible.

Proof. Theorems 4.1 and 4.4 provide a necessary condition for obtaining a pre-
ferred crosscorrelation: C⊥1,s has to be 2b

m
2 c-divisible and the number B3 of codewords

of weight 3 in C1,s should be

B3 =
(2m − 1)

3
if m is even

= 0 if m is odd.

When s ≡ 2i mod (2g − 1), it is known [8] that the cyclic code C1,s has minimum
distance 3 and that the number B3 of codewords of weight 3 satisfies

B3 ≥ (2m − 1)(2g−1 − 1)

3
.

This implies that the crosscorrelation is not preferred if g > 2.

128 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

If s0 = s mod (2g − 1) is such that the dual of the cyclic code of length (2g − 1)
with defining set {1, s0} is not 2b

g
2 c-divisible, C⊥1,s is not 2b

m
2 c-divisible according to

Corollary 7.2.
This proposition is a generalization of the following result conjectured by Sarwate

and Pursley [31] and recently proved in [25].
Corollary 7.4 (see [31, 25]). There is no pair of preferred m-sequences of length

(2m − 1) when 4 divides m.
Proof. We consider the pair formed by an m-sequence of length (2m − 1) and

its decimation by s. Let s0 = s mod 15. Since 4 divides m, we should have s0 ∈
{1, 2, 4, 8} ∪ {7, 11, 13, 14}; otherwise s and 2m − 1 are not coprime. The previous
proposition then applies with g = 4 for any such s: condition 1 is satisfied when
s0 ∈ {1, 2, 4, 8} and condition 2 holds when s0 ∈ {7, 11, 13, 14} since the dual of the
cyclic code of length 15 with defining set {1, 7} is not 4-divisible.

7.2. Exact weight divisibility of the code C⊥1,s of length (22t − 1) with

s ≡ 2i mod (2t − 1). When m = 2t and s ≡ 2i mod (2t − 1), all the weights of C⊥1,s
are divisible by 2t−1. This particular case of Theorem 7.1(i) was already treated
in [26] and in [12, Lemma 1]. We now prove that this bound actually corresponds to
the exact divisibility of C⊥1,s.

Theorem 7.5. Let m = 2t be an even integer and let s be an integer such that

s ≡ 2i mod (2t − 1) with 0 ≤ i < t

and s is not a power of 2. Let C1,s be the binary cyclic code of length (2m − 1) with
defining set {1, s}. Then C⊥1,s is exactly 2t−1-divisible.

Proof. Since Theorem 7.1(i) implies that the weights of C⊥1,s are divisible by 2t−1, it
is sufficient to find a pair (u, v) such that us+v ≡ 0 mod (2m − 1) and w2(u)+w2(v) =
t. By cyclotomic equivalence, we have only to consider the values of s such that

s = a(2t − 1) + 2t−1,

where a ≤ 2t and a 6∈ {0, 2t−1} (otherwise s is a power of 2).
• If a < 2t−1, we write a = 2ja′ with a′ odd. Then s lies in the same 2-

cyclotomic coset as s′ = a′(2t−1)+2t−j−1. Let us choose u = 2t+1−2t−j−1.
Then we have

us′ ≡ a′(22t − 1) + 2t−j−1
[−a′(2t − 1) + 2t + 1− 2t−j−1

]
mod (22t − 1)

≡ 2t−j−1
[
2t(1− a′) + (a′ + 1− 2t−j−1)

]
mod (22t − 1).

Then us′ + v ≡ 0 mod 2m − 1 implies that

v ≡ 2t−j−1
[
2t(a′ − 1) + (2t−j−1 − 1− a′)] mod (2m − 1).

Therefore, we obtain

w2(v) ≤ w2

(
2t(a′ − 1) + (2t−j−1 − 1− a′))

≤ w2(a′ − 1) + w2(2t−j−1 − 1− a′)
≤ w2(a′ − 1) + t− j − 1− w2(a′)
≤ t− j − 2

since a′ ≤ 2t−j−1 − 1 and a′ is odd. Using that w2(u) = j + 2, we finally get

w2(u) + w2(v) ≤ t.

WEIGHT DIVISIBILITY OF CYCLIC CODES 129

• If 2t−1 < a ≤ 2t, we choose u = 1. By writing

s = (a− 1)2t + (2t − 1)− (a− 1− 2t−1),

we obtain that

w2(s) = w2(a− 1) + t− w2(a− 1− 2t−1).

Since 2t−1 ≤ a−1 ≤ 2t−1, we clearly have that w2(a−1−2t−1) = w2(a−1)−1.
It follows that

w2(s) = w2(a− 1) + t− (w2(a− 1)− 1) = t+ 1.

For v = 2m − 1− s, we then have w2(u) + w2(v) = t.
Most values of s for which the weight distribution of C⊥1,s is completely determined

satisfy s ≡ 2i mod (2t − 1). Theorem 7.5 most notably covers the following well-
known cases:

(i) s = 2t + 1 since s = (2t − 1) + 2. In this case the weights of C⊥1,s take the
following values: 2m−1 − 2t−1, 2m−1, 2m−1 + 2t−1 [19].

(ii) s = 2t+3 since s = (2t−1)+4. The weights of C⊥1,s take the following values:
2m−1 − 2t − 2t−1, 2m−1 − 2t, 2m−1 + 2t−1, 2m−1, 2m−1 − 2t−1 [15, Thm. 4.8].

(iii) s =
∑t
i=0 2ik, where 0 < k < t and gcd(m, k) = 1. Since k is odd, we have

s =

t∑
i=0

2ik ≡ 2(t+1)k − 1

2k − 1
mod (2m − 1)

≡ 2t+k − 1

2k − 1
mod (2m − 1).

It follows that

s ≡ 2kd(2t − 1) + 1 mod (2m − 1),

where d satisfies d(2k − 1) ≡ 1 mod (2m − 1). The weights of C⊥1,s take the
following values: 2m−1 − 2t, 2m−1 − 2t−1, 2m−1, 2m−1 + 2t−1 [12, Prop. 1].

(iv) s = (2t + 1)(2
t
2 − 1) + 2 when t is even. In this case, s = (2

t
2 − 1)(2t − 1) +

2
t
2 +1. The weights of C⊥1,s take the following values: 2m−1 − 2

3t
2 −1, 2m−1 −

2t−1, 2m−1, 2m−1 + 2t−1 [26].

(v) s = (2m−1)
3 + 2i with i ∈ {0, 1} when t is odd. In this case, 3 divides (2t + 1).

It follows that

s =
(2t + 1)

3
(2t − 1) + 2i.

The weights of C⊥1,s take the following values [15, Thm. 4.11]:

• 2m−1− 2t−1(2t+1)
3 , 2m−1− 2t(2t−1−1)

3 , 2m−1−2t, 2m−1−2t−1, 2m−1, 2m−1+

2t−1, when 2m−i(2m−1)
3 ≡ 0 mod 3.

• 2m−1− 2t+1(2t−2+1)
3 , 2m−1− 2t(2t−1−1)

3 , 2m−1−2t, 2m−1−2t−1, 2m−1, 2m−1+

2t−1, when 2m−i(2m−1)
3 ≡ 1 mod 3.

Tables 7.1, 7.2, and 7.3 give the complete weight distribution of all codes C⊥1,s of

length (2m − 1) for m ∈ {6, 8, 10} when s satisfies s ≡ 2i mod (2
m
2 − 1).

130 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

Table 7.1
Weight distribution of C⊥1,s with s ≡ 2i mod (2

m
2 − 1) for m = 6.

Aw
s 20 24 28 32 36 B3 B4 ref.

9 252 63 196 63 945 (i)
11, 23 126 252 756 1827 1134 84 252 (ii),(v)

15 588 504 1827 1176 63 63 (iii)

Table 7.2
Weight distribution of C⊥1,s with s ≡ 2i mod (2

m
2 − 1) for m = 8.

Aw
s 96 104 112 120 128 136 B3 B4 ref.

17 2040 255 1800 595 37485 (i)
19, 47 2040 2040 16320 22695 22440 595 3825 (ii)
31, 91 10200 4080 30855 20400 595 1785 (iii)

53 1020 24480 15555 24480 595 6885 (iv)
23, 61 510 5100 14280 23205 22440 595 4335

Table 7.3
Weight distribution of C⊥1,s with s ≡ 2i mod (2

m
2 − 1) for m = 10.

Aw
s 320 336 352 448 464 480 496 512 528

33 16368 1023 15376
35 40920 16368 245520 377487 368280

63, 219 169136 32736 508431 338272
171 2046 1023 41261 225060 471603 307582
343 1023 2046 40920 225060 472626 306900

39, 159 5115 10230 77066 196416 390786 368962
47, 109,
125, 221 5115 10230 87978 163680 423522 358050
101, 157 30690 57288 184140 418407 358050

187 93 20460 82863 163680 422499 358980

s B3 B4 Ref.

33 5115 1304325 (i)
35 5456 81840 (ii)

63, 219 5115 35805 (iii)
171 20460 1616340 (iv)
343 20801 1677720 (iv)

39, 159 5115 71610
47, 109,
125, 221 5456 76725
101, 157 5456 71610

187 5456 92070

Open problem 7.6. Let m = 2t be an even integer and let s be an integer such
that

s ≡ 2i mod (2t − 1) with 0 ≤ i < t.

Let C1,s be the binary cyclic code of length (2m − 1) with defining set {1, s}. Let
A = (A0, . . . , A2m−1) denote the weight enumerator of C⊥1,s. Find the largest integer w0

WEIGHT DIVISIBILITY OF CYCLIC CODES 131

such that

Aw = A2m−w = 0 for all w such that 0 < w < w0.

7.3. 2
m
2 -divisible cyclic codes of length (2m − 1) when m is a multiple

of 4. By combining Theorem 7.5 and Corollary 7.2 we are now able to exhibit a neces-
sary condition on s under which the cyclic code C⊥1,s of length (2m−1) is 2

m
2 -divisible.

This condition depends on the value of the highest power of 2 which divides m.
Proposition 7.7. Let m = 2am′ with m′ odd and a ≥ 2. Let s be a positive

integer such that gcd(2m−1, s) = 1 and let C1,s be the binary cyclic code of length (2m−
1) with defining set {1, s}. If C⊥1,s is 2

m
2 -divisible, then

s ≡ 2i mod (22a − 1) for some i

and the number B3 of codewords of weight 3 in C1,s satisfies

B3 ≥ (2m − 1)(22a−1 − 1)

3
.

Proof. Assume that C⊥1,s is 2
m
2 -divisible. For j ∈ {2, . . . , a}, we set sj = s mod

(22j − 1) and we denote by Cj the binary cyclic code of length (22j − 1) with defining

set {1, sj}. From Corollary 7.2 we have that C⊥a is 22a−1

-divisible.

We now prove by induction on j that if C⊥j is 22j−1

-divisible, then sj is a power
of 2.

• If j = 2, we have that s2 6∈ {3, 6, 9, 12} ∪ {5, 10} since gcd(s, 2m − 1) = 1
implies that gcd(sj−1, 2

4 − 1) = 1. Moreover, if s2 ∈ {7, 11, 13, 14}, C2 is not
4-divisible. It follows that s2 ∈ {1, 2, 4, 8}.

• Induction step: Let us suppose that C⊥j is 22j−1

-divisible. According to Corol-

lary 7.2 we have that C⊥j−1 is 22j−2

-divisible. By an induction hypothesis sj−1

is a power of 2, i.e.,

sj ≡ 2i mod (22j−1 − 1) for some i.

Now Theorem 7.5 implies that, in this case, Cj is exactly 22j−1−1-divisible if
sj is not a power of 2.

We now deduce that if C⊥a is 22a−1

-divisible, then

s ≡ 2i mod (22a − 1) for some i.

When m is a power of 2, Proposition 7.7 implies the following corollary.
Corollary 7.8. Let C1,s be the binary cyclic code of length (2m−1) with defining

set {1, s} (s is not a power of 2). If m is a power of 2 and if gcd(2m− 1, s) = 1, then
C⊥1,s is not 2

m
2 -divisible.

By using Corollary 4.5, we see that this result actually corresponds to the follow-
ing weak version of the Helleseth conjecture [15] which was proved by Calderbank,
McGuire, and Poonen [3].

Corollary 7.9 (see [15, 3]). If m is a power of 2, then there are no pairs
of binary m-sequences of length (2m − 1) with crosscorrelation values −1, −1 + 2D,
−1− 2D.

132 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

When 4 divides m (and m is not a power of 2) Proposition 7.7 allows us to find
all values of s for which C⊥1,s is 2

m
2 -divisible very fast, even for large values of m. We

search for all such values for m ∈ {12, 10, 24} and our numerical results lead us to
formulate the following conjecture.

Conjecture 7.10. Let m = 2am′ with a ≥ 2, m′ odd, and m′ > 1. Let s be a
positive integer such that gcd(s, 2m − 1) = 1 (s is not a power of 2) and let C1,s be
the binary cyclic code of length (2m − 1) with defining set {1, s}. The cyclic code C⊥1,s
is 2

m
2 -divisible if and only if either s or s−1 takes one of the following values (up to

cyclotomic equivalence):

2i2
a

+ 1 or 2i2
a+1 − 2i2

a

+ 1

with 1 ≤ i ≤ bm′2 c.
It is known that for these values of s, C⊥1,s is exactly 2`-divisible with ` = m

2 −
1 + 2a−1 gcd(m′, i) [13, 19]. The previous conjecture equivalently asserts that these
values are the only decimations which provide a symmetric 3-valued crosscorrelation,
i.e., a crosscorrelation function which takes its values in {−1,−1 + 2D,−1− 2D}.

7.4. Dobbertin’s function. We now obtain an upper bound on the divisibility
of the weights of C⊥1,s in the following particular case.

Proposition 7.11. Let C1,s be the binary cyclic code of length (2m − 1) with
defining set {1, s}. Let g be a divisor of m such that s satisfies:

s ≡ −s0 mod
2m − 1

2g − 1
with 0 < s0 <

2m − 1

2g − 1
.

Then C⊥1,s is not 2g(w2(s0)+1)-divisible.
Proof. Here we use McEliece’s theorem as formulated in Corollary 2.4. Let

u = 2g − 1. Then we have

A(u) = us mod 2m − 1 = (2m − 1)− (2g − 1)s0.

We obtain that

w2(A(u)) = m− w2((2g − 1)s0).

Since w2((2g − 1)s0) ≤ gw2(s0), this implies that

w2(A(u)) ≥ m− gw2(s0)

≥ w2(u) +m− g(w2(s0) + 1).

We then deduce that C⊥1,s is not 2w2(u)(w2(s0)+1)-divisible.
Corollary 7.12. Let m be an odd integer. If there exists a divisor g of m such

that s satisfies

s ≡ −s0 mod
2m − 1

2g − 1
with 0 < s0 <

2m − 1

2g − 1

and

w2(s0) ≤ 1

2

(
m

g
− 3

)
,

then the power function x 7→ xs is not AB on F2m .

WEIGHT DIVISIBILITY OF CYCLIC CODES 133

The third author conjectured that for m = 5g the power function x 7→ xs with
s = 24g + 23g + 22g + 2g − 1 is APN on F2m [10]. The previous corollary implies the
following.

Proposition 7.13. Let m be an odd integer such that m = 5g. The power
function x 7→ xs with s = 24g + 23g + 22g + 2g − 1 is not AB on F2m .

Proof. Since s = 25g−1
2g−1 − 2, we apply the previous corollary with s0 = 2 and

m/g = 5 using that

w2(s0) = 1 =
1

2

(
m

g
− 3

)
.

Note that Proposition 7.11 implies that, for m = 5g and s = 24g+23g+22g+2g−1,
C⊥1,s is not 22g-divisible. This means, for example, that for m = 15 and s ∈ Cl(3657),

C⊥1,s is at most 25-divisible; this bound actually corresponds to the exact divisibility
of the code.

7.5. Numerical results. We now give some examples for m = 10 and 14. As
above, C1,s denotes the binary cyclic code of length (2m − 1) with defining set {1, s}
and 2` denotes the exact weight divisibility of C⊥1,s. Table 7.4 recalls some values of s
for which the value of ` is known.

Tables 7.5 and 7.6 compare the true exact weight divisibility of C⊥1,s (given in the
second column of each table) with the theoretical bounds derived from the previous
results.

m = 10.
• We always have ` ≤ 10−w2(s) (Corollary 5.1) and if gcd(s, 1023) = 1, we also

get ` ≤ 10−w2(s−1), where s−1 is defined by ss−1 ≡ 1 mod 1023. Maoreover,
Proposition 5.3 implies that if w2(s) > 8 and w2(s−1) > 8, we have ` ≥ 3.

• If gcd(s, 1023) = d > 1, we have ` ≤ w2(2m−1
d) − 1. This is derived from

us+ v ≡ 0 mod 1023 with u = 2m−1
d and v = 0. Note that if s and 1023 are

not coprime, ` ≤ 4 since the 2-weight of any divisor of 1023 is at most 4.
• If s mod 31 ∈ {1, 2, 4, 8, 16}, then ` = 4 (Theorem 7.5).
• If s mod 31 ∈ {15, 23, 27, 29, 30}, then ` ≤ 3. This comes from Theorem 7.1

using the fact that the code C⊥1,15 of length 31 is not 4-divisible.
• Proposition 5.4 implies that ` ≥ 4 when gcd(2m − 1, s) = 1, w2(s) ≤ 3, and
w2(s−1) ≤ 6.

Table 7.4
Exact weight divisibility of the duals of some cyclic codes of length (2m − 1) with defining

set {1, s}.

s ` Ref.

2i + 1, 1 ≤ i ≤ bm
2
c m+gcd(m,i)

2
− 1 if m

gcd(m,i)
is odd [13, 19]

m
2
− 1 if m

gcd(m,i)
is even

22i − 2i + 1, 2 ≤ i ≤ bm
2
c m+gcd(m,i)

2
− 1 if m

gcd(m,i)
is odd [19]

m
2
− 1 if m

gcd(m,i)
is even

(2m−1)
3

+ 2i, m even m
2
− 1 [15]

2
m
2 + 2

m
4 + 1, m ≡ 0 mod 4 m

2
− 1 [12]

2
m
2 + 2

m+2
2 + 1, m ≡ 2 mod 4 m

2
− 1 [9]

2
m+2

2 + 3, m ≡ 2 mod 4 m
2
− 1 [9]

134 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

Table 7.5
Exact weight divisibility of C⊥1,s for m = 10.

s (representatives of cosets) ` Argument

511 1 ` = 1 w2(s) = 9

31 93 155 341 2 ` = 1 31 divides gcd(1023, s)

173 179 255 383 447 479 495 2 ` = 2 w2(s) = 8 or w2(s−1) = 8

15 23 27 29 61 77 85 89 91 123 151 213
215 247

3 ` = 3 s mod 31 ∈ {15, 23, 27, 29, 30}

7 53 59 73 127 167 191 223 235 239
251 253 351 367 375 379 439

3 ` = 3 w2(s) = 7 or w2(s−1) = 7

19 175
4 ` = 4 w2(s) = 3 and w2(s−1) = 6

33 35 39 47 63 95 101 109 125 157 159
171 187 219 221 343

4 ` = 4 s mod 31 ∈ {1, 2, 4, 8, 16}

3 9 57
4 ` = 4 see Table 7.4

71 111 245
3 3 ≤ ` ≤ 4 w2(s) = 6 or w2(s−1) = 6

43 115 119 183 189 207 231 237 347 363 4

45 51 55 75 99 147 165 3 3 ≤ ` ≤ 4 gcd(1023, s) ∈ {3, 11, 33}
11 21 69 87 105 117 121 4

37 83 4 4 ≤ ` ≤ 5 w2(s) = 3 and w2(s−1) ≤ 6

103 149 3 3 ≤ ` ≤ 5

5 205 13 79 17 181 25 41 49 107
5 ` = 5 see Table 7.4

• There is no 8-divisible code C⊥1,s0 of length 31 with gcd(s0, 31) = 1. It follows
from Theorem 7.1(ii) that, for any s such that gcd(s, 210 − 1) = 1, the code
C⊥1,s of length (210 − 1) is at most 25-divisible.

m = 14. Here we examine only the values of s such that gcd(214 − 1, s) = 1.
Note that if gcd(214−1, s) > 1, C⊥1,s is not 27-divisible since the 2-weight of any factor
of (214 − 1) is at most 7. Table 7.6 is derived from the following theoretical results:

• Proposition 5.3 implies that ` ≥ 3 for any s such that w2(s) ≤ 12 and
w2(s−1) ≤ 12.
• From Corollary 5.1, we have ` ≤ 14− w2(s).
• For any s such that w2(s) = 3 or w2(s−1) = 3, we have ` ≥ 5 according to

Corollary 5.2.
• Proposition 5.4 implies that ` ≥ 4 when w2(s) ≤ 5 and w2(s−1) ≤ 10.
• According to Theorem 7.1(ii) we always have that ` ≤ 7 since the cyclic code
C⊥1,s0 of length (27 − 1) is at most 23-divisible when s0 is not a power of 2.

• The cyclic code C⊥1,s0 of length (27−1) is exactly 2-divisible when s0 ∈ Cl(63)
(Cl(i) here denotes the 2-cyclotomic coset modulo 127). It follows that ` ≤ 3
for any s such that s mod 127 ∈ Cl(63) (Theorem 7.1(ii)).

• The codes C⊥1,s0 of length (27− 1) are exactly 4-divisible for s0 ∈ E = Cl(7)∪
Cl(19)∪Cl(21)∪Cl(31)∪Cl(47)∪Cl(55). Theorem 7.1(ii) then implies that
C⊥1,s is at most 25-divisible for any s such that s mod 127 ∈ E .

• If s ≡ 2i mod 127 for some i, C⊥1,s is exactly 26-divisible according to Theo-
rem 7.5.

WEIGHT DIVISIBILITY OF CYCLIC CODES 135

Table 7.6
Exact weight divisibility C⊥1,s for m = 14 with gcd(214 − 1, s) = 1.

s (representatives of cosets) ` Argument

8191 1 ` = 1 w2(s) = 13
2741 2861 2867 6143 7679 8063 2 ` = 2 w2(s) = 12 or

w2(s−1) = 12
95 119 125 253 317 349 365 373 377 379 571 619 631
761 857 881 887 1015 1111 1127 1135 1139 1141 1381
1523 1619 1643 1897 1901 1903 2381 2405 2411 2539
2651 2663 3047 3413 3421 3935 4063

3 ` = 3 smod 127 ∈ Cl(63)

283 511 655 703 1003 1117 1177 1259 1273 1375 1435
1679 1919 2047 2479 2527 2797 2971 3071 3583 3703
3757 3839 3967 4031 4079 4087 4091 4093 5851 5887
6079 6127 6139 7039 7103 7135 7151 7159 7663

3 ` = 3 w2(s) = 11 or
w2(s−1) = 11

47 59 83 149 197 203 329 341 355 625 1109 1301 3055
3067 3551 3775 3835 4015 4075 5503 5627 5855 5983
6007

4 ` = 4 w2(s) ≤ 5 and
w2(s−1) = 10

175 461 691 811 967 1019 1213 1253 1277 1385 1391
1535 1615 1685 1847 1957 2015 2035 2039 2045 2347
2453 2507 2765 2771 2807 2815 3007 3455 3517 3575
3581 3823 3959 3965 4027 4055 4061 5567 5599 5615
5623 5879 5999 6011 6071 6107 7031

4 3 ≤ ` ≤ 4 w2(s) = 10 or
w2(s−1) = 10

7 19 25 31 37 41 67 73 97 245 443 529 869 983 1123
1205 2341 3547

5 ` = 5 s mod 127 ∈ E and
w2(s) = 3

115 239 463 533 617 809 1631 2005 4 4 ≤ ` ≤ 5 s mod 127 ∈ E and
w2(s) ≤ 5 and
w2(s−1) < 10

55 61 79 91 103 107 109 121 155 169 209 211 227 275
295 313 361 395 409 419 457 475 481 539 563 569 581
587 595 601 611 649 677 709 745 781 787 793 799 803
841 871 971 1013 1171 1193 1225 1307 1343 1387 1531
1597 1621 1645 1775 1895 1967 1999 2383 2407 2779
2903 3323 3389 3419 3829

5

251 455 719 1735 2389 3925 3 3 ≤ ` ≤ 5 s mod 127 ∈ E
431 437 493 503 605 629 685 697 853 1237 1243 1255
1325 1331 1357 1363 1373 1481 1693 1837 1865 2455
2717 2813 2983 2995 3805 4013

4

221 347 371 491 499 505 575 599 623 757 821 823 829
859 877 883 917 931 965 973 1001 1007 1103 1133 1181
1199 1261 1267 1337 1367 1379 1439 1447 1453 1459
1471 1507 1519 1627 1639 1727 1751 1769 1871 1885
1943 1961 1979 1981 2023 2027 2029 2359 2395 2495
2525 2647 2743 2749 2767 2791 2909 2911 2935 3005
3031 3287 3293 3485 3503 3511 3541 3563 3767 3901
3931 4021 5815

5

289 5 ` = 5 w2(s) = 3 and
w2(s−1) = 9

689 2687 4 4 ≤ ` ≤ 5 w2(s) ≤ 5 and
w2(s−1) = 9

77 85 157 269 305 307 323 325 391 401 451 613 647 913
1021 1093 1279 1787 1915 1951 2975 3391 3451 3535
3709 3773 3949 5471 5495 5591

5

136 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

Table 7.6
(Continued)

s (representatives of cosets) ` Argument

959 3059 3 3 ≤ ` ≤ 5 w2(s) = 9 or
w2(s−1) = 9

715 895 991 1183 1223 1469 1759 1783 2419 2431 2555
2557 2677 3023 3415 3515 3791 3803 5551 5563 5819

4

235 343 427 487 743 751 767 797 847 875 935 995 1009
1231 1319 1495 1663 1747 1789 1853 1855 1939 1975
2011 2041 2357 2471 2519 2543 2551 2783 2879 2927
2939 2941 2999 3035 3037 3061 3295 3319 3325 3383
3439 3487 3559 3565 3707 3743 3797 3799 3821 3947
5611

5

131 143 191 383 389 397 413 445 509 637 667 763 893
905 953 1145 1147 1151 1175 1207 1271 1399 1405 1429
1525 1655 1715 1907 1909 1913 2429 2477 2669 2671
2675 2683 2731 2923 3431 3437 3445

6 ` = 6 s mod 127 ∈ Cl(1)

11 1501 6 5 ≤ ` ≤ 6 w2(s) = 3 and
w2(s−1) = 8

955 1187 1321 2719 4 4 ≤ ` ≤ 6 w2(s) ≤ 5 and
w2(s−1) = 8

89 101 163 181 185 331 541 553 1499 1511 2747 2933
2987 3317 3407 3509

5

353 535 583 1723 1883 2423 6
479 1351 3 3 ≤ ` ≤ 6 w2(s) = 8 or

w2(s−1) = 8
407 839 943 1303 1369 1465 1661 1711 1771 2003 2549
2803 2863 2875

4

287 439 607 695 827 845 863 997 1327 1403 1463 1483
1487 1517 1529 1595 1687 1705 1757 1781 1949 1963
1973 1997 2009 2363 2399 2653 2711 2735 2989 3029
3307 3499 3701 3755 5819

5

497 683 1823 1831 1835 1879 2483 2491 5467 5483 6
5 13 17 65 113 145 193 205 241 319 979 1339 1613 2773
2893 3277

7 ` = 7 see Table 7.4

35 49 137 161 265 335 433 469 919 1355 2515 6 5 ≤ ` ≤ 7 w2(s) = 3 or
w2(s−1) = 3

167 187 199 229 247 263 299 425 707 805 911 1097
1099 1195 1445 1589 1609 1625 1717 1843 1867 1877

4 4 ≤ ` ≤ 7 w2(s) ≤ 5 and
w2(s1) < 10

29 71 139 151 173 217 223 233 271 281 403 421 547
551 557 565 589 593 653 659 661 665 721 739 749 785
923 947 977 1129 1165 1189 1309 1423 1607 1691 1829
2461

5

23 53 179 277 293 337 713 727 937 1163 1315 1451
1657 1739 2869 2899

6

1241 1703 2459 2645 3 3 ≤ ` ≤ 7
415 679 701 733 755 815 907 941 949 985 1115 1211
1427 1433 1637 1721 1753 2485

4

311 359 367 467 485 671 791 851 925 1229 1235 1421
1493 1513 1709 1741 1765 1945 1993 2351 2387 2533

5

133 725 2509 6

REFERENCES

[1] T. Beth and C. Ding, On almost perfect nonlinear permutations, in Advances in Cryptology–
EUROCRYPT ’93, Lecture Notes in Comput. Sci. 765, Springer-Verlag, New York, 1993,
pp. 65–76.

[2] E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J. Cryptology,
4 (1991), pp. 3–72.

WEIGHT DIVISIBILITY OF CYCLIC CODES 137

[3] A. Calderbank, G. McGuire, and B. Poonen, On a conjecture of Helleseth regarding pairs
of binary m-sequences, IEEE Trans. Inform. Theory, 42 (1996), pp. 988–990.

[4] A. Canteaut, P. Charpin, and H. Dobbertin, Binary m-sequences with three-valued cross-
correlation: A proof of Welch’s conjecture, IEEE Trans. Inform. Theory, to appear.

[5] A. Canteaut, P. Charpin, and H. Dobbertin, Couples de suites binaires de longueur maxi-
male ayant une corrélation croisée à trois valeurs: Conjecture de Welch, C. R. Acad. Sci.
Paris Sér. I Math., 328 (1999), pp. 173–178.

[6] C. Carlet, P. Charpin, and V. Zinoviev, Codes, bent functions and permutations suitable
for DES-like cryptosystems, Des. Codes Cryptogr., 15 (1998), pp. 125–156.

[7] F. Chabaud and S. Vaudenay, Links between differential and linear cryptanalysis, in Advances
in Cryptology–EUROCRYPT ’94, Lecture Notes in Comput. Sci. 950, Springer-Verlag, New
York, 1995, pp. 356–365.

[8] P. Charpin, A. Tietäväinen, and V. Zinoviev, On binary cyclic codes with minimum dis-
tance d = 3, Problems Inform. Transmission, 33 (1997), pp. 287–296.

[9] T. Cusick and H. Dobbertin, Some new 3-valued crosscorrelation functions of binary m-
sequences, IEEE Trans. Inform. Theory, 42 (1996), pp. 1238–1240.

[10] H. Dobbertin, Almost perfect nonlinear power functions on GF (2n): The Niho case, Inform.
and Comput., 151 (1999), pp. 57–72.

[11] H. Dobbertin, Almost perfect nonlinear power functions on GF (2n): The Welch case, IEEE
Trans. Inform. Theory, 45 (1999), pp. 1271–1275.

[12] H. Dobbertin, One-to-one highly nonlinear functions on finite field with characteristic 2, Appl.
Algebra Engrg. Comm. Comput., 9 (1998), pp. 139–152.

[13] R. Gold, Maximal recursive sequences with 3-valued recursive crosscorrelation functions, IEEE
Trans. Inform. Theory, 14 (1968), pp. 154–156.

[14] S. Golomb, Theory of transformation groups of polynomials over GF (2) with applications to
linear shift register sequences, Inform. Sci., 1 (1968), pp. 87–109.

[15] T. Helleseth, Some results about the cross-correlation function between two maximal linear
sequences, Discrete Math., 16 (1976), pp. 209–232.

[16] H. Hollmann and Q. Xiang, A Proof of the Welch and Niho Conjectures on Crosscorrelations
of Binary m-sequences, preprint, 1998.

[17] H. Janwa and R. Wilson, Hyperplane sections of Fermat varieties in P3 in char. 2 and
some applications to cyclic codes, in Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes–Proceedings AAECC-10, Lecture Notes in Comput. Sci. 673, Springer-
Verlag, Berlin, 1993, pp. 180–194.

[18] T. Kasami, Weight distributions of Bose-Chaudhuri-Hocquenghem codes, in Proceedings of
the Conference on Combinatorial Mathematics and Its Applications, The Univ. of North
Carolina Press, Chapel Hill, NC, 1969, pp. 335–357.

[19] T. Kasami, The weight enumerators for several classes of subcodes of the second order binary
Reed-Muller codes, Inform. and Control, 18 (1971), pp. 369–394.

[20] G. Lachaud and J. Wolfmann, The weights of the orthogonal of the extended quadratic binary
Goppa codes, IEEE Trans. Inform. Theory, 36 (1990), pp. 686–692.

[21] X. Lai, J. Massey, and S. Murphy, Markov ciphers and differential cryptanalysis, in Advances
in Cryptology–EUROCRYPT ’91, Lecture Notes in Comput. Sci. 547, Springer-Verlag, New
York, 1991, pp. 17–38.

[22] M. Matsui, Linear cryptanalysis method for DES cipher, in Advances in Cryptology–
EUROCRYPT ’93, Lecture Notes in Comput. Sci. 765, Springer-Verlag, New York, 1994,
pp. 386–397.

[23] M. Matsui, The first experimental cryptanalysis of the data encryption standard, in Advances
in Cryptology–CRYPTO ’94, Lecture Notes in Comput. Sci. 839, Springer-Verlag, New
York, 1995, pp. 1–11.

[24] R. McEliece, Weight congruence for p-ary cyclic codes, Discrete Math., 3 (1972), pp. 177–192.
[25] G. McGuire and A. Calderbank, Proof of a conjecture of Sarwate and Pursley regarding

pairs of binary m-sequences, IEEE Trans. Inform. Theory, 41 (1995), pp. 1153–1155.
[26] Y. Niho, Multi-valued Cross-Correlation Functions Between Two Maximal Linear Recursive

Sequences, Ph.D. thesis, Univ. Southern California, Los Angeles, CA, 1972; Tech. report
409, Dept. Electrical Engineering, Univ. Southern California, Los Angeles, CA, 1972.

[27] K. Nyberg, Differentially uniform mappings for cryptography, in Advances in Cryptology–
EUROCRYPT ’93, Lecture Notes in Comput. Sci. 765, Springer-Verlag, New York, 1993,
pp. 55–64.

[28] K. Nyberg, Linear approximation of block ciphers, in Advances in Cryptology–EUROCRYPT
’94, Lecture Notes in Comput. Sci. 950, Springer-Verlag, New York, 1994, pp. 439–444.

138 ANNE CANTEAUT, PASCALE CHARPIN, AND HANS DOBBERTIN

[29] K. Nyberg and L. Knudsen, Provable security against differential cryptanalysis, in Advances
in Cryptology–CRYPTO ’92, Lecture Notes in Comput. Sci. 740, Springer-Verlag, New
York, 1993, pp. 566–574.

[30] V. Pless, Power moment identities on weight distributions in error-correcting codes, Inform.
and Control, 3 (1963), pp. 147–152.

[31] D. Sarwate and M. Pursley, Crosscorrelation properties of pseudorandom and related se-
quences, Proc. IEEE, 68 (1980), pp. 593–619.

[32] V. Sidelnikov, On mutual correlation of sequences, Soviet Math. Dokl., 12 (1971), pp. 197–201.

ON ISOPERIMETRIC CONNECTIVITY IN
VERTEX-TRANSITIVE GRAPHS∗

Y. O. HAMIDOUNE† , A. S. LLADÓ‡ , O. SERRA‡ , AND R. TINDELL§

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 139–144

Abstract. We shall define the k-isoperimetric connectivity λk of a regular graph Γ as the
minimum number of arcs originating in a set with cardinality not exceeding half the order of the
graph and containing at least k vertices. Clearly λk ≤ dk − ek, where d is the degree of Γ and ek is
the maximal number of edges induced on a set of k vertices.

We shall show that Cayley graphs with a prime order and arc-transitive graphs have λk = dk−ek,
provided that d ≥ 3k − 3. We describe all vertex-transitive graphs where λ2 ≤ 2d− 3.

Key words. isoperimetric inequalities, vertex-transitive graphs

AMS subject classifications. 05C20, 05C70

PII. S089548019630635X

1. Introduction. For simplicity all graphs we consider will be assumed to be
finite without loops or multiple arcs. However, the results in this paper extend easily
to graphs with multiple arcs or loops and that are possibly infinite.

It is known that graphs having a transitive group of automorphisms have good
connectivity. In particular Mader proved in [11] that a connected vertex-transitive
undirected graph with degree d remains connected after the deletion of d − 1 edges.
This result was improved by Lovász and Plummer in [10, Lemma 5.5.26] by showing
that, apart from an exceptional family, the graph is still connected after the deletion
of d edges nonincident to some vertex. A related result was proved independently by
Tindell in [13]. The problem for directed graphs is studied in [9].

In this paper we are studying an isoperimetric generalization of connectivity. A
special case of our results shows that, apart from an exceptional family, a connected
vertex-transitive directed graph of outdegree d is still strongly connected after the
deletion of 2d− 3 edges nonincident to some vertex.

Our kth isoperimetric connectivity will be defined later as the minimum number
of arcs originating from a set with cardinality at least k and at most half the order of
the graph.

Notice that this notion of isoperimetric connectivity is related to the extracon-
nectivity introduced by Fàbrega and Fiol [3, 4]. Notice also that the corresponding
problems for vertex-connectivity are studied in [6] and [8]. See also [2] for a related
approach.

Our main tool will be the study of the k-atoms, which, in vertex-transitive graphs,
will be shown to be blocks of imprimitivity of the automorphism group. As a corollary
we shall show that for Cayley graphs with a prime order and for arc-transitive graphs,

∗Received by the editors July 8, 1996; accepted for publication (in revised form) July 13, 1999;
published electronically January 13, 2000. This work was partially supported by the Spanish Research
Council CYCIT under project TIC97-0963.

http://www.siam.org/journals/sidma/13-1/30635.html
†E. Combinatoire, Université Pierre et Marie Curie, 4, Place Jussieu, 75005 Paris, France

(yha@ccr.jussieu.fr).
‡Dep. Matemàtica Aplicada i Telemática, Universitat Politecnica de Catalunya, Jordi Girona, 1,

08034 Barcelona, Spain (allado@mat.upc.es, oriol@mat.upc.es).
§Department of Electrical Engineering and Computer Science, Stevens Institute of Technology,

Hoboken, NJ 07030 (tindell@gauss.eecs.stevens-tech.edu).

139

140 HAMIDOUNE, LLADÓ, SERRA, AND TINDELL

the kth isoperimetric connectivity achieves its optimal value dk − ek, where d is the
degree of the graph and ek is the maximal number of edges induced on a set of k
vertices, provided that d ≥ 3k−3. We give also a characterization for vertex-transitive
graphs where the isoperimetric connectivity is not optimal.

2. Isoperimetric connectivity. The reader may find definitions not given here
in [1].

By a graph we shall mean an irreflexive relation Γ = (V,E), where V is a finite
set and E ⊂ V × V \ {(x, x) : x ∈ V }.

In particular, Γ(A) is the traditional image of A defined in set theory. The
elements of V are called the vertices of Γ and the elements of E are called the arcs
of Γ. A graph Γ will be called symmetric (resp., antisymmetric) if the corresponding
relation is so. In other words, graph Γ = (V,E) is symmetric if for a pair u, v of
vertices of Γ, (u, v) ∈ E implies (v, u) ∈ E. If (u, v) ∈ E implies (v, u) 6∈ E for every
pair u, v of vertices of Γ, we say that Γ is antisymmetric.

Our results apply as well to undirected graphs since they may be identified with
symmetric graphs in the usual way.

Let Γ = (V,E) be a graph and let F ⊂ V . Denote by F the set V \ F . The arc
neighborhood of F is the set

ωΓ(F) = { (u, v) ∈ E ∣∣ u ∈ F and v ∈ F }.

We will omit the subscript Γ unless more than one graph is being considered.
Arc neighborhoods of proper, nonempty subsets of V are often called edge cuts. The
indegree of vertex v is d−(v) = |ω(V \ {v})| and the outdegree of v is d(v) = |ω(v)|. A
graph Γ is said to be regular of degree d if d(v) = d−(v) = d for every vertex v of Γ.
The degree of a regular graph Γ will be denoted by d(Γ).

A graph Γ such that d(u) = d−(u) for every vertex u of Γ is said to be Eulerian.
It is well known that in an Eulerian graph Γ, for every F ⊂ V ,

|ω(F)| = |ω(F)|.(1)

Recall that a finite Eulerian graph is strongly connected if and only if it is con-
nected.

A graph Γ is said to be vertex-transitive if for every pair u, v of vertices of Γ there
is an automorphism ϕ of Γ with ϕ(u) = v.

Given a group G and a subset S ⊂ G\{1}, the Cayley graph of G with respect to
S, denoted by Cay(G,S), has the elements of the group as vertices and the ordered
pairs (x, xs), where x ∈ G and s ∈ S, as edges. Cayley graphs are regular of degree
|S| and they are vertex-transitive. It is well known that Cay(G,S) is connected if and
only if S generates the group.

Let Γ = (V,E) be a graph with |V | ≥ 2k. Let us define the kth-edge connectivity
number of Γ as

λk(Γ) = min{ |ωX| ∣∣ |X| ≥ k and |X| ≥ k }.

When k = 1, λ1(Γ) is the edge-connectivity of the graph. This notion of λk is related
to the concept of extraconnectivity studied by Fàbrega and Fiol [3, 4] and coincides
with it for symmetric graphs.

A subset F ⊂ V is said to be a k-fragment if |F | ≥ k, |F | ≥ k, and |ω(F)| =
λk(Γ). A k-fragment of minimum cardinality will be called a k-atom. The cardinality

ON ISOPERIMETRIC CONNECTIVITY 141

of k-atoms of Γ will be denoted by µk(Γ). The definitions of 1-fragment and 1-
atom coincide with the notions of edge-fragment and edge-atoms; see [9, 12] and the
references therein. We clearly have λ1(Γ) ≤ λ2(Γ) ≤ · · · ≤ λk(Γ).

Using Menger’s theorem it can easily be seen that λk(Γ) is the maximum j such
that two arbitrary disjoint sets of k vertices of Γ are connected by j edge disjoint
directed paths.

3. The k-atoms structure. In this section we shall study the intersection prop-
erties of k-atoms.

Lemma 1. Let Γ be a Eulerian graph, let A be a k-atom of Γ, and let F be a k-
fragment of Γ. Then either |A∩F | ≤ k−1 or A ⊂ F . In particular, if µk(Γ) ≥ 2k−1,
and if B is a k-atom of Γ distinct from A, then A ∩B = ∅.

Proof. Suppose |A ∩ F)| ≥ k. By (1) F is a k-fragment of Γ as well. Therefore,
|F | ≥ |A|. Thus

|F | = |A \ F |+ |A ∪ F | ≥ |A| = |A \ F |+ |A ∩ F |,
and it follows that |A ∪ F | ≥ |A∩F | ≥ k. By the well-known submodularity relation,

|ω(A ∩ F)|+ |ω(A ∪ F)| ≤ |ω(A)|+ |ω(F)| = 2λk(Γ).(2)

Since both A ∩ F and its complement have at least k points and the same holds for
A ∪ F , we must have |ω(A ∩ F)| ≥ λk(F) and |ω(A ∪ F)| ≥ λk(F). Combined with
inequality (2), we see that A∩F is a k-fragment. Since A is a k-atom, it then follows
that A = A ∩ F .

We have |A ∩ B| ≥ k, since |A ∩ B| ≤ k − 1. Since B is a k-fragment, the first
part of the lemma implies A ⊂ B.

The first part of the above lemma can be generalized to arbitrary graphs. Since
our main interest is the vertex-transitive case, we give only the Eulerian case.

We shall complete the above result with the following lemma to exclude the
possibility that k + 1 ≤ µk(Γ) ≤ 2k − 2.

Notice that µk(Γ) = k if and only if λk(Γ) = dk−ek(Γ). We shall use this obvious
observation without reference throughout the paper.

The subgraph induced by a subset F ⊂ V will be denoted by Γ[F].
We shall denote by ek(Γ) the maximum number of edges in a subgraph induced

by a subset of k vertices.
We shall put ε(Γ) = 1/2 if Γ is antisymmetric and ε(Γ) = 1, otherwise. For both

µ and ε, the reference to Γ will be implicit.
Lemma 2. Let Γ be a connected regular graph with degree d such that µk > k.

Then µk ≥ d/ε− k + 2.
Proof. Set a = µk. Let F be a subset of cardinality k of a k-atom A. The number

of arcs in Γ[A] is ad−λk. This number is at most a(a− 1)−k(k− 1) + ek, since these
arcs induce in F at most ek arcs. We have

dk − ek > |ω(A)| ≥ ad− (a(a− 1)− k(k − 1) + ek) = ad− (a− k)(a+ k − 1)− ek.
Therefore, a > d− k + 1.

Assume now that Γ is antisymmetric. A similar calculation now gives

dk−ek > |ω(A)| ≥ ad−(1/2)(a(a−1)−k(k−1))−ek = ad−(1/2)(a−k)(a+k−1)−ek.
Hence a > 2d− k + 1.

142 HAMIDOUNE, LLADÓ, SERRA, AND TINDELL

4. Vertex-transitive graphs. The following result is our main tool in this
paper.

Theorem 3. Let Γ be a vertex-transitive graph with degree d such that µk > k.
Assume d ≥ ε(3k− 3). Then the set of k-atoms forms a complete set of imprimitivity
blocks of the automorphism group of Γ. In particular, for any k-atom A, Γ[A] is a
vertex-transitive graph.

Moreover,

λk(Γ) = |A|(d− d(A)) ≥ (d− k + 2)(d− d(A)).(3)

Proof. By Lemma 2, we have µk ≥ d/ε − k + 2 ≥ 2k − 1. Hence, by Lemma 1,
two distinct atoms are disjoint. In particular, a k-atom is a block of imprimitivity of
the automorphism group. The first part of the statement follows from the fact that
Γ is vertex-transitive. Inequality (3) now follows by the definitions.

As a consequence of the above theorem, in the case that Γ is a Cayley graph
defined on a group G, the atom which contains the identity is a subgroup of G.

The above theorem implies that the isoperimetric connectivity achieves its optimal
value in the following two important classes of graphs.

Corollary 4. In a Cayley graph Γ with prime order we have λk(Γ) = dk−ek(Γ)
for d ≥ 3(k − 3)/ε.

Proof. By Theorem 3, µk(Γ) = k.

Corollary 5. In a strongly connected arc-transitive graph Γ, we have λk(Γ) =
dk − ek(Γ) for d ≥ 3(k − 3)/ε.

Proof. Notice that a strongly connected arc-transitive graph is also vertex transi-
tive. Let A be a k-atom of Γ. Assume |A| ≥ k+ 1; then Γ[A] must contain an interior
arc (x, y), since otherwise |ω(A)| ≥ d(k + 1) > λk(Γ). Also, there is (x′, y′) ∈ ω(A),
since the graph is strongly connected. There is an automorphism f such that f(x) = x′

and f(y) = y′. Therefore, f(A) 6= A and f(A) ∩ A 6= ∅, contradicting Theorem
3.

The girth of a graph Γ is the smallest cardinality of a directed cycle in Γ; we shall
write it g(Γ). For a symmetric graph, g = 2, one looks to the smallest cardinality of
a cycle with size 6= 2 and calls it the undirected girth.

The class of graphs with large girth is widely studied in interconnection networks.
The methods developed above allow us to give good lower bounds for λk in this case.
We mention the following simple application. In the next proof we shall use the fact
that a vertex-transitive graph of girth g and degree d has order at least d(g − 1) + 1;
see [5].

Proposition 6. Let Γ be a connected vertex-transitive graph with girth g ≥ k+1
and degree d ≥ ε(3k − 3). Then λk(Γ) = dk − ek(Γ).

Proof. Suppose the contrary and let A be a k-atom of Γ. We clearly have 1 ≤
d(A) ≤ d− 1. By (3),

(d− d(A))(d(A)(g − 1) + 1) ≤ λk < kd− ek ≤ kd− k + 1.

This leads to d = d(A), which is a contradiction.

We cannot replace k ≤ g−1 by k ≤ g for k ≤ 3 because of some obvious examples.
It follows from a result in [7] that Proposition 6 holds for k ≥ 4 when the condition
k ≤ g − 1 is replaced by k ≤ g for abelian Cayley graphs and there is a conjecture in
[7] implying the validity of this for all vertex-transitive graphs.

ON ISOPERIMETRIC CONNECTIVITY 143

Notice that the above result for symmetric graphs reduces to Mader’s result men-
tioned in the Introduction. For antisymmetric graphs, g ≥ 3 and hence we have the
following.

Corollary 7. Let Γ be an antisymmetric connected vertex-transitive graph hav-
ing at least four vertices. Then λ2(Γ) = 2d− 1.

The reader could formulate and prove the corresponding result for undirected
graphs with undirected girth g′, using the well-known relation |V | > (d− 1)(g′−1)/2.

5. The second isoperimetric connectivity. The results obtained so far imply
without difficulty that λ2 is optimal in several cases.

Let A be a 2-atom of a vertex-transitive graph Γ with λ2 nonoptimal. Lemma 2
gives in this case |A| ≥ d and, by inequality (3), (d− d(A))d ≤ (d− d(A))|A| = λ2 <
2d− 1. Therefore,

d(A) = d− 1 and λ2 = |A|.(4)

Corollary 8. Let Γ = (V,E) be a connected vertex-transitive graph with at least
four vertices. Then λ2(Γ) = 2d− 2 in the following two cases:

(i) d > |V |/2.

(ii) Γ is symmetric and |V | is odd.

Proof. Suppose the contrary and let A be a 2-atom.

Assume first that (i) holds. By (4), d(A) = d− 1 ≤ |A| − 1 ≤ |V (Γ)|/2− 1, which
is a contradiction.

Assume now that (2) holds. By (4), the graph obtained by deleting all edges
inside the atoms is thus a symmetric graph with degree = 1, and hence a perfect
matching, against the hypothesis that the graph has odd order.

The following result describes the local structure of Cayley graphs with nonopti-
mal λ2.

Corollary 9. Let S be a set of generators for group G with at least four vertices.
Then λ2(Cay(G,S)) < 2|S| − 2 if and only if there exists an element t of S such that
the group H generated by S \ { t } satisfies |S| ≤ |H| ≤ 2|S| − 3.

The above result reduces for λ2 = |S| to a result in [9].

We shall define the quotient graph Ψk(Γ) which has the set of k-atoms as a
vertex set. A k-atom A is joined to a k-atom B by |B ∩ Γ(A)| arcs in Ψk(Γ). This
multigraph will allow us to characterize vertex-transitive graphs with a nonoptimal
second connectivity.

Proposition 10. Let Γ be a connected vertex-transitive graph such that µ2(Γ) >
2. Then Ψ2(Γ) is an arc-transitive multigraph, with degree λ2.

Proof. Notice that µ2(Γ) > 2 implies d > 2. Let A be a 2-atom of Γ. By Theorem
3, G[A] is a vertex-transitive graph.

Let us show that {A ∩ Γ(B); |A ∩ Γ(B)| 6= 0} form a system of imprimitivity
blocks. Let x ∈ A∩Γ(B) y ∈ D∩Γ(C) and let f be an automorphism with f(x) = y.

By Theorem 3, f(A) = D. Let x′ be the unique element of B ∩ Γ−(x). Let
y′ be the unique element of C ∩ Γ−(y). Now f(x′) ∈ Γ(f(x) \ D) = {y′}. Hence
we must have f(x) = f(y). By Theorem 3, f(B) = f(C). Now, f(A ∩ Γ(B)) =
f(A) ∩ Γ(f(B)) = D ∩ Γ(C). The result is now obvious.

By Proposition 10, every vertex-transitive graph with nonoptimal λ2 is obtained
from an arc-transitive multigraph with degree λ2 by inserting a vertex-transitive graph
with order λ2 at every vertex of the multigraph.

144 HAMIDOUNE, LLADÓ, SERRA, AND TINDELL

The above construction for λ2 = d(Γ) and Γ symmetric reduces to the construction
of a vertex-transitive graph with a nontrivial minimum edge cut described by Lovász
and Plummer in [10, Lemma 5.5.26].

REFERENCES

[1] C. Berge, Graphes et Hypergraphes, Monographies Universitaires de Mathématiques 37,
Dunod, Paris, 1970.

[2] B. Bollobas, Ed., Probabilistic Combinatorics and Its Applications, Proc. Symp. Appl. Math.
44, AMS, Providence, RI, 1991.

[3] J. Fàbrega and M.A. Fiol, On the extraconnectivity of graphs with large minimum degree
and girth, Discrete Math., 127 (1994), pp. 163–170.

[4] J. Fàbrega and M.A. Fiol, On the extraconnectivity of graphs, Discrete Math., 155 (1996),
pp. 49–57.

[5] Y.O. Hamidoune, An application of connectivity theory in graphs to factorization of elements
in groups, European J. Combin., 2 (1981), pp. 108–112.

[6] Y.O. Hamidoune, An isoperimetric method in additive theory, J. Algebra, 179 (1996), pp. 622–
630.

[7] Y.O. Hamidoune, A.S. Lladó, and O. Serra, Minimum order of loop network of given degree
and girth, Graphs Combin., 11 (1995), pp. 131–138.

[8] Y.O. Hamidoune, A.S. Lladó, and O. Serra, An isoperimetric problem in Cayley graphs,
Theory Comput. Syst., 32 (1999), pp. 507–516.

[9] Y.O. Hamidoune and R. Tindell, Vertex transitivity and super line connectedness, SIAM J.
Discrete Math., 3 (1990), pp. 524–530.

[10] L. Lovász and M.D. Plummer, Matching Theory, Ann. Discrete Math. 29, North–Holland,
Amsterdam, 1986.

[11] W. Mader, Über den Zusammenhäng symmetricher Graphen, Arch. Math. (Basel), 21 (1970),
pp. 331–336.

[12] W. Mader, Eine Eigenschaft der Atome endlicher Graphen, Arch. Math., 22 (1971), pp. 333–
336.

[13] R. Tindell, Edge Connectivity Properties in Symmetric Graphs, preprint, 1983.

OPTIMAL ROUNDING OF INSTANTANEOUS FRACTIONAL
FLOWS OVER TIME∗

LISA FLEISCHER† AND JAMES B. ORLIN‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 2, pp. 145–153

Abstract. A transshipment problem with demands that exceed network capacity can be solved
by sending flow in several waves. How can this be done in the minimum number, T , of waves, and at
minimum cost, if costs are piecewise linear convex functions of the flow? In this paper, we show that

this problem can be solved using min{m, log T,
log(mΓU)

1+log(mΓU)−log(mU)
} maximum flow computations

and one minimum (convex) cost flow computation. Here m is the number of arcs, Γ is the maximum
supply or demand, and U is the maximum capacity. When there is only one sink, this problem can be
solved in the same asymptotic time as one minimum (convex) cost flow computation. This improves
upon the previous best algorithm to solve the problem without costs by a factor of k. Our solutions
start with a stationary fractional flow and use rounding to transform this into an integral flow. The
rounding procedure takes O(n) time.

Key words. dynamic transshipment, network flows, convex costs, analysis of algorithms

AMS subject classifications. 68Q25, 90C08, 90C27

PII. S0895480198344138

1. Introduction. Network flow theory deals with several fundamental problems
including the shortest path problem, the maximum flow problem, the assignment
problem, the minimum cost flow problem, and the multicommodity flow problem. A
significant body of literature is devoted to these five problems. (See [1], for example.)
In the 1960s, Ford and Fulkerson [8] introduced network flows over time to include
time in the network model. Since then, network flows over time have been widely
used in a variety of applications to transportation, financial planning, manufacturing,
and logistics; see, for example, the surveys by Aronson [4] and Powell, Jaillet, and
Odoni [18]. Despite the significance of flows over times to a wide range of problems,
the class of network flows over time has not received nearly as much attention as the
more classical network flow problems. Much of the work on problems of flow over
time reduces the problem to a classical flow problem by using an exponentially sized,
time-expanded graph [4, 18].

In this paper, we discuss a special case of flows over time: we assume all transit
times are zero. This special case has been considered in [2, 5, 6, 12, 14, 15, 22], among
others. Flows over time with zero transit times capture some time-related issues:
they can be used to model instances when network capacities restrict the quantity of
flow that can be sent at any one time. Solving these problems efficiently may help
in finding a more efficient exact or approximate algorithm to solve harder problems
involving flows over time with nonzero transit times or multicommodity demands.

1.1. The model. A network N = (V,E, u) has node set V of cardinality n and
arc set E of cardinality m. Arc e has capacity ue and U := maxe ue. Node i has

∗Received by the editors August 31, 1998; accepted for publication (in revised form) October 6,
1999; published electronically April 6, 2000.

http://www.siam.org/journals/sidma/13-2/34413.html
†Department of Industrial Engineering and Operations Research, Columbia University, New York,

NY 10027 (lisa@ieor.columbia.edu). The research of this author was supported by NSF grant EIA-
9973858.

‡Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139
(jorlin@mit.edu). The research of this author was supported by ONR grant N00014-96-1-0051.

145

146 LISA FLEISCHER AND JAMES B. ORLIN

demand γi with Γ := maxi |γi|. Nodes with nonzero demands are called terminals.
Terminals with negative demand are called sources; those with positive demand are
called sinks. The sum of supplies over all terminals equals zero. We use k to denote
the number of terminals.

A (static) transshipment problem is defined on an arbitrary network with edge
capacity vector u and with node demand vector γ. The objective is to find a flow
f : E → R≥0 satisfying all demands. We define fji = −fij for ij ∈ E. In other
words, we seek f such that fe ≤ ue for all edges e and

∑
j fji = γi for all nodes i.

A transshipment over time is a time-dependent flow f(t) through N that satis-
fies a nonzero supply and demand vector γ associated with V and completes by a
time bound T . A transshipment over time obeys edge capacity constraints f(t) ≤ u
for all t ∈ {1, 2, . . . , T}, flow conservation constraints

∑r
t=1

∑
j fji(t) ≤ γi for all

r ∈ {1, 2, . . . , T} and all i ∈ V with ri ≥ 0. For i with ri < 0 we have ri ≤∑r
t=1

∑
j fji(t) ≤ 0. A transshipment over time also depletes all supplies and satis-

fies all demands by time T :
∑T
t=1

∑
j∈V fji(t) = γi for all i ∈ V . Although this is

a discrete-time model for transshipment over time, the algorithm we present solves
both the discrete-time and continuous-time problems, since, as noted in [5, 7], an op-
timal solution to the discrete-time problem can be easily transformed into an optimal
solution for the continuous-time problem.

The quickest transshipment problem is a transshipment over time that depletes
all supplies and satisfies all demands in the minimum possible time. The quickest
transshipment defines the minimum time T needed for the existence of a feasible
transshipment. Solving a quickest transshipment problem with fixed supplies is useful
for clearing a network after a communication breakdown.

To further generalize this model, we can include costs. Let ce be a cost function
associated with edge e. In the problem discussed in this paper, ce is a function of
the flow on the edge at a particular moment of time, but ce is not a function of time.
The cost of a transshipment f which completes by time T is

∑T
t=1

∑
e∈E ce(fe(t)). A

minimum cost transshipment over time is a quickest transshipment that has minimum
cost. In this paper, we present an algorithm to solve this problem that first finds the
minimum time necessary for feasibility. Given this time bound, the algorithm then
finds a minimum cost solution. The converse problem, finding a quickest, minimum
cost transshipment, can be solved by first determining the minimum cost solution by
assuming an infinite (or sufficiently large) time horizon and then searching for the
minimum time bound that has a solution with this cost.

In this paper, we consider convex cost functions that are piecewise linear between
successive integers. Since we want an integral solution, the assumption that the cost
function is piecewise linear between integers is natural. It is useful to make this
assumption, since now there always exists an integer solution that matches the cost
of the cheapest fractional solution.

A flow over time is called stationary if it is the same in each time period. For
each of the above problems, we can define a corresponding stationary version of the
problem where, in addition to the above requirements, we insist the flow must be
stationary. Fleischer [5] shows that every feasible transshipment over time problem
has a stationary solution. The stationary problem can be solved by multiplying all arc
capacities by T and solving the resulting static transshipment, which is a maximum
flow problem. Since all original supplies, demands, and capacities are integers, the
solution is an integral flow. The stationary flow is then obtained by dividing this flow
by T . This flow has the property that the rate of flow entering a terminal node i

OPTIMAL ROUNDING OF FRACTIONAL FLOWS OVER TIME 147

is γi
T . A feasible stationary flow that completes in the minimum possible time can

then be found using either discrete Newton’s method [20] or binary search to find the
minimum feasible time T . The following theorem is a result from [5].

Theorem 1.1. A quickest stationary flow can be found using at most min{log T,

m, log(mΓU)
1+log(mΓU)−log(mU)} maximum flow computations.

The maximum flow algorithm with the lowest complexity with respect to m and

n is by Goldberg and Rao and runs in O(mmin{m1/2, n2/3} log n2

m logU) time [10].

1.2. Our contribution. Many of the applications of flows over time need in-
tegral solutions: when flows are of large objects, such as airplanes or train engines,
the demands are often small, so fractional solutions are not very useful. By rounding
carefully, we show how a stationary flow f can be transformed into an integral flow
over time maintaining the same flow balance constraints and such that this new flow
g satisfies c(g) ≤ c(f). The rounding technique is simple and operates in two stages
on the support graph of edges with fractional flow. First, cycles in this graph are
canceled, and then the edges in each tree are rounded in linear time, starting from a
leaf and proceeding in a depth or breadth first manner. It is useful to think of the
interval of time [0, T) as a cycle on a clock. A circular interval is an interval modulo
T . If the stationary flow in arc e has value fe per time unit, then the integral solution
we find has the property that the flow in arc e has value
fe� in a circular interval
and value �fe for the remainder of the time (also a circular interval).

Our rounding technique takes only linear time. Since finding a quickest stationary
flow takes more time, this implies that a quickest transshipment can be found in the
same asymptotic time as finding the minimum feasible time T . This is the fastest
known algorithm to solve this problem and improves upon [5] by almost a factor of
k. If there is just one sink, then it is known [5] that the minimum feasible time T can
be found in strongly polynomial time using one call of the parametric maximum flow
algorithm of Gallo, Grigoriadis, and Tarjan [9]. Thus, our rounding technique implies
an improvement over the previous best algorithm by a factor of k [5] for this special
case as well. The algorithm of Gallo, Grigoriadis, and Tarjan is based on the Goldberg
and Tarjan [11] maximum flow algorithm and runs in the same asymptotic time. In
addition, since there always exists a minimum (convex) cost transshipment over time
that is stationary (see section 2), our rounding technique yields a fast algorithm for
computing an integral minimum (convex) cost transshipment over time.

The model discussed here solves the problem when the demands and the supplies
are fixed at the beginning of the problem and there is no external change to these
values. However, everyday usage often involves continuous streams of traffic. In
section 4, we show that all the algorithms presented here allow for constant streams
of external flow into or out of any node in the network.

The model as presented in this paper can also handle finite buffer capacity at
the nonsource nodes of the network. Suppose storage capacity at node i is ai. Then
we have the additional constraint (in the discrete-time model) that

∑r
t=1

∑
j fji(t) ≤

ai + γi for all r ∈ {1, . . . , T} and all i ∈ V with ri ≥ 0. A stationary flow never
increases the absolute value of supply or demand at any node, and our rounding
technique maintains this property. Together with Theorem 2.1 this implies that our
solution solves the problem for all a ≥ 0.

1.3. Related work. The fastest previous algorithm for solving an integral,
quickest transshipment problem with zero transit times uses O(k log Γ) maximum
flow computations and k minimum cost flow computations [5]. Previously, Hoppe

148 LISA FLEISCHER AND JAMES B. ORLIN

and Tardos [13] described the only known polynomial time algorithm to solve the
quickest transshipment problem with general transit times. However, their algorithm
repeatedly calls the ellipsoid method as a subroutine, so it is theoretically slow and
also impractical. Their work improves on the theoretical complexity of previous ap-
proaches, however. Traditional approaches to solving the transshipment over time
consider the discrete-time model and make use of the time-expanded network—a net-
work containing T copies of the original network [4, 18]. For fine discretizations, this
network is very large and not practical to work with.

A slightly different type of convex cost flow over time problem is discussed by
Orlin [16]. He looks at infinite horizon convex cost flows over time and describes
an algorithm that finds the minimum average convex cost circulation that repeats
indefinitely in a network with general transit times.

Our paper and the above mentioned results all look at discrete-time problems.
Flows over time have also been considered in the continuous-time setting [2, 3, 17,
19]. Most of the work in this area has examined networks with time-varying edge
capacities, storage capacities, or costs. The focus of this research is on proving the
existence of optimal solutions for classes of time-varying functions and proving the
convergence of algorithms that eventually find solutions. These algorithms are not
polynomial and implementations do not seem able to handle problems with more than
a few nodes. For the case in which capacity functions are constant, Fleischer and
Tardos [7] extend the polynomial, discrete-time transshipment over time algorithm
in [13] to work in the continuous-time setting.

There are some additional continuous-time problems that have polynomial time
algorithms. A universally quickest transshipment is a quickest transshipment that si-
multaneously minimizes the amount of excess left in the network at every moment of
time. An optimal solution may require fractional flow sent over fractional intervals of
time. There is a two-source, two-sink example for which a universally quickest trans-
shipment does not exist [5]. Hajek and Ogier [12] describe an algorithm that solves
the universally quickest transshipment problem in networks with multiple sources, a
single sink, and zero transit times. Their algorithm uses O(n) maximum flow com-
putations. In [5], it is described how this problem can be solved in O(mn log(n2/m))
time—using the parametric maximum flow algorithm of Gallo, Grigoriadis, and Tarjan
in conjunction with maximum flows. This algorithm extends easily to the minimum
(convex) cost problem by substituting minimum (convex) cost flow computations for
maximum flow computations.

Another continuous-time problem that has a polynomial time algorithm is the
universally quickest flow problem with piecewise constant capacity functions with at
most l breakpoints. This is the universally quickest transshipment problem with just
one source and sink. However, now capacities are allowed to vary over time. For this
problem, Ogier [15] describes an algorithm that uses nl maximum flow computations
in a graph on nl nodes and (m+n)l arcs. In [6], it is shown how this can be improved
to run in the same asymptotic time as one preflow-push maximum flow computation
in a graph with nl nodes and (n+m)l arcs. A preflow-push maximum flow algorithm
runs in O(mn log(n2/m)) time [11] on a graph with n nodes and m arcs.

2. Minimum cost flows over time. As stated in section 1.1, any feasible
transshipment has a stationary solution. In this section, we show that there is always
a minimum cost solution that is stationary.

Theorem 2.1. There is an optimal stationary solution to any feasible minimum
(convex) cost transshipment over time, even with nonzero buffer capacity.

OPTIMAL ROUNDING OF FRACTIONAL FLOWS OVER TIME 149

Proof. Let f be any minimum convex cost transshipment over time. Let fT

be defined by fTe :=
∑T
t=1 fe(t), the total flow on edge e. By convexity of the cost

function, the cost of this flow is at least as large as the cost of the flow g = fT /T ,
which is a feasible, stationary transshipment over time. Note that this argument is
independent of

∑r
t=1

∑
j fji(t), the amount of buffer capacity used at node i at time

r.
A stationary, minimum (convex) cost transshipment over time can be obtained

by computing a minimum cost static transshipment in the network with capacities
multiplied by T and with the cost function c̄ defined by c̄(f) = c(f/T) × T . Note
that c̄ is convex when c is and that c̄ is minimized at f if and only if c is minimized
at f/T . Thus the resulting flow f , when divided by T , gives a feasible flow over time
whose cost equals c̄(f) and is minimum among all feasible transshipments over time.

3. Rounding a stationary flow. In this section, we explain how to transform
a stationary transshipment into an integral transshipment over time that has the
same cost. We do this by considering the graph G′ consisting of just the arcs with
fractional flow. The algorithm proceeds in two stages: it first cancels cycles in this
graph. Then, one arc at a time, it determines an interval in which the flow on the arc
will be rounded up to the nearest integer. For the remaining time, the flow on this
arc is rounded down to the nearest integer. This is done in a way to ensure that the
total flow sent along the arc in the interval [0, T) remains the same. Since flow costs
are linear between successive integers, this then implies that the cost of sending the
flow remains the same.

3.1. Canceling fractional flow cycles. If the graph consisting of the edges
with fractional flow contains cycles, then these cycles can be canceled by sending flow
around the cycle until the flow on at least one edge in the cycle becomes integral.
Iterating, we eventually obtain a stationary flow such that the graph consisting of
edges with fractional flow is acyclic. Such a solution is a basic feasible solution for
the stationary problem.

Let f denote the optimal stationary flow. Let
f� denote f rounded down and let
�f denote f rounded up. Consider the stationary transshipment problem with the
additional constraints
f� ≤ f ≤ �f. Since we assume that costs are linear between
successive integers, this modified problem is a minimum cost flow problem even if the
original problem has convex costs. We can convert f to a basic feasible flow for this
problem by canceling fractional flow cycles. We can cancel a cycle by sending flow in
either direction. Optimality conditions for minimum cost flow imply that if a cycle
exists, the cost of the cycle (obtained by summing the costs on all edges of the cycle)
must be 0. Thus flow can be canceled in either direction while maintaining the cost of
the initial solution. It takes O(n) time to find an (undirected) cycle in G′ using depth
first search, and at most m cycles are canceled since each cancellation removes at least
one edge from the set of edges with fractional flow. Thus all cycles are cancelled in
O(mn) time.

For the minimum cost transshipment over time problem, this step is not a bot-
tleneck, since computing a minimum cost flow takes more time. However, for the
quickest transshipment, the maximum flow algorithm of Goldberg and Rao [10] may
be faster on some inputs than the above cycle canceling step. Hence, we note that it
is possible to cancel cycles in O(m log n) time using the dynamic tree data structure
of Sleator and Tarjan [21]. The details of this procedure are described in their paper.

150 LISA FLEISCHER AND JAMES B. ORLIN

3.2. Rounding fractional flow. In this section, we assume that G′, the graph
of fractional flows, is a forest. The rounding algorithm considers each tree in this
forest independently, roots each tree at an arbitrary leaf, and rounds the flow on the
edges in a tree starting from the root and spreading throughout the tree in a breadth
first manner. For each arc, the rounding procedure determines an interval in which
the flow on the arc will be rounded up to the nearest integer. For the remaining time,
the flow on this arc is rounded down to the nearest integer. The algorithm does this
while ensuring that the total flow sent along the arc in the interval [0, T) remains the
same. This then implies that the cost of sending the flow remains the same.

We assume a tree F of fractional flows is stored in a simple data structure so
that the tree has a root, which is assigned to be a node with degree one. Thus the
root node has a single child. The arcs are oriented according to the direction that the
fractional flow travels down the arc. Without loss of generality, we assume all arcs in
F are directed away from the root: each arc with fractional flow α directed toward
the root is replaced by two arcs, one with unit flow directed towards the root and
one with fractional flow 1 − α directed away from the root. Only the new arc with
fractional flow is kept in the tree.

For each arc (i, j) of the tree, we define the predecessor of j to be i and denote this
by pred(j) = i. Suppose that nodes 2, 3, 4, and 5 are the children of node 1. We refer
to node 2 as the left child of node 1 and refer to node 3 as the right sibling of node
2. Similarly node 4 (respectively, node 5) is the right sibling of node 3 (respectively,
node 4).

Recall that we are considering all addition and intervals to be modulo T so that
if a > b, then [a, b) denotes the circular interval [a, T) ∪ [0, b).

Let x(u, v) denote the fractional part of the flow in arc (u, v). Let d(v) denote
the fractional part of the rate of increase of supply at node v. That is, d(v) is
the fractional part of γv

T . Rounding the flows entering and leaving v implicitly has
the effect of rounding the rate of increase of supply at v. We make this explicit to
provide a cleaner explanation by introducing a new node v′ with arc (v, v′) and set
x(v, v′) = d(v). The transformed problem has fractional rates of increase of supply
d′ defined by d′(v) = 0 and d′(v′) = d(v). Rounding up the flow on arc (v, v′) in
the transformed problem corresponds to rounding up the rate of increase of supply at
node v in the original problem. With this transformation, all internal nodes v of F
appear as nonterminal nodes. Thus for all internal nodes of F , the fractional part of
the flow into v equals the fractional part of the sum of flows out of v.

Let a(u, v) denote the “start time” for the round up of arc (u, v). It is the
first period in the cyclic interval in which flow in (u, v) is rounded up. Let b(u, v)
denote the start time for the round down of flow in arc (u, v). Given a(u, v), we
define b(u, v) := a(u, v) + T × x(u, v) mod T . The flow on arc (u, v) is rounded
up in the circular interval [a(u, v), b(u, v)) and rounded down in the circular interval
[b(u, v), a(u, v)).

We determine a(u, v) as follows and discuss a concrete example below and in
Figure 3.1. If u is a node in F with predecessor node w, and v is the left child of u,
then we set a(u, v) = a(w, u). If w is a node with predecessor u, and v is the right
sibling of node w, then we set a(u, v) = b(u,w). Assuming that the stationary flow
comes from a basic feasible solution to a static flow problem with integer data, then
x(u, v)× T is integral, and hence the rounded intervals have integer length.

For example, consider the flow in Figure 3.1. At every unit of time, fractional
flow of value 1/3 is entering node v and flows of 2/3, 1/2, and 1/6 are leaving node v.

OPTIMAL ROUNDING OF FRACTIONAL FLOWS OVER TIME 151

Fig. 3.1. An example of how flow is rounded on a subtree and of the discussion in the proof
of Theorem 3.1. This subtree has the interval [5T/6, T/6) passed to it from higher in the tree. The
rounded flow (top set of intervals) covers the whole interval [0, T) at least once and the key interval
[5T/6, T/6) exactly one more time.

Suppose we have previously rounded the flow in the incoming arc up to the nearest
integer in the interval [5T/6, T/6). Then we round the outgoing flows as follows:
Fractional flow of 2/3 is rounded to 1 from t = 5T/6 to t = T and from t = 0 to
t = T/2 and is rounded down to 0 for the remaining interval [T/2, 5T/6). Fractional
flow of 1/2 is rounded up to 1 in the interval [T/2, T) and is rounded down to 0 in the
remaining interval [0, T/2). Fractional flow of 1/6 is rounded up to 1 in the interval
[0, T/6). Since the sum of the fractional flows leaving v is one more than the amount
of fractional flow entering v, there must be an additional unit of integral flow entering
v at every time step. This additional unit of flow entering v is used to balance the
rounded flows now leaving v.

Each arc (u, v) gets rounded up x(u, v) of the time and rounded down 1− x(u, v)
of the time, thus leading to a net balance of flow out of node u. Also, the upper and
lower bounds on flows are automatically satisfied. So the key issue is whether there
is balance in each time unit.

Theorem 3.1. The rounding algorithm transforms a basic, feasible stationary
transshipment into a feasible integral transshipment over time in O(n) time.

Proof. Let v be a nonterminal node of F with r children {u1, . . . , ur} and with
pred(v) = w. At every unit of time, the stationary flow f satisfies the following: the
fractional part of flow into v equals the fractional part of the sum of flows leaving v.
More precisely,

r∑

i=1

x(v, ui)× T = x(w, v)× T + κT, κ ∈ Z+.

This means that the amount of integral flow arriving at node v before the rounding
is κT more than the sum of integral flows leaving node v. Thus at any moment of
time, we can round up the flow on at least κ of the fractional edges leaving node v
and supply the flow on these edges with the extra integer flow arriving at v. In fact,
for our rounding scheme to maintain flow conservation without using node storage,
our solution needs to round up the flow on κ arcs leaving v at all times and on an
additional arc leaving v for the interval of time in which we rounded up the flow on the
arc entering v. This is exactly what our rounding scheme accomplishes. Starting at the
moment of time when we round up the flow on the arc entering v, we schedule rounded
up flow contiguously, tracing the [0, T) interval κ times and the [a(w, v), b(w, v))
interval an additional time by starting at a(w, v), scheduling unit flow of total value

152 LISA FLEISCHER AND JAMES B. ORLIN

∑r
i=1 T × x(v, ui), and ending at b(w, v). (Note that a(w, v) +

∑r
i=1 T × x(v, ui) =

b(w, v) mod T .)
If v is a source or sink, then v is a leaf (or the root) of F , by construction, and the

only rounding we do is on one arc entering (or leaving) v. In this case, the rounding
amounts to rounding the rate of increase of supply at v, and we needn’t worry about
balance at every time step.

The rounding procedure spends a constant amount of time considering each arc
in each fractional tree. Hence, the total time to perform the rounding is bounded by
the number of nodes in the graph.

4. Incoming and outgoing traffic. While solving a transshipment problem
with fixed supplies and demands is useful for clearing a network after a communication
breakdown, everyday usage more often involves continuous streams of traffic. In
this section, we show that the algorithms presented in this paper, like the algorithm
in [5, 12], allow for constant streams of flow into or out of any node in the network.

The algorithm described in the preceding sections first finds a fractional flow that
is constant over time and then rounds the flow. To find the fractional flow, we sum
up capacities per unit time over the length of our time horizon. We treat the constant
rate external flows in the same manner, multiplying the value of the rate of incoming
flow by T and treating these as additional supplies and demands. Any solution to the
resulting transshipment over time problem will have constant rates of flow from these
sources and sinks of additional value equal to the rate of external flow to these nodes.
Since we assume all rates of flow are integral, this contributes only integral flows to
the resulting flow over time and hence is not affected by the rounding.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] E. J. Anderson and P. Nash, Linear Programming in Infinite-Dimensional Spaces, John
Wiley & Sons, New York, 1987.

[3] E. J. Anderson and A. B. Philpott, A continuous-time network simplex algorithm, Networks,
19 (1989), pp. 395–425.

[4] J. E. Aronson, A survey of dynamic network flows, Ann. Oper. Res., 20 (1989), pp. 1–66.
[5] L. Fleischer, Faster algorithms for the quickest transshipment problem with zero transit times,

in Proceedings of the Ninth Annual ACM–SIAM Symposium on Discrete Algorithms, San
Francisco, CA, January 25–27, 1998, SIAM, Philadelphia, PA, pp. 147–156; SIAM J. Op-
tim., submitted.

[6] L. Fleischer, Universally maximum flow with piecewise constant capacities, in Integer Pro-
gramming and Combinatorial Optimization: 7th International IPCO Conference, Graz,
Austria, June 1999, G. Cornuejols, R. E. Burkard, and G. J. Woeginger, eds., Lecture
Notes in Comput. Sci. 1610, Springer-Verlag, New York, pp. 151–165.

[7] L. Fleischer and É. Tardos, Efficient continuous-time dynamic network flow algorithms,
Oper. Res. Lett., 23 (1998), pp. 71–80.

[8] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton,
NJ, 1962.

[9] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan, A fast parametric maximum flow algorithm
and applications, SIAM J. Comput., 18 (1989), pp. 30–55.

[10] A. V. Goldberg and S. Rao, Beyond the flow decomposition barrier, J. ACM, 45 (1998),
pp. 783–797.

[11] A. V. Goldberg and R. E. Tarjan, A new approach to the maximum flow problem, J. ACM,
35 (1988), pp. 921–940.

[12] B. Hajek and R. G. Ogier, Optimal dynamic routing in communication networks with con-
tinuous traffic, Networks, 14 (1984), pp. 457–487.

[13] B. Hoppe and É. Tardos, The quickest transshipment problem, in Proceedings of the 6th
Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, January 22–

OPTIMAL ROUNDING OF FRACTIONAL FLOWS OVER TIME 153

24, 1995, SIAM, Philadelphia, 1995, pp. 512–521.
[14] F. H. Moss and A. Segall, An optimal control approach to dynamic routing in networks,

IEEE Trans. Automat. Control, 27 (1982), pp. 329–339.
[15] R. G. Ogier, Minimum-delay routing in continuous-time dynamic networks with piecewise-

constant capacities, Networks, 18 (1988), pp. 303–318.
[16] J. B. Orlin, Minimum convex cost dynamic network flows, Math. Oper. Res., 9 (1984), pp. 190–

207.
[17] A. B. Philpott, Continuous-time flows in networks, Math. Oper. Res., 15 (1990), pp. 640–661.
[18] W. B. Powell, P. Jaillet, and A. Odoni, Stochastic and dynamic networks and routing,

in Network Routing, Handbooks in Oper. Res. Management Sci. 8, M. O. Ball, T. L.
Magnanti, C. L. Monma, and G. L. Nemhauser, eds., North-Holland, Amsterdam, The
Netherlands, 1995, pp. 141–295.

[19] M. C. Pullan, An algorithm for a class of continuous linear programs, SIAM J. Control
Optim., 31 (1993), pp. 1558–1577.

[20] T. Radzik, Parametric flows, weighted means of cuts, and fractional combinatorial optimiza-
tion, in Complexity in Numerical Optimization, P. M. Pardalos, ed., World Scientific, River
Edge, NJ, 1993, pp. 351–386.

[21] D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput. System
Sci., 26 (1983), pp. 362–391.

[22] G. I. Stassinopoulos and P. Konstantopoulos, Optimal congestion control in single desti-
nation networks, IEEE Trans. Comm., 33 (1985), pp. 792–800.

OVERLAP AND COVERING POLYNOMIALS
WITH APPLICATIONS TO DESIGNS AND SELF-DUAL CODES∗

GERALD J. JANUSZ†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 2, pp. 154–178

Abstract. For a binary linear code C and a vector u, we define and study the overlap polynomial
F
(u)
C (Z,X,D) which is a sum over the words in C of terms that takes into account the weight of the

element of C and its overlap with the vector u. We obtain a generalized MacWilliams relation between

F
(u)
C (Z,X,D) and F

(u)

C⊥ (Z,X,D) and a recursion equation for determining the overlap polynomials

of a self-dual code in terms of overlap polynomials corresponding to vectors of lower weight. We
apply the recursion to determine the weight enumerators of the cosets of the (putative) [72, 36, 16]
self-dual code of Type II, up to a small number of parameters.

The overlap polynomials are expressed in terms of covering polynomials g
(u)
C (Z,X) that are

sums over the elements of C that cover u. The design strength δ(C) is closely related to the covering
polynomials and we use them to get a sharpened version of the Assmus–Mattson theorem. In many
cases we are able to conclude that certain codes hold δ(C)-designs but no weight class holds a 1+δ(C)-
design. We study the design strength of self-dual, doubly even extremal codes and, in the case of
length divisible by 24, improve the well-known estimate δ(C) ≥ 5 to state that either δ(C) ≥ 7 or
δ(C) = 5 and no weight class holds a 6-design; similar results hold in the case of other lengths.

Examples are given using a self-dual code [32, 16, 8], certain cyclic subcodes of the punctured
Reed–Muller code R(2,m)∗, the first order RM-code, and a [16, 9, 4] code in which all six of the
weight classes hold 2-designs but one nontrivial weight class also holds a 3-design.

Key words. self-dual code, design, extremal code, weight enumerator

AMS subject classifications. 94B05, 94B60, 94B65, 05B05

PII. S0895480198341766

Introduction. We study binary, linear codes using two related enumerator poly-
nomials which we call an overlap polynomial and a covering polynomial. The overlap

polynomial F
(u)
C (Z,X,D) is defined for a code C and any vector u and takes into ac-

count the elements of C having a given weight and given overlap with the vector u; the
covering polynomial g

(u)
C (Z,X) takes into account the elements of C having a given

weight and covering the vector u. See section 1 for precise definitions. We obtain a

MacWilliams-type relation between F
(u)
C (Z,X,D) and F

(u)

C⊥ (Z,X,D) and exploit it
to obtain similar relations for the covering polynomials.

The covering polynomials lend themselves naturally to the study of the design
properties of a code because a code holds a t-design if and only if the correspondence

u→ g
(u)
C (Z,X) is constant on the vectors of weight r for each r ≤ t. If δ(C) denotes

the largest integer t such that C holds t-designs in each weight class then there exist

vectors u and v each of weight 1+δ(C) such that the difference g
(u)
C (Z,X)−g

(v)
C (Z,X)

is nonzero. We study how this polynomial factors and the investigation leads to a
proof of the Assmus–Mattson theorem in a sharper form than usual (Theorem 2.6). In
cases where the Assmus–Mattson bound gives the exact value of δ(C), we may assert
that no nontrivial weight class holds a t-design with t > δ(C). The Assmus–Mattson
theorem gives information about the design strength of self-dual extremal codes of
Type II; namely, δ(C) ≥ 5− 2ε. Our results sharpen this as follows.

∗Received by the editors July 13, 1998; accepted for publication (in revised form) September 22,
1999; published electronically April 6, 2000.

http://www.siam.org/journals/sidma/13-2/34176.html
†Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, IL 61801

(janusz@math.uiuc.edu).

154

OVERLAP AND COVERING POLYNOMIALS 155

Theorem 2.10. Let C be an extremal, self-dual code with all weights divisible by
4 and length n = 24µ+ 8ε, ε = 0, 1, or 2. Then either δ(C) ≥ 7− 2ε or δ(C) = 5− 2ε
and no nontrivial weight class holds a 1 + δ(C)-design.

In particular for an extremal code C with length divisible by 24, if one nontrivial
weight class holds a 6-design, then every weight class holds a 7-design. There are no
known examples where an extremal code holds a 6-design in any nontrivial weight
class. This result makes it less likely that any exist.

In Corollary 2.8 we give another solution of Research Problem 6.1 in [M-S, p. 161]
which asserts w1 < d1+ s− εC and d1 < w1+ s′− εC⊥ except in certain specific trivial
situations. Here C has s nonzero weights and minimum distance d1 while C⊥ has
s′ nonzero weights and minimum distance w1 and εC , εC⊥ are 1 or 0 depending on
whether the all 1s vector is or is not in C or C⊥. According to the preface of the third
edition of [M-S] this problem has been previously solved.

For applications to self-dual codes we obtain a recursion equation (3.1) that de-

termines the covering polynomials g
(u)
C (Z,X) in terms of covering polynomials corre-

sponding to vectors of lower weight by a system of linear equations. We apply this to
the classic problem of the possibility of a self-dual, extremal Type II code C72 with
parameters [72, 36, 16]. The question of the existence of such a code was raised by
Neal Sloane in 1977 and remains open today. The weight enumerator of the code is
uniquely determined by Gleason’s theorem. Our contribution to this problem is to
give the weight enumerators for all the cosets u+C72. The cosets of weight 1 through
5 and 11 and 12 are determined unambiguously with no parameters. However, the
determination is made on the assumption that there is a coset of weight 11 or 12.
Even this is not known for certain, as the current information states that the cover-
ing radius is between 10 and 12. The weight enumerators for cosets of weights 6, 7,
9, and 10 involve one undetermined parameter, and the weight 8 cosets require two
parameters. The method for doing this computation is to use the recursion equation

to determine the overlap polynomials F
(u)
C (Z,X,D) for wt(u) ≤ 12 and from them

determine the weight enumerator of u+ C72.
A number of other examples are given. An observation that seems to be new

is the existence of a code where every weight class holds a 2-design and exactly 1
(of the 5) nontrivial weight classes holds a 3-design. Another is a subcode of the
punctured Reed–Muller code R(2,m)∗ whose dual, for m = 9, has weights n = 511
and every integer on the interval [5, 506]. These weight classes all hold 2-designs
but none hold 3-designs. Another example gives a code with parameters [32, 16, 8] in
which the recursion equation is used to prove the design strength δ = 1, whereas the
Assmus–Mattson theorem gives no information.

Notation and known results. The field of 2 elements is denoted by F and
the space of row vectors with n coordinates is denoted by Fn. For a vector u =
(u1, . . . , un) ∈ Fn, the support of u is the set supp(u) = {i : 1 ≤ i ≤ n, ui 	= 0}. The
weight of a vector u is the number of nonzero coordinates and is denoted by wt(u).
We use the term u covers v to mean supp(v) ⊆ supp(u) and we write v ≤ u in this
case. The vector 1 = (1, 1, . . . , 1) is the all one vector; the complement of a vector u
is ū = 1+ u. The coordinatewise product of u and v is denoted by

u ∗ v = (u1, . . . , un) ∗ (v1, . . . , vn) = (u1v1, . . . , unvn).

For any subspace C ⊆ Fn, the dual space is

C⊥ = {x ∈ Fn : x · c = 0, for all c ∈ C},

156 GERALD J. JANUSZ

where the dot product is defined as usual by

x · c = (x1, . . . , xn) · (c1, . . . , cn) =
n∑

i=1

xici.

If C ⊆ Fn is any linear code, the homogeneous weight enumerator of C is the
polynomial

WC(X,Y) =
∑

w∈C
Xn−wt(w)Y wt(w);

the (inhomogeneous) polynomial WC(Y) =
∑
w∈C Y wt(w) is also called the weight

enumerator of C
For convenient reference we list the following well-known facts.
Theorem M (MacWilliams formula). For a vector v ∈ Fn,

∑

u∈ Fn
(−1)u·vXn−wt(u) Y wt(u) = (X + Y)n−wt(v)(X − Y)wt(v).

For any function f defined on Fn, the Hadamard transform of f is the function
f̂ defined on Fn by

f̂(v) =
∑

u∈ Fn
(−1)u·vf(u).

Theorem T (transform property). For any linear code D ⊆ Fn and any function
f defined on Fn, there holds the relation

∑

v∈D
f̂(v) = |D|

∑

u∈D⊥
f(u).

1. Overlap and covering polynomials. We define the (homogeneous) overlap
polynomial associated with the linear code C corresponding to a vector u ∈ Fn to be

F
(u)
C (Z,X,D) =

∑

w∈C
Zn−wt(w)Xwt(w)−wt(w∗u)(X +D)wt(w∗u).

Note that when D = 0, this is independent of u and equals the homogeneous
weight enumerator of C. The inhomogeneous polynomial obtained by setting Z = 1
is also called the overlap polynomial corresponding to u.

We list a few elementary properties of overlap polynomials to indicate how they
might be useful.

Proposition 1.1. Let u ∈ Fn and C be any linear subcode of Fn. The overlap

polynomial F
(u)
C (Z,X,D) has the following properties:

(i) F
(ū)
C (Z,X,D) = F

(u)
C (Z,X +D,−D).

(ii) The homogeneous weight enumerator of the coset u+ C (a nonlinear code) is
given by

Wu+C(A,B) =

(
B

A

)wt(u)

F
(u)
C (A,B, (A2 −B2)/B).

OVERLAP AND COVERING POLYNOMIALS 157

(iii) The subcode C ∩ C ∗ u consisting of all elements of C covered by u has weight
enumerator

WC∩C∗u(A,B) = F
(u)
C (A, 0, B).

(iv) The code C ∗ u obtained by projecting C onto the coordinates of u has weight
enumerator

WC∗u(A,B) = A−n+wt(u) F
(u)
C (A,A,B −A)/F

(u)
C (1, 1,−1).

Proof. One easily verifies that wt((ū) ∗ v) = wt(v) − wt(u ∗ v) for any vectors
u, v ∈ Fn so that property (i) follows immediately. Property (ii) requires the equation
wt(u+ c) = wt(u) + wt(c)− 2wt(u ∗ c) which holds for any u, c ∈ Fn.

The overlap weight enumerator is defined as a sum over all elements of C; if that
sum is restricted to those elements c of C that are covered by u, we get a sum of terms

Zn−wt(w)Xwt(w)−wt(w∗u)(X +D)wt(w∗u) = Zn−wt(w)(X +D)wt(w).

The function F
(u)
C (Z, 0, D) is the sum of the terms corresponding to elements of C

covered by u so the property (iii) holds after renaming the variables.
The linear mapping w → w ∗ u carries C onto C ∗ u with kernel C ∩ C ∗ ū. In

the sum of terms Zn−wt(w∗u)(Z + D)wt(w∗u) for the polynomial F
(u)
C (Z,Z,D), each

element w ∗ u is covered exactly |C ∩ C ∗ ū| times as w ranges over C. The number
of elements in this intersection is its weight enumerator evaluated at A = B = 1,

namely, F
(ū)
C (1, 0, 1) by property (iii). This number equals F

(u)
C (1, 1,−1) by property

(i) and so (iv) follows.

Transform of the overlap polynomials. We regard F
(u)
C (Z,X,D) as a func-

tion of u ∈ Fn and compute the Hadamard transform of this function.
Proposition 1.2. The Hadamard transform of F (u)(Z,X,D) is given by

F̂
(v)
C (Z,X,D) =

∑

w∈C
w≥v

(2Z)n−wt(w)(2X +D)wt(w)−wt(v)(−D)wt(w).

Proof. From the definition of the transform and the overlap enumerator we have
the equations

F̂
(v)
C (Z,X,D) =

∑

u∈ Fn
(−1)u·v

∑

w∈C
Zn−wt(w)Xwt(w)−wt(w∗u)(X +D)wt(w∗u)

=
∑

w∈C
Zn−wt(w)Xwt(w)

∑

a≤w
(−1)a·v∗w

(
X +D

X

)wt(a) ∑

b≤w̄
(−1)b·v∗w̄,

where for a given w ∈ C we have written u = a+ b with a ≤ w and b ≤ w̄. The inner
sums are evaluated as follows:

∑

b≤w̄
(−1)b·v∗w̄ =

{
2wt(w̄) if v ≤ w,
0 otherwise;

and for fixed w ∈ C and v ≤ w, by the MacWilliams formula

∑

a≤w
(−1)a·v∗w

(
X +D

X

)wt(v∗w)

=

(
1 +

X +D

X

)wt(w)−wt(v∗w)(
1− X +D

X

)wt(v∗w)

.

The result now follows by substitutions and simplification.

158 GERALD J. JANUSZ

Using the transform property and exchange of summation gives us the next corol-
lary.

Corollary 1.3. For any linear codes C, D ⊆ Fn:
(i)

|D|
∑

v∈D⊥
F

(v)
C (Z,X,D) =

∑

u∈D

∑

w∈C
w≥u

(2Z)n−wt(w)(2X +D)wt(w)−wt(u)(−D)wt(u),

(ii)

∑

v∈D⊥
F

(v)
C (Z,X,D) = |D⊥|

∑

w∈C
Zn−wt(w)2−wt(w)

∑

v∈D
v≤w

(2X +D)wt(w)−wt(v)(−D)wt(v).

A useful formula is obtained by applying this computation to the code consisting of
all elements with support in a given set of coordinates.

Corollary 1.4. For any vector u ∈ Fn,

∑

v≤u
F

(v)
C (Z,X,D) = 2wt(u)F

(u)
C (Z,X,D/2).

Proof. Let D = ū ∗ Fn so that D⊥ = u ∗ Fn. Apply Corollary 1.3 (ii) to get

1

2wt(u)

∑

v≤u
F

(v)
C (Z,X,D) =

∑

w∈C
Zn−wt(w)2−wt(w)

∑

v≤w∗ū
(2X +D)wt(w)−wt(v)(−D)wt(v)

=
∑

w∈C
Zn−wt(w)2−wt(w)(2X +D)wt(w)−wt(w∗ū)

∑

v≤w∗ū
(2X +D)wt(w∗ū)−wt(v)(−D)wt(v)

=
∑

w∈C
Zn−wt(w)2−wt(w)(2X +D)wt(w)−wt(w∗ū)(2X +D −D)wt(w∗ū)

=
∑

w∈C
Zn−wt(w)Xwt(w)−wt(w∗u)(X +D/2)wt(w∗u)

= F
(u)
C (Z,X,D/2).

The third equality holds by the binomial theorem.
This relation will allow us to express an overlap weight enumerator corresponding

to u in terms of overlap weight enumerators corresponding to vectors of lower weight.
Definition. For a linear code C and a vector u ∈ Fn, the polynomial

g
(u)
C (Z,X) =

∑

w∈C
w≥u

Zn−wt(w)Xwt(w)−wt(u)

is called the (homogeneous) covering polynomial of u with respect to C.
The next step is to express the overlap polynomials in terms of the covering

polynomials.
Theorem 1.5. For any linear code C ⊂ Fn and vector u ∈ Fn we have

F
(u)
C (Z,X,D) =

∑

v≤u
g
(v)
C (Z,X)Dwt(v).

Our proof requires the following idea.

OVERLAP AND COVERING POLYNOMIALS 159

Let Pr denote the (r+1)-dimensional vector space of polynomials h(D) of degree
at most r. The coefficient field is not particularly relevant but may be taken as the
field of rational functions in X and Z with rational coefficients.

Proposition 1.6. Let Lr be the linear map defined on Pr by Lr(h(D)) =
2r h(D/2). Then Lr has eigenvectors Di, i = 0, 1, . . . , r and corresponding eigen-
values 2r−i. Moreover, Lr − I is a linear transformation mapping Pr onto Pr−1

having the same eigenvectors as Lr and corresponding eigenvalues 2r−i − 1. The null
space of Lr − I is the one-dimensional subspace generated by Dr.

The proof is carried out by direct calculation and is left to the reader.

The reason for introducing the operator Lr is the equation

(Lwt(u) − I)
(
F

(u)
C (Z,X,D)

)
= 2wt(u)F

(u)
C (Z,X,D/2)− F

(u)
C (Z,X,D)

=
∑

v<u

F
(v)
C (Z,X,D),

(1.1)

which is just a restatement of Corollary 1.4.

We apply this to prove Theorem 1.5. The proof is by induction on wt(u). Suppose
u = 0. Then

F
(0)
C (Z,X,D) = WC(Z,X) = g

(0)
C (Z,X)D0,

so the statement holds.

Assume the result for all vectors of weight less than wt(u). There exist some

homogeneous polynomials f
(u)
j (Z,X) such that

F
(u)
C (Z,X,D) =

wt(u)∑

j=0

f
(u)
j (Z,X)Dj .

From (1.1) and induction we have

(Lwt(u) − I)
(
F

(u)
C (Z,X,D)

)
=

wt(u)∑

j=0

(2wt(u)−j − 1)f
(u)
j (Z,X)Dj

=
∑

v<u

F
(v)
C (Z,X,D)

=
∑

v<u

∑

w≤v
g
(w)
C (Z,X)Dwt(w)

=
∑

x<u

(2wt(u)−wt(x) − 1)g
(x)
C (Z,X)Dwt(x).

It follows that, for j < wt(u),

f
(u)
j (Z,X)Dj =

∑

wt(x)=j
x<u

g
(x)
C (Z,X)Dwt(x),

and so the theorem is proved.

160 GERALD J. JANUSZ

Some average values. Here we compute the average value of the covering and
overlap polynomials. Let

0 = d0 < d1 < · · · < ds

be the weights of elements of C, so that ds ≤ n, and let Adi be the number of elements
of weight di in C.

Proposition 1.7. For any linear code C and nonnegative integer k,
(i)

∑

wt(u)=k

g
(u)
C (Z,X) =

s∑

j=0

(
dj
k

)
AdjZ

n−djXdj−k,

(ii)

∑

wt(u)=k

F
(u)
C (Z,X,D) =

k∑

i=0

s∑

j=0

(
n− i

k − i

)(
dj
i

)
AdjZ

n−djXdj−iDi.

Proof. Starting with the definition of the covering polynomials, we obtain
∑

wt(u)=k

g
(u)
C (Z,X) =

∑

wt(u)=k

∑

w∈C
w≥u

Zn−wt(w)Xwt(w)−k

=
∑

w∈C

∑

u≤w
wt(u)=k

Zn−wt(w)Xwt(w)−k

=
∑

w∈C

(
wt(w)

k

)
Zn−wt(w)Xwt(w)−k,

and the statement (i) follows immediately.
For the overlap enumerators, we apply Theorem 1.5 and part (i) of this proposition

to get
∑

wt(u)=k

F
(u)
C (Z,X,D) =

∑

wt(u)=k

∑

v≤u
g
(v)
C (Z,X)Dwt(v)

=

k∑

i=0

∑

wt(v)=i

(
n− i

k − i

)
g
(v)
C (Z,X)Di

=

k∑

i=0

s∑

j=0

(
n− i

k − i

)(
dj
i

)
AdjZ

n−djXdj−iDi.

In the next section we will be concerned with designs held by the words of each
weight in C. If the weight of u is at most the design strength of the code, then the

covering polynomial g
(u)
C (Z,X) is independent of u. The average is then the common

value. We may summarize this as follows.

Corollary 1.8. Suppose all the covering polynomials g
(u)
C (Z,X) are the same

for vectors u of weight r. Then for any vector u of weight r
(i)

g
(u)
C (Z,X) =

(
n

r

)−1 s∑

j=0

(
dj
k

)
AdjZ

n−djXdj−k

OVERLAP AND COVERING POLYNOMIALS 161

and
(ii)

F
(u)
C (Z,X,D) =

(
n

r

)−1 k∑

i=0

s∑

j=0

(
n− i

k − i

)(
dj
i

)
AdjZ

n−djXdj−iDi.

Duality. Our next step is to give a relation between F
(u)
C (Z,X,D) and

F
(u)

C⊥ (Z,X,D) similar to the MacWilliams identity and thereby obtain a functional

equation for this function in the case C = C⊥. The duality property of F
(u)
C (Z,X,D)

is obtained by the usual method using the Hadamard transform. It can also be de-
rived by making a change of variable in the duality theorem proved by Ozeki [Oz] for
Jacobi polynomials.

Let u ∈ Fn be a fixed vector; let h(w) be defined for w ∈ Fn by

h(w) = Zn−wt(w)Xwt(w)−wt(w∗u)(X +D)wt(w∗u).

Proposition 1.9. The Hadamard transform of h(w) is given by

ĥ(v) = (Z+X)wt(u)(Z+X+D)n−wt(u)

(
Z −X −D

Z +X +D

)wt(v)−wt(v∗u)(
Z −X

Z +X

)wt(w∗u)

.

Proof. Starting with the definition of the transform, we obtain

ĥ(v) =
∑

y∈ Fn
(−1)v·yZn

(
X

Z

)wt(y)(
X +D

X

)wt(u∗y)

= Zn
∑

a≤u

∑

b≤ū
(−1)a·v∗u(−1)b·v∗ū

(
X

Z

)wt(a)+wt(b)(
X +D

X

)wt(a)

= Zn
(
1 +

X

Z

)wt(u)−wt(u∗v)(
1− X

Z

)wt(u∗v)(
1 +

X +D

Z

)n−wt(u)−wt(v)+wt(u∗v)

×
(
1− X +D

Z

)wt(v)−wt(u∗v)
.

We wrote y = a+ b with a ≤ u and b ≤ ū. The statement now follows.
Next we obtain the duality formula by applying the Transform property and the

homogeniety of F (u).
Theorem 1.10. For any binary linear code C ⊆ Fn and any vector u ∈ Fn the

following relation holds between the homogeneous overlap enumerators of C and C⊥:

F
(u)

C⊥ (Z,X,D) =
1

|C|
(
Z +X +D

Z +X

)wt(u)

F
(u)
C

(
Z +X,Z −X,

−2ZD

Z +X +D

)
.

This duality relation provides a similar duality relation for the covering polyno-
mials.

Theorem 1.11. For any binary linear code C ⊆ Fn and any vector u ∈ Fn the
following relation holds between the homogeneous covering polynomials of C and C⊥:

|C|(Z +X)wt(u)g
(u)

C⊥ (Z,X) =
∑

v≤u
g
(v)
C (Z +X,Z −X)(−2Z)wt(v).

162 GERALD J. JANUSZ

Proof. Start with the duality equation in Theorem 1.10 and express each side in
terms of the covering polynomials using Theorem 1.5 to get

∑

v≤u

g
(u)

C⊥ (Z,X)Dwt(v) =
1

|C|
(
Z + X + D

Z + X

)wt(u)∑

v≤u

g
(u)
C (Z + X,Z −X)

(−2ZD

Z + X + D

)wt(v)
.

Multiply both sides by (Z + X)wt(u) to get an equality of polynomials of degree
wt(u) in D. The conclusion of the theorem is obtained by equating the coefficients
of Dwt(u).

For the record we also equate the coefficients of the other powers of D.
Corollary 1.12. For each nonnegative integer k ≤ wt(u),

|C|(Z+X)k
∑

v≤u
wt(v)=k

g
(v)

C⊥ (Z,X) =
∑

v≤u
wt(v)≤k

(
wt(u)− wt(v)

k − wt(v)

)
g
(v)
C (Z+X,Z−X)(−2Z)wt(v).

These relations involve the MacWilliams transformation which we formalize as
follows. Let τ be the function defined by

τ(Z) =
Z +X√

2
, τ(X) =

Z −X√
2

,

and on any polynomial h(Z,X),

τ(h(Z,X)) = h(τ(Z), τ(X)).

Note that τ is an automorphism of order 2 of the ring of real polynomials in Z and
X.

Since g
(u)
C (Z,X) is homogeneous of degree n−wt(u), we may rewrite the conclu-

sion of Theorem 1.11 as

τ
(
g
(u)

C⊥ (Z,X)
)
=

2n/2

|C|Zwt(u)

∑

v≤u
(−1)wt(v)(Z +X)wt(v)g

(v)
C (Z,X).(1.2)

2. Designs. We refer to the set of all elements of a given weight in a code C as
a weight class of C. A weight class is trivial if its elements have weight either 0 or n
(the length of the code). Other weight classes are nontrivial. A weight class W of C
holds a t-design if the number of elements in W that cover a vector u of weight t is
independent of the particular vector of weight t. The design strength δ(C) of C is the
largest integer δ such that every weight class of C holds a δ-design.

The weights of elements of C are 0 = d0 < d1 < · · · < ds; let C⊥ have the weights
0 = w0 < w1 < · · · < ws′ so ws′ ≤ n. For a vector u ∈ Fn, let bC [i, u] be the number
of elements in C of weight di that cover u. Thus bC [i, u] ≥ 0 and

g
(u)
C (Z,X) =

s∑

i=0

bC [i, u]Zn−diXdi−wt(u).(2.1)

If u 	= 0, the sum begins at i = 1 because bC [0, u] = 0. If 1 ∈ C, then ds = n and
bC [s, u] = 1 for every vector u. If the elements of weight di in C hold a t-design, then

OVERLAP AND COVERING POLYNOMIALS 163

bC [i, u] has the same value for every element u of weight t. Thus the coefficient of
Zn−diXdi−t in

g
(u)
C (Z,X)− g

(v)
C (Z,X)(2.2)

is 0 for all vectors u and v of weight t and conversely. We summarize as follows.

Proposition 2.1. (i) The elements of weight di in C hold a t-design if and only
if the coefficient of Zn−diXdi−t in (2.2) is 0 for all vectors u and v having weight t.

(ii) The design strength δ(C) is the largest integer δ such that the difference of
covering polynomials in (2.2) equals 0 for all vectors u, v ∈ Fn with wt(u) = wt(v) ≤
δ.

Remark. δ(C) = δ(C⊥).
Theorems 1.5 and 1.10 can be used to quickly prove the (well-known) fact that

δ(C) = δ(C⊥). Since the covering polynomial g(u)
C (Z,X) depends only on the weight of

vector u when wt(u) ≤ δ(C), the same is true of the overlap polynomials F (u)
C (Z,X,D)

by Theorem 1.5. Then apply Theorem 1.10 to get an expression for F
(u)

C⊥ (Z,X,D)

which depends only on the weight of u. Since g
(u)

C⊥ (Z,X) is the coefficient of the highest

power of D in the overlap polynomial, it follows that the covering polynomials for C⊥
depend only on the weight of u. Hence δ(C) ≤ δ(C⊥). Repeat the argument starting
with C⊥ in place of C to get the reverse inequality.

We will show below that the difference (2.2) has a factorization, in the case
wt(u) = wt(v) = 1 + δ(C), from which conclusions can be drawn about the size of
δ(C).

The most important theorem relating codes and designs is the following.

Theorem (Assmus and Mattson [A-M]). Let C be a binary linear code with
nonzero weights d1 < d2 < · · · < ds and let its dual C⊥ have nonzero weights w1 <
w2 < · · · < ws′ . Let t be an integer with 0 < t < d1 such that the number of weights
wi that are less than or equal to n− t is at most d1 − t. Then the code words of any
given weight in C and in C⊥ form a t-design.

If t is a number satisfying the hypothesis of the Assmus–Mattson theorem, then
the conclusion is equivalent to the inequality t ≤ δ(C). We will present a proof of the
Assmus–Mattson theorem in a slightly stronger form. We begin with some properties
of the difference of covering polynomials.

Factorization of differences of covering polynomials. Throughout the re-
mainder of this section let r = 1 + δ(C).

Lemma 2.2. For any u, v ∈ Fn of weight r = 1+ δ(C), the covering polynomials
satisfy

g
(u)

C⊥ (Z,X)− g
(v)

C⊥ (Z,X) =
(−2Z)r
|C|(Z +X)r

(
g
(u)
C (Z +X,Z −X)− g

(v)
C (Z +X,Z −X)

)
.

Proof. For 0 ≤ k < r, all covering polynomials corresponding to vectors of weight
k are equal, and so it follows from Theorem 1.5 applied to both C and C⊥ that

F
(u)
C (Z,X,D)− F

(v)
C (Z,X,D) =

(
g
(u)
C (Z,X)− g

(v)
C (Z,X)

)
Dr,

F
(u)

C⊥ (Z,X,D)− F
(v)

C⊥ (Z,X,D) =
(
g
(u)

C⊥ (Z,X)− g
(v)

C⊥ (Z,X)
)
Dr.

164 GERALD J. JANUSZ

Next apply Theorem 1.10 to get

F
(u)

C⊥ (Z,X,D))− F
(v)

C⊥ (Z,X,D)

=
1

|C|
(
Z +X +D

Z +X

)r (
F

(u)
C (Z +X,Z −X,D′)− F

(v)
C (Z +X,Z −X,D′)

)
,

where D′ = −2ZD/(Z + X + D). Express each side in terms of the g-polynomials
from the relations just above to obtain the conclusion.

The conclusion of the previous lemma may be written using the MacWilliams
transformation τ as

(2.3)

g
(u)

C⊥ (Z,X)− g
(v)

C⊥ (Z,X) =
1

|C|
(−2Z
Z +X

)r
(
√
2)n−r τ

(
g
(u)
C (Z,X)− g

(v)
C (Z,X)

)
.

We elaborate on this idea to get some explicit factors of the difference of covering
polynomials.

Proposition 2.3. Let u and v be vectors of weight r = 1 + δ(C). Then

g
(u)
C (Z,X)− g

(v)
C (Z,X) = Zn−dm(Z +X)n−wm′−rXdq−r(Z −X)wq′−r P (u,v)

C (Z,X),

g
(u)

C⊥ (Z,X)− g
(v)

C⊥ (Z,X) = Zn−wm′ (Z +X)n−dm−rXwq′−r(Z −X)dq−r P (u,v)

C⊥ (Z,X),

where P
(u,v)
C (Z,X) and P

(u,v)

C⊥ (Z,X) are either both 0 or both nonzero homogeneous
polynomials not divisible by Z, Z +X, X, or Z −X and satisfying

P
(u,v)

C⊥ (Z,X) = λ τ
(
P

(u,v)
C (Z,X)

)
, λ =

(−1)r
|C|

(√
2
)n+dm−dq−wm′+wq′

.

When g
(u)
C (Z,X)− g

(v)
C (Z,X) 	= 0, the exponents are determined as follows:

(i) q is the smallest index such that bC [q, u] − bC [q, v] 	= 0 and q′ is the smallest
index such that bC⊥ [q′, u]− bC⊥ [q′, v] 	= 0;

(ii) m is the largest index such that bC [m,u]− bC [m, v] 	= 0 and m′ is the largest
index such that bC⊥ [m′, u]− bC⊥ [m′, v] 	= 0;

(iii) For any vectors u and v of weight r, the indices satisfy
(a) 1 ≤ q ≤ m ≤ s with m < s if the all ones vector is in C.
(b) 1 ≤ q′ ≤ m′ ≤ s′ with m′ < s′ if the all ones vector is in C⊥.

Proof. Begin by expressing the difference as

A = g
(u)
C (Z,X)− g

(v)
C (Z,X) = Za(Z +X)bXc(Z −X)e P

(u,v)
C (Z,X)

for some nonnegative integers a, b, c, e, and some homogeneous polynomial P not
divisible by any of the factors Z,X,Z +X,Z −X. In the same manner write

B = g
(u)

C⊥ (Z,X)− g
(v)
C⊥(Z,X) = Za

′
(Z +X)b

′
Xc′(Z −X)e

′
P

(u,v)
C⊥ (Z,X).

Starting from (2.3), we obtain

B =
1

|C|
(−2Z
Z +X

)r
(
√
2)n−rτ(A)

=
(−1)r(√2)n+r

|C| Zb+r(Z +X)a−rXe(Z −X)c τ
(
P

(u,v)
C (Z,X)

)
.

OVERLAP AND COVERING POLYNOMIALS 165

The polynomials PC and PC⊥ are not divisible by any of the linear factors Z, X,
Z +X, Z −X, and τ permutes these factors (up to constant multiples); thus τ (PC⊥)
is not divisible by any of these linear factors. We may draw two conclusions: First,

λ τ
(
P

(u,v)
C (Z,X)

)
= P

(u,v)

C⊥ (Z,X)

for some constant λ. Using the fact that P is homogeneous of degree n−r the constant
is found to be as stated in the proposition.

Second, the exponents of the linear factors must be the same on each side of this
equation. Thus

a′ = b+ r, b′ = a− r, c′ = e, and e′ = c.(2.4)

Next appeal to the explicit form of the covering polynomials given in (2.1) to see

g
(u)
C (Z,X)− g

(v)
C (Z,X) =

s∑

i=1

(bC [i, u]− bC [i, v])Zn−diXdi−r.

Thus the exact exponent of Z dividing this difference is a = n − dm and the exact
exponent of X is c = dq−r where m and q as defined in the statements (i) and (ii). In
the same way, examine the difference of the covering polynomials for C⊥ to conclude
a′ = n−wm′ and c′ = wq′ − r. Now combine this information with the relations (2.4)
to obtain the exponents as stated in the conclusion of the proposition. Note that
when the all ones vector is in C, then ds = n and bC [s, u] = bC [s, v] = 1 and so m < s.
Similarly m′ < s′ if 1 ∈ C⊥.

In the presence of some additional hypothesis, the exponents appearing in the
factorization may be described more precisely.

Corollary 2.4. Keep the notation of Proposition 2.3.
(i) If all weights in C are divisible by an even integer k, then n − wm′ = wq′ ,

P
(u,v)
C (Z,X) is a polynomial in Zk and Xk, and

g
(u)
C (Z,X)− g

(v)
C (Z,X) = Zn−dmXdq−r(Zk −Xk)wq′−rh(Z,X)

for some polynomial h(Z,X).
(ii) If all weights in C⊥ are divisible by an even integer k, then n − dm = dq,

P
(u,v)

C⊥ (Z,X) is a polynomial in Zk and Xk, and

g
(u)

C⊥ (Z,X)− g
(v)

C⊥ (Z,X) = Zn−wm′Xwq′−r(Zk −Xk)dq−rh⊥(Z,X)

for some polynomial h⊥(Z,X).
Proof. If n = kt − j for integers t and j and all weights in C are divisible by k,

then ZjXr g
(u)
C (Z,X) is a polynomial in Zk and Xk (see (2.1)) and so

ZjXr
(
g
(u)
C (Z,X)− g

(v)
C (Z,X)

)
= M(Z,X)(2.5)

is a homogeneous polynomial that satisfies M(Z,X) = M(Z, ωX) for any complex
kth root of unity ω. If (Z − X)a is the exact power of Z − X dividing M(Z,X),
then the substitution of ωX for X shows that the exact power of Z − ωX dividing
M(Z,X) is also the ath power. Hence, (Zk −Xk)a is the product of all these factors
of M(Z,X) and a = n− wm′ − r = wq′ − r. The result follows.

166 GERALD J. JANUSZ

Bounds on δ(C). The factorizations in Proposition 2.3 contain enough infor-
mation to prove the Assmus–Mattson theorem and even a bit more. We first require
an elementary lemma.

Lemma 2.5. If f(Z,X) = c1 Zk−i1Xi1 + · · · + cm Zk−imXim is a polynomial
equal to a sum of exactly m nonzero terms, cj Z

k−ijXij , and if f(Z,X) is divisible
by (Z − αX)k for α 	= 0 then k + 1 ≤ m.

Proof. The statement is obvious for k = 1 since a single term cannot be divisible
by Z − αX. For k > 1, factor out a suitable power of X to achieve f(Z, 0) 	= 0,
and then take the derivative with respect to X. The number of nonzero terms is
reduced by one and the power of Z − αX is reduced by one. The inequality follows
by induction.

Definition. For a linear code C let εC = 1 if the all one vector 1 ∈ C and 0
otherwise.

Theorem 2.6. (i) The design strength δ(C) satisfies the inequalities

w1 − s+ εC ≤ δ(C) and d1 − s′ + εC⊥ ≤ δ(C).

(ii) If w1 − s + εC = δ(C), then no nontrivial weight class of C holds a 1 + δ(C)-
design.

(iii) If d1−s′+ εC⊥ = δ(C), then no nontrivial weight class of C⊥ holds a 1+δ(C)-
design.

Proof. Since δ = δ(C) is the largest integer such that the difference (2.2) of
covering polynomials is 0 for all pairs u, v of vectors of equal weight ≤ δ, there must
be some pair of vectors of weight r = 1 + δ such that

∆gC = g
(u)
C (Z,X)− g

(v)
C (Z,X) 	= 0.

Let p denote the exact number of nonzero terms (of the form cjZ
n−djXdj−r) in ∆gC .

With m and q as defined in Proposition 2.3 we see there are at most m−q+1 nonzero
terms in ∆gC , so

p ≤ m− q + 1 ≤ s− εC .

Lemma 2.5 and the factorization in Proposition 2.3 imply the inequality wq′−r+1 ≤ p.
Since r = 1 + δ(C) and w1 ≤ wq′ , we obtain the inequalities wq′ − p ≤ δ(C) and

w1 − s+ εC ≤ wq′ − s+ εC ≤ wq′ −m+ q − 1 ≤ wq′ − p ≤ δ(C).(2.6)

In the analogous manner we obtain

d1 − s′ + εC⊥ ≤ dq − s+ εC⊥ ≤ dq −m′ + q′ − 1 ≤ dq − p′ ≤ δ(C),(2.7)

where p′ is the number of nonzero terms in the difference of the covering polynomials
for u and v relative to C⊥. We have proved

δ(C) ≥ max{w1 − s+ εC , d1 − s′ + εC⊥}.

which we refer to as the Assmus–Mattson bounds on δ(C).
Now suppose equality holds in one case, say, δ(C) = w1 − s + εC . Then equality

holds at each point in (2.6); we must have q′ = 1 and p = s− εC ; that is, the number
of nonzero terms in ∆gC is as large as possible, one for every weight dj excluding ds
if 1 ∈ C. For every index j, the coefficient bC [j, u]− bC [j, v] of Zn−djXdj−r is nonzero,

OVERLAP AND COVERING POLYNOMIALS 167

except ds when ds = n. By Proposition 2.1(i), no nontrivial weight class in C can
hold a 1 + δ(C)-design.

Similarly if d1 − s′ + εC⊥ = δ(C) then no nontrivial weight class of C⊥ holds a
1 + δ(C)-design.

Remark. There is just a bit more available information provided by the proof.
For example, if u and v are vectors of weight 1+ δ(C) such that the difference (2.1) is
nonzero, and if the equality δ(C) = w1−s+ εC holds, then q′ = 1 and p = m− q+1 =
s − εC . It follows that q = 1 and m = s − εC . We also see from the definitions in
Proposition 2.3 that whenever the difference (2.1) is nonzero, then in fact for every
nontrivial weight dj , the number of elements of weight dj in C that cover u is different
from the number of elements of weight dj that covers v. In other words, the same
pair u, v can be used to disprove the 1 + δ(C)-design property in each weight class
simultaneously.

We give an example to show that a code may have a weight class holding a t-
design with t > δ(C). In view of Theorem 2.6, the Assmus–Mattson bound cannot be
an equality.

Example 2.7. Here is a code C with parameters [16, 9, 4] and its dual C⊥ with
parameters [16, 7, 6] with the property that δ(C) = 2 and the words of weight 8 in
C hold a 3-design; the words of weight 8 in C⊥ also hold a 3-design. C is the code
constructed from the incidence matrix (taken mod 2) of the 2-(16, 4, 1) design given
in [CRC, p. 11]. One generating matrix for the code is

G = [I9 |A] ,
where I9 is the 9 × 9 identity matrix and A is the 9 × 7 matrix whose rows are the
binary expansions (padded with zeros on the left) of 7, 41, 91, 117, 81, 61, 107, 103,
31. The weight enumerators of C and C⊥ are

WC(1, X) = 1 + 20X4 + 160X6 + 150X8 + 160X10 + 20X12 +X16,

WC⊥(1, X) = 1 + 48X6 + 30X8 + 48X10 +X16.

The Assmus–Mattson bounds give 6− 6+ 1 = 1 ≤ δ(C). The code is small enough so

that all the covering polynomials g
(u)
C (X) = g

(u)
C (1, X) for wt(u) = 2 can be computed;

they are all equal to

X2 + 20X4 + 35X6 + 60X8 + 11X10 +X14.

Hence the design strength is δ(C) ≥ 2. Next compute the covering polynomials

g
(u)

C⊥ (X) = g
(u)

C⊥ (1, X) for the smaller dual code and discover that there are two such
polynomials as u ranges over all elements of weight 3:

g1 = 3X5 + 12X7 +X13, g2 = 2X3 + 3X5 + 10X7 +X13.

Since they are not all equal, the code does not hold 3-designs in all weight classes.
However, in all these covering polynomials for elements of weight 3, the coefficient
of X5 is 3; thus any weight 3 vector is covered exactly by 3 elements of weight 8
(= 5 + wt(u)) in C⊥. Thus the elements of weight 8 in C⊥ hold a 3-design. A similar
direct check verifies that the same is true of the elements of weight 8 in C.

There is another way to see that the elements of weight 8 in C⊥ hold a 3-design.
The 30 elements of weight 8 span a 5-dimensional code D = [16, 5, 8] with weight
enumerator WD(1, X) = 1 + 30X8 +X16. Its dual has weight enumerator

WD⊥(1, X) = 1 + 140X4 + 448X6 + 870X8 + 448X10 + 140X12 +X16.

168 GERALD J. JANUSZ

Thus the dual of D has s′ = 6 so the Assmus–Mattson bound yields 8− 6 + 1 = 3 ≤
δ(D). Hence the elements of weight 8 in D hold a 3-design and these are the elements
of weight 8 in C⊥.

Theorem 2.6 implies restrictions on the minimum weights of C and C⊥ in terms
of the number of weights. We use it to obtain a solution of the Research Problem
(6.1) in [M-S, p. 166] which has previously been solved by I. I. Dumer and also by
C. Roos, according to [M-S, Preface to 3rd ed., p. xii].

Corollary 2.8. Let C be binary linear code such that neither C nor C⊥ contain
the code consisting of all even-weight vectors in Fn. Then

w1 < d1 + s− εC , and d1 < w1 + s′ − εC⊥ .

Proof. First we argue that the design strength δ(C) cannot be as large as the
minimum weight d1 of a nonzero word in C so that δ(C) < d1. Suppose δ(C) ≥ d1.
Then, since there is a vector of weight d1 in C, every vector u ∈ Fn of weight d1 is
covered by the same number of elements in C having weight d1, namely one. It follows
that every vector of weight d1 is in C. If d1 = n, then C = {0,1} and C⊥ is the code
consisting of all even-weight vectors in Fn. If 1 ≤ d1 < n then C contains the set of
all even-weight vectors because the set of all vectors of any given weight (excluding 0
and n) generates a code containing even-weight subcode. Thus C or C⊥ is either Fn

or the even-weight subcode, and these cases have been excluded.
Now since δ < d1, we apply Theorem 2.6 to conclude

w1 − s+ εC ≤ δ(C) < d1.

Using C⊥ in place of C yields d1 − s′ + εC⊥ ≤ δ(C) < w1.
Now we consider the factorization from Proposition 2.3 in the case of self-dual

codes.
Theorem 2.9. Assume C = C⊥ is a self-dual code and k is the greatest common

divisor of the weights of C (so then k = 2 or 4). Define q as in Proposition 2.3.
(i) If u and v are vectors of weight r = 1 + δ(C)

g
(u)
C (Z,X)− g

(v)
C (Z,X) = Zdq Xdq−r(Zk −Xk)dq−rH(Z,X)

for a homogeneous polynomial H(Z,X) relatively prime to ZX(Zk −Xk).
(ii) Moreover H(Z,X) is a polynomial in Zk and Xk and

τ (H(Z,X)) = (−1)rH(Z,X).

(iii) If k = 2, then

H(Z,X) = γ(Z2 +X2)a(Z4 − 6Z2X2 +X4)b
∏

α

hα(Z,X)

where either hα(Z,X) is a constant or

hα(Z,X) = (α2(α2 − 1)2(X8 + Z8)− (α8 + 14α4 + 1)(Z6X2 + Z2X6)

+ 2(α8 + 7α6 + 7α2 + 1)Z4X4,

α subject to α2(α2 − 1)(α4 + 6α2 + 1) 	= 0.
Here γ is a constant and a and b are nonnegative integers with b ≡ 1 + δ(C)
(mod 2).

OVERLAP AND COVERING POLYNOMIALS 169

(iv) If k = 4, then

H(Z,X) = γ(Z8 +14Z4X4 +X8)a(Z12− 33Z8X4− 33Z4X8 +X12)b
∏

α

Hα,

where Hα is a τ -invariant, homogeneous polynomial, either constant or of
degree 24, whose roots are complex numbers not equal to 0,±1, or any root of
either polynomial z8+14z4+1, or z12−33z8−33z4+1. Here γ is a constant
and a, b are nonnegative integers with b ≡ 1 + δ(C) (mod 2).

Proof. Since C is self-dual, all elements have even weight and thus k is an even
integer. A theorem of Gleason, Pierce, and Turyn [M-S, p. 597] implies k = 2 or 4.
Since n and every dj is a multiple of k, it follows from (2.1) that

Xr
(
g
(u)
C (Z,X)− g

(v)
C (Z,X)

)
= M(Z,X)(2.8)

for a polynomial M(Z,X) in Zk and Xk. Since M(Z,X) = M(Z,−X), it follows
that the power of (Z + X) dividing M(Z,X) equals the power of (Z − X) dividing
M(Z,X). The factorization in Proposition 2.3 implies this common power is dq − r

and so n − dm = dq. In case k = 2, then H(Z,X) = P
(u,v)
C (Z,X) as in Proposition

2.3 and the conclusion τ(H(Z,X)) = (−1)rH(Z,X) holds because the constant λ
in Proposition 2.3 reduces to (−1)r for a self-dual code (di = wi and |C| = 2n/2).
Moreover H(Z,X) is a polynomial in Z2 and X2.

If k = 4, then

(Z2 +X2)dq−rH(Z,X) = P
(u,v)
C (Z,X).

One checks that τ(Z2+X2) = Z2+X2 so τ(H(Z,X)) = (−1)rH(Z,X) follows from

the corresponding property of P
(u,v)
C (Z,X) given in Proposition 2.3. Furthermore

ZdqXdq (Z4 −X4)H(Z,X)

is a polynomial in Z4 and X4 (because dq is divisible by 4) and so H(Z,X) is also.
Now we turn to the description of the possible H. This is accomplished by

examining the factors as determined by the set of roots. If Z − αX is a factor of
H(Z,X) we say α is a root of H. Let R be the set of roots of H.

Assume k = 2. Because H is a polynomial in Z2, whenever α is a root, then
so is −α so R is closed under multiplication by −1. In other words, if M is the
transformation of complex numbers M(α) = −α, then R is closed under the action
of M .

Let T be the transformation of complex numbers 	= −1 defined by

T (α) =
1− α

1 + α
.

Using the identity

τ(X − αZ) = −1 + α√
2

(X − T (α)Z)

and the equation τ(H) = ±H, we conclude R is also invariant under transformation
by T . The group of linear fractional transformations G generated by T and M has

170 GERALD J. JANUSZ

order 8. For a complex number α, let G(α) = {B(α) : B ∈ G} be the orbit of α under
G. Each orbit G(α) corresponds to a polynomial

pα(X,Z) =
∏

β∈G(α)

(X − βZ).

This polynomial is a relative invariant for τ and is always a polynomial in X2 and
Z2. There are only a finite number of α for which G(α) has fewer than eight elements.
These are found by solving the seven quadratic equations

B(x) =
a+ bx

c+ dx
= x, B ∈ G − identity.

One then forms the orbit of a solution and determines the corresponding polynomial.
The orbits of length less than 8 are represented by 1, i, and 1 +

√
2 giving rise to the

polynomials

p1 = X2 − Z2, pi = X2 + Z2, p1+
√

2 = X4 − 6X2Z2 + Z4.

The first two are invariant under τ ; the last is changed to its negative by τ . If α has
an orbit of 8 elements, the polynomial pα has degree 8 and has the form described
above. Statement (iii) now follows.

For the case k = 4, let M(α) = iα and T as above. In this case the group G
generated by M and T has order 24 and leaves R invariant; the orbits of complex
numbers have length 24 except for a finite number of cases. The orbits with length
less than 24 are represented by the elements

1,
1 + i√

2
,

(
1 + i

2

)
(1 +

√
3), 1 +

√
2.

The corresponding polynomial factors are

X4 − Z4, X4 + Z4, X8 + 14X4Z4 + Z8, X12 − 33X8Z4 − 33X4Z8 + Z12

with each being τ -invariant except the last which is transformed into its negative by
τ . An orbit of length 24 gives rise to a factor of H having degree 24. Statement (iv)
is a consequence of these facts.

2.1. Extremal codes. The computations of the previous subsection can be
used to refine some known results about the design strength of extremal, doubly even
self-dual codes.

Recall that a self-dual code C with parameters [n, n/2, d] is doubly even if all
weights are multiples of 4. By the result of MacWilliams and Sloane [M-S, p. 624],
such a code satisfies

d ≤ 4
[n

24

]
+ 4.

C is called extremal when equality holds. It is known that a doubly even self-dual
code must have length divisible by 8 [M-S, Chapter 19]. The Assmus–Mattson bounds
imply δ(C) ≥ 5− 2ε. We give more precise information in the following.

Theorem 2.10. Let C be a doubly even, extremal self-dual code with parameters
[n, n/2, d] and length n = 24µ+ 8ε, ε = 0, 1, or 2. Then either

OVERLAP AND COVERING POLYNOMIALS 171

(1) δ(C) ≥ 7− 2ε,
or

(2) (i) δ(C) = 5 − 2ε, and (ii) no nontrivial weight class of C holds a 1 + δ(C)-
design.

Proof. The parameters of an extremal code require d = d1 = 4µ+ 4 and so

s ≤ n− 2d1

4
+ 2 = 4µ+ 2ε(2.9)

since the right side counts the multiples of 4 on the interval [d1, n − d1] plus 1 for
weight n.

Select two vectors u and v of weight r = 1 + δ(C) such that ∆gC = g
(u)
C (Z,X)−

g
(v)
C (Z,X) 	= 0. Then ∆gC is homogeneous of degree n − r by the definition. From
the factorization given in Theorem 2.9(i) (with k = 4) we obtain

deg(∆gC) = n− r = 6dq − 5r + deg(H(Z,X)).(2.10)

Since all the weights of elements of C are multiples of 4, it follows that dq ≥ d1+4(q−1)
with equality when q = 1. From (2.10) and r = 1 + δ(C) follows

4δ(C) ≥ 6dq − n− 4 + deg(H) ≥ 6d1 + 24(q − 1)− n− 4 + deg(H)

with equality if q = 1. Now substitute n = 24µ+ 8ε and d1 = 4µ+ 4 to conclude

δ(C) ≥ 6q − 1− 2ε+

(
1

4

)
deg(H).

Thus if there is any u and v such that ∆gC 	= 0 and q = q(u, v) > 1, then δ(C) ≥ 11−2ε,
and statement (1) holds. Thus we may assume that q = 1. Then we have the equality

δ(C) = 5− 2ε+

(
1

4

)
deg(H).

The description of H in Theorem 2.9(iv) implies either H is a constant or deg(H) ≥ 8.
If H is a constant, then δ(C) = 5 − 2ε and the Assmus–Mattson bound gives the
exact design strength. By Theorem 2.6(ii), no nontrivial weight class of C can hold
a 1 + δ(C)-design; thus statement (2) is true. If H is not constant, then deg(H) ≥ 8
and so δ(C) ≥ 7− 2ε and statement (1) holds.

Remarks. There are no examples known where statement 2 is false. In fact there
are no examples known (apart from the trivial cases C or C⊥ is contained in {0,1})
where an extremal code holds a 6-design. The search for a 6-design in an extremal,
doubly even code of length divisible by 24 seems unlikely to be successful; for if such a
code has one nontrivial weight class holding a 6-design, then every weight class must
hold a 7-design.

We give an example to illustrate the general results.
Example 2.11. We consider a class of cyclic subcodes of the punctured second

order Reed–Muller code R(2,m)∗. A number of these, each with slightly different
parameters, are described in MacWilliams and Sloane [M-S, Chapter 8, section 7 and
Chapter 15, section 4]. We focus on the code C described in [M-S, p. 451] having
parameters [n = 2m − 1, 2m, d1] with m any odd integer at least 5 and three nonzero
weights given by

d1 = 2m−1 − 2(m−1)/2, d2 = 2m−1, d3 = 2m−1 + 2(m−1)/2.

172 GERALD J. JANUSZ

The weight enumerator is determined in [M-S, p. 451]. The dual code C⊥ has w1 = 5
and so δ(C) ≥ 2. If δ(C) ≥ 3 then the words of weight 5 in C⊥ would hold a 3-design;
the usual divisibility test shows this is impossible. Thus δ(C) = 2.

By Corollary 2.4 and using the particular constants for this code, the difference
polynomial, for elements u and v of weight r = 3, is

∆g = g
(u)
C (Z,X)− g

(v)
C (Z,X) = αZd1−1Xd1−3(Zk −Xk)2 k = 2(m−1)/2,

for some integer α. Note that the undetermined polynomial h(Z,X) in Corollary
2.4 is seen to be a constant here by degree considerations. We may apply (2.3) to
conclude that

g
(u)

C⊥ (Z,X)− g
(v)

C⊥ (Z,X) = λZ3(Z2 −X2)d1−4(Z −X)[(Z +X)k − (Z −X)k]2

where λ is some constant. We have not been able to deal with this product for general
m but for the particular cases m = 5, 7, 9, 11, this polynomial has nonzero coefficients
of Zn−iXi−3 for every i on the interval 5 ≤ i ≤ n − i. In these cases it follows that
every integer on the interval [5, n− 5] is a weight of C⊥ (and together with n are all
the weights) and the corresponding weight classes of C⊥ hold 2-designs but none hold
a 3-design (Proposition 2.1).

These examples illustrate the great disparity in the two test conditions giving the
Assmus–Mattson bounds. While w1 − s = 5 − 3 = δ(C) gives equality, the condition
for the dual code reads d1 − s′ + 1 ≤ δ(C). For m = 5, 7, 9, 11, these inequalities
are, respectively, −10, −62, −262, −1047 ≤ δ(C). Even though these are far from
equality, the conclusion that no nontrivial weight class holds a 1 + δ(C)-design is still
valid for C⊥.

Example 2.12. Let C be first order Reed–Muller code with parameters [n =
2k−1, k, 2k−2] for k ≥ 3. It weights are d1 = 2k−2 and d2 = n. It is known that
every weight class of C and C⊥ holds a 3-design; the minimum weight in C⊥ is 4 and
Assmus–Mattson gives δ ≥ 3. Since δ(C) = δ(C⊥) and C⊥ contains an element of
weight 4, we cannot have δ(C) ≥ 4. Thus δ(C) = 3 and we have the case of equality
w1 − s + εC = δ(C) in Theorem 2.6. Thus no nontrivial weight class of C can hold
a 4-design. By an analysis similar to that in the preceding example, one shows no
nontrivial weight class of C⊥ holds a 4-design. The key idea is that for two vectors u
and v of weight 4 we have

g
(u)

C⊥ (X)− g
(v)

C⊥ (X) = λZ4(Z +X)n−d1−4(Z −X)n−d1−4 = λZ4(Z2 −X2)n/2−4,

with λ some constant. There exist u and v with λ 	= 0 and then this difference has
exactly n/2− 4+ 1 = 2k−2− 3 nonzero terms of the shape ct Z

n−wtXwt−4. We know
1 ∈ C⊥ and, excluding 0 and n, the weights of C⊥ are even integers on the interval
[4, n−4]. There are (n−6)/2 = 2k−2−3 even integers on the interval, so it follows that
every nontrivial weight class corresponds to a nonzero term in the difference of the
covering polynomials. We conclude no nontrivial weight class of C⊥ holds a 4-design
(by Proposition 2.1).

3. Application to self-dual codes. Suppose C is a self-dual code with param-
eters [n, n/2, d]. We can take advantage of the duality principle (Theorem 1.10) and
the equation in Theorem 1.5 to express conditions on the coefficients of the overlap

polynomials for C and determine them in some cases. The idea is to compute F
(u)
C

from a knowledge of the F
(v)
C for wt(v) < wt(u) and some other data. Of course it

OVERLAP AND COVERING POLYNOMIALS 173

is sufficient to determine the covering polynomials in view of Theorem 1.5. We focus

our attention on determining the g
(u)
C (Z,X). We first make some initial observations.

The overlap polynomial corresponding to the zero vector 0 is just the weight
enumerator; that is,

F
(0)
C (Z,X,D) = g

(0)
C (Z,X) =

∑

w∈C
Zwt(w)−0X0D0 = WC(1, Z).

The process of determining the overlap and covering polynomials begins with the
weight enumerator.

For a vector u of weight 1, we have from (1.2)

Z τ
(
g
(u)
C (Z,X)

)
= −g(u)

C (Z,X)(Z +X) +WC(1, Z).

Assuming that the weight enumerator is explicitly known, this equation provides linear

constraints on the unknown coefficients of g
(u)
C .

We go to the general case, rather than deal with this special case any further.

We will use the form of g
(u)
C (Z,X) in (2.1) given in terms of constants bC [i, u]

which we now write as b[i, u] since C = C⊥.
Begin by expanding the term involving τ

(
g(u)(Z,X)

)
as an explicit polynomial.

The Krawtchouk notation is convenient. Define the integers Pq(t;m) by the generating
function

(Z −X)t(Z +X)m−t =
m∑

q=0

Pq(t;m)Zm−qXq.

The explicit form is

Pq(t;m) =

q∑

j=0

(−1)j
(
t

j

)(
m− t

q − j

)
, q = 0, 1, . . . ,m.

Of course we follow the usual convention that
(
t
j

)
= 0 if t < j. This representation

can be used in the description of the terms in (2.1) above.
Recursion Equation 3.1. Let C be a self-dual binary code of length n and let

u be a vector in Fn of weight r. Let the covering polynomial g(u)(Z,X) be given with
coefficients b[i, u] as in (2.1). For u 	= 0, b[0, u] = 0. For any u, b[s, u] = 1. The
remaining b[i, u], 1 ≤ i < s, satisfy linear equations obtained by equating to zero the
coefficients of powers of X in the following polynomial:

n−r∑

q=0

∑

0≤t≤s
dt≥r

b[t, z]Pq(dt − r;n− r)

Xq

+ (−1)r−12(n/2)−r(1 +X)r
∑

0≤t≤s
dt≥r

b[t, z]Xdt−r

−2(n/2)−r
r−1∑

k=0

(−1)k(1 +X)k
∑

w≤u
wt(w)=k

g(w)(1, X).

174 GERALD J. JANUSZ

The polynomial is obtained by expressing τ(g(u)(Z,X)) using the Krawtchouk nota-
tion, applying (1.2) and rearranging some of the terms, and then setting Z = 1.

We generally have n − r + 1 equations but the number of unknowns is difficult
to predict, in general. For wt(u) = 1 there are s − 1 unknowns. When wt(u) ≥ 2
there may be more unknowns. At least for small r, the system is overdetermined but
must have a solution for any given code. Condition (i) of Proposition 1.1 indicates
that the recursion need only be applied up to the mid-point of the weights and by
symmetry all others will be obtained. This system will have a unique solution if
wt(u) ≤ δ(C). Of course in that case we know the covering polynomial in this case
from the computation of the average given in Corollary 1.8(i).

We illustrate the process for very small weights. Let wt(u) = 1. The recursion
equation involves the unknowns b[t, u] and the sum of the g(w)(1, X) for wt(w) <
wt(u) = 1; only g(0)(1, X) appears in this term. The system of linear equations for
the unknowns b[i, u] is obtained by setting the coefficients of distinct powers of X
equal to 0: recall that b[0, u] = 0 and b[s, u] = 1:

dj − 1, 1 ≤ j ≤ s− 1, 0 = |C|b[j, u] + 2
∑s
t=1 Pdj−1(dt − 1;n− 1)b[t, u],

dj , 0 ≤ j ≤ s, 0 = |C|b[j, u]− |C|Adj + 2
∑s
t=1 Pdj (dt − 1;n− 1)b[t, u],

other exponents, q, 0 =
∑s
t=1 b[t, u]Pq(dt − 1;n− 1).

In some situations, this system has a unique solution. In general, the system has
some rank ρ ≤ s − 1 and ρ of the variables can be expressed as linear forms in the
remaining s−1−ρ variables. We illustrate the next step under the assumption that the
first ρ variables b[1, u], . . . , b[ρ, u] can be expressed in terms of b[ρ+1, u], . . . , b[s−1, u].
(I know of no example where this is not the case.) Another level of subscripting would
be necessary to illustrate the most general possibility. The system produces

b[i, u] = αi +

s−1∑

t=ρ+1

βi,tb[t, u], 1 ≤ i ≤ ρ,

where the rational numbers αi and βi,t depend only on the parameters of the code,
n, dj , and Adj ; that is, these depend only on the weight enumerator WC(1, X).

Now substitute these values of b[i, u] into the definition of g(u)(1, X) to get

g(u)(X) =

s∑

t=1

b[t, u]Xdt−1 = G1(X) +

s−1∑

t=ρ+1

b[t, u]pt(X),

where

G1(X) = Xn−1 +

ρ∑

i=1

αiX
di−1,

pt(X) = Xdt−1 +

ρ∑

i=1

βi,tX
di−1, ρ+ 1 ≤ t ≤ s− 1.

We emphasize that the polynomials G1(X) and pt(X) are independent of the partic-
ular vector u so long as wt(u) = 1.

Now move on to compute g(u)(X) for wt(u) = 2. The recursion equation requires
the sum of the terms g(w)(X) for wt(w) = 1 and w ∈ S(u). This sum is

∑

wt(w)=1
w≤u

gw(X) =
∑

wt(w)=1
w≤u

{
G1(X) +

s−1∑

t=ρ+1

b[t, w]pt(X)

}

OVERLAP AND COVERING POLYNOMIALS 175

= 2G1(X) +

s−1∑

t=ρ+1

B[t, u] pt(X),

where

B[t, u] =
∑

w≤u
wt(w)=1

b[t, w].

Regard B[ρ+1, u], . . . , B[s−1, u] as parameters involved in the evaluation of g(u)(X).
By substituting this value for

∑
g(w)(X) into the recursion equation, we obtain a

polynomial, involving polynomials G1(X) and pt(X) independent of u, the unknowns
b[1, u], . . . , b[s−1, u], and parameters B[ρ+1, u], . . . , B[s−1, u], all of whose coefficients
equal 0. This is a linear system subject to the same considerations just made. It is a bit
cumbersome to write this system explicitly but it lends itself to machine computation.

Example 3.1. Consider a self-dual code with parameters [32, 16, 8] and weight
enumerator

W (X) = 1 + 364X8 + 2048X10 + 6720X12 + 14336X14 + 18598X16 + · · ·+X32.

Such a code exists; see [C-S, p. 1325]. Thus s = 10 and d1 − s + 1 = −1 so the
Assmus–Mattson theorem does not give any information about δ(C). However, the
recursion equation for the covering polynomials corresponding to elements of weight
1 has the unique solution

g
(u)
C (1, X) = 91X7 + 640X9 + 2520X11 + 6272X13 + 9299X15 + 8062X17

+4200X19 + 1408X21 + 273X23 +X31.

Thus δ(C) ≥ 1. For vectors of weight 2, the solution of the equations for g(u)(X) are
not unique and one easily checks numerical conditions to verify that the code does
not hold 2-designs. Thus δ(C) = 1.

4. The [72, 36, 16] problem. Consider the (putative) extremal, doubly even,
self-dual code C72 with parameters [72, 36, 16]. The question of the existence of such a
code is a long standing problem that has been considered by many researchers. (See
[M-S, p. 626] and [A-P] and some references therein.) We present some facts here
that are a consequence of the recursion equation with the hope that they may be of
some value in the construction of the code or proving its nonexistence.

We use slightly inaccurate terminology by referring to “the code” as if it exists.
One may carry out many computations based on the recurrence equation, but one

has no idea of the value of some of the information so obtained. Our choice here is to
present the weight enumerators of the cosets u + C72. It is known that the covering
radius of C72 lies between 10 and 12 [A-P] so one need only consider cosets of weight
up to 12. (The weight of a coset is the least weight of an element in the coset.)
Assmus and Pless [A-P] also show that the weight enumerator of a coset of weight 11
or 12 (if either exist) is uniquely determined. We determine these enumerators under
the assumption that they exist. For the cosets of weight between 6 and 10, some
parameters remain undetermined: two parameters in the case of the weight 8 coset
and one parameter in the four other cases.

The method for computing the weight enumerators of the cosets is to first de-

termine the overlap polynomial F
(u)
C72

(Z,X,D) for vectors of weight at most 12 using

176 GERALD J. JANUSZ

the recursion equation in section 3. From that and Proposition 1.1(ii), we then ob-
tain an expression for the weight enumerator of the coset. Generally there will be

several constants appearing in F
(u)
C72

(Z,X,D) that can be eliminated from the coset
weight enumerator by assuming u is the element of minimum weight in the coset.
This assumption will force certain coefficients to equal 0.

In the listing below, W (X) is the weight enumerator of the code; the cosets of
weight at most 5 have uniquely determined weight enumerators because the code
has δ(C) = 5. The formula for these cosets is given in Corollary 1.8A. The weight
enumerators of the cosets of weight i are denoted as coset[i]. Since the terms Xn−jY j

and XjY n−j have equal coefficients, only the terms with j ≤ 36 are displayed and
we set Y = 1. The undetermined parameters ε(i, j) are nonnegative integers with the
notation selected so that ε(i, j) is the number of elements of weight i in a coset of
weight j. It is possible that two different cosets of the same weight require different
values of the parameters; that is ε(i, j) really depends on the particular coset, and
not just i and j. The bound on the ε(i, j) indicated after its appearance is obtained
from the fact that the coefficients in the enumerator are nonnegative. In most cases
these bounds can be improved by making separate arguments in each case.

Weight enumerators of the cosets u+ C72.

W (X)= 1 + 249849X16 + 18106704X20 + 462962955X24

+ 4397342400X28 + 16602715899X32 + 25756721120X36

+ 16602715899X40 + 4397342400X44 + 462962955X48

+ 18106704X52 + 249849X56 +X72.

For 1 ≤ k ≤ 5,

coset[k] =

(
72

k

)−1 k∑

i=0

12∑

j=0

(
72− dj

i

)(
dj

k − i

)
AdjX

72+k−2i−djY dj−k+2i.

coset[6] = X6 +X10 ε(10, 6) +X12 (468− 6 ε(10, 6)) +X14 (8910 + 5 ε(10, 6))

+ X16 (117744 + 40 ε(10, 6)) +X18 (1215005− 90 ε(10, 6))

+ X20 (9063912− 76 ε(10, 6)) +X22 (52128219 + 406 ε(10, 6))

+ X24 (231465520− 120 ε(10, 6)) +X26 (802952286− 925 ε(10, 6))

+ X28 (2198865900 + 870 ε(10, 6)) +X30 (4782282868 + 1143 ε(10, 6))

+ X32 (8300716512− 1968 ε(10, 6)) +X34 (11541281895− 540 ε(10, 6))

+ X36 (12879278256 + 2520 ε(10, 6)) + · · · ,
0 ≤ ε(10, 6) ≤ 78.

coset[7] = X7 +X9 ε(9, 7) +X11 (78− ε(9, 7))

+ X13 (2150− 29 ε(9, 7)) +X15 (33150 + 93 ε(9, 7))

+ X17 (396229 + 62 ε(9, 7)) +X19 (3425500− 638 ε(9, 7))

+ X21 (22482876 + 498 ε(9, 7)) +X23 (113347715 + 1742 ε(9, 7))

+ X25 (444247726− 2981 ε(9, 7)) +X27 (1368169130− 1819 ε(9, 7))

+ X29 (3336322210 + 7257 ε(9, 7)) +X31 (6478822580− 1497 ε(9, 7))

+ X33 (10061693655− 9708 ε(9, 7)) +X35 (12530795368 + 7020 ε(9, 7)) + · · · ,
0 ≤ ε(9, 7) ≤ 78.

OVERLAP AND COVERING POLYNOMIALS 177

coset[8] = X8ε(8, 8) +X10ε(10, 8) +X12 (546− 14ε(8, 8)− 6ε(10, 8))

+ X14 (8640− 64ε(8, 8) + 5ε(10, 8))

+ X16 (119016 + 475ε(8, 8) + 40ε(10, 8))

+ X18 (1207360− 448ε(8, 8)− 90ε(10, 8))

+ X20 (9083844− 2156ε(8, 8)− 76ε(10, 8))

+ X22 (52123968 + 4928ε(8, 8) + 406ε(10, 8))

+ X24 (231383880 + 1897ε(8, 8)− 120ε(10, 8))

+ X26 (803097792− 15680ε(8, 8)− 925ε(10, 8))

+ X28 (2198885310 + 9262ε(8, 8) + 870ε(10, 8))

+ X30 (4781952384 + 22912ε(8, 8) + 1143ε(10, 8))

+ X32 (8301020112− 31045ε(8, 8)− 1968ε(10, 8))

+ X34 (11541479040− 11648ε(8, 8)− 540ε(10, 8))

+ X36 (12878752952 + 43160ε(8, 8) + 2520ε(10, 8)) + · · · ,
1 ≤ ε(8, 8) ≤ 9, 7ε(8, 8) + 3ε(10, 8) ≤ 273.

coset[9] = X9 ε(9, 9) +X11 (91− ε(9, 9))

+ X13 (2135− 29 ε(9, 9)) +X15 (33408 + 93 ε(9, 9))

+ X17 (394408 + 62 ε(9, 9)) +X19 (3428810− 638 ε(9, 9))

+ X21 (22487322 + 498 ε(9, 9)) +X23 (113325160 + 1742 ε(9, 9))

+ X25 (444263456− 2981 ε(9, 9)) +X27 (1368212321− 1819 ε(9, 9))

+ X29 (3336243405 + 7257 ε(9, 9)) +X31 (6478814496− 1497 ε(9, 9))

+ X33 (10061820720− 9708 ε(9, 9)) +X35 (12530712636 + 7020 ε(9, 9)) + · · · ,
1 ≤ ε(9, 9) ≤ 73.

coset[10] = X10ε(10, 10) +X12 (546− 6ε(10, 10))

+ X14 (8640 + 5ε(10, 10)) +X16 (119016 + 40ε(10, 10))

+ X18 (1207360− 90ε(10, 10)) +X20 (9083844− 76ε(10, 10))

+ X22 (52123968 + 406ε(10, 10)) +X24 (231383880− 120ε(10, 10))

+ X26 (803097792− 925ε(10, 10)) +X28 (2198885310 + 870ε(10, 10))

+ X30 (4781952384 + 1143ε(10, 10)) +X32 (8301020112− 1968ε(10, 10))

+ X34 (11541479040− 540ε(10, 10)) +X36 (12878752952 + 2520ε(10, 10)) + · · · ,
1 ≤ ε(10, 10) ≤ 91.

coset[11] = 91X11 + 2135X13 + 33408X15 + 394408X17 + 3428810X19

+ 22487322X21 + 113325160X23 + 444263456X25

+ 1368212321X27 + 3336243405X29 + 6478814496X31

+ 10061820720X33 + 12530712636X35 + · · · .

178 GERALD J. JANUSZ

coset[12] = 546X12 + 8640X14 + 119016X16 + 1207360X18

+ 9083844X20 + 52123968X22 + 231383880X24

+ 803097792X26 + 2198885310X28 + 4781952384X30

+ 8301020112X32 + 11541479040X34 + 12878752952X36 + · · · .

Acknowledgments. The author thanks an anonymous referee for several im-
provements to the early version, in particular for the suggestion to use homogeneous
polynomials. The author also expresses his thanks to Gary McGuire for his suggestion
to consider the [16, 9, 4] code (see Example 2.7).

REFERENCES

[A-M] E. F. Assmus Jr. and H. F. Mattson Jr., New 5-designs, J. Combin. Theory, 6 (1969),
pp. 122–151.

[A-P] E. F. Assmus Jr. and V. Pless, On the covering radius of extremal self-dual codes, IEEE
Trans. Inform. Theory, IT-29, (1983), pp. 359–363.

[C-S] J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of
self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), pp. 1319–1333.

[CRC] C. J. Colbourn and J. H. Dinitz, eds., The CRC Handbook of Combinatorial Designs,
CRC Press, Boca Raton, FL, 1996.

[M-S] F. J. MacWilliams and N. J. A. Sloane, Theory of Error Correcting Codes, North–
Holland, Amsterdam, 1977.

[Oz] M. Ozeki, On the notion of Jacobi polynomials for codes, Math. Proc. Cambridge Philos.
Soc., 121 (1997), pp. 15–30.

CONVEX-ROUND AND CONCAVE-ROUND GRAPHS∗

JØRGEN BANG-JENSEN† , JING HUANG‡ , AND ANDERS YEO§

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 2, pp. 179–193

Abstract. We introduce two new classes of graphs which we call convex-round, respectively
concave-round graphs. Convex-round (concave-round) graphs are those graphs whose vertices can
be circularly enumerated so that the (closed) neighborhood of each vertex forms an interval in the
enumeration. Hence the two classes transform into each other by taking complements. We show that
both classes of graphs have nice structural properties. We observe that the class of concave-round
graphs properly contains the class of proper circular arc graphs and, by a result of Tucker [Pacific
J. Math., 39 (1971), pp. 535–545] is properly contained in the class of general circular arc graphs.
We point out that convex-round and concave-round graphs can be recognized in O(n + m) time
(here n denotes the number of vertices and m the number of edges of the graph in question). We
show that the chromatic number of a graph which is convex-round (concave-round) can be found
in time O(n + m) (O(n2)). We describe optimal O(n + m) time algorithms for finding a maximum
clique, a maximum matching, and a Hamiltonian cycle (if one exists) for the class of convex-round
graphs. Finally, we pose a number of open problems and conjectures concerning the structure and
algorithmic properties of the two new classes and a related third class of graphs.

Key words. proper circular arc graphs, round graphs, round enumeration, Hamiltonian cycle,
coloring, maximum matching, maximum clique, linear algorithms, recognition

AMS subject classifications. 05C85, 05C38, 05C70, 68R10

PII. S0895480197322154

1. Introduction. An interval graph is the intersection graph of a family of linear
intervals; a proper interval graph is the intersection graph of an inclusion-free family
of linear intervals. A circular arc graph is the intersection graph of a family of circular
arcs; as above, it is called proper if the family can be chosen to be inclusion-free.

Algorithmic aspects of interval graphs and circular arc graphs have been inten-
sively studied; cf. [13]. Interval graphs can be recognized in linear time (i.e., O(n+m)
where n and m are, respectively, the numbers of vertices and of edges of the input
graph) [6, 19]. There exists an O(n2) algorithm to recognize circular arc graphs [10].
Many optimization problems such as finding a maximum independent set, a maximum
clique, a minimum dominating set, and so on, can all be solved efficiently for both
interval graphs and circular arc graphs [1, 4, 15]. It is worth noticing that the min-
imum coloring problem is solvable in polynomial time for proper circular arc graphs
but NP-complete for general circular arc graphs [3, 11, 26].

An important feature of proper circular arc graphs is that the vertices can be
circularly enumerated so that the neighbors of each vertex v, together with v itself,

∗Received by the editors May 30, 1997; accepted for publication (in revised form) December 16,
1999; published electronically April 6, 2000.

http://www.siam.org/journals/sidma/13-2/32215.html
†Department of Mathematics and Computer Science, Odense University, Odense, DK-5230, Den-

mark (jbj@imada.sdu.dk). The research of this author was supported by the Curtin University of
Technology, Perth, Australia, and NSERC grant 203191-98.

‡Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 3P4,
Canada (jing@math.uvic.ca). The research of this author was supported by the Danish Research
Council under grant 11-9743-1, the Australia Research Council under grant A49532661, and NSERC
under grant 203191-98.

§Brics, Department of Computer Science, University of Aarhus, Ny Munkegade, Building 540,
DK-8000 Aarhus C, Denmark (yeo@daimi.au.dk). The research of this author was supported by the
Danish Research Council under grant 9800435.

179

180 JØRGEN BANG-JENSEN, JING HUANG, AND ANDERS YEO

1

2

34

5

1

3

52

4

Fig. 1. A graph which is concave-round and convex-round.

appear consecutively in the enumeration (see [13]). More precisely, if G is a proper
circular arc graph, then the vertices of G can be circularly enumerated, v1, v2, . . . , vn,
so that the closed neighborhood of each vertex vi forms a set {vi−l, vi−l+1, . . . , vi+r}
for some l, r ≥ 0 (which depend on i), where the addition and subtraction are modulo
n. However, not all circular arc graphs enjoy this property. Because of this, many
problems can be solved much more efficiently for proper circular arc graphs than for
general circular arc graphs. For instance, the recognition problem and the maximum
clique problem for proper circular arc graphs can be solved in linear time (see [3, 9]),
but no linear time algorithms are known for general circular arc graphs.

In order to better understand the above feature of proper circular arc graphs, we
introduce two new classes of graphs as follows: A graph G is concave-round if the
vertices of G can be circularly enumerated, v1, v2, . . . , vn, so that the closed neigh-
borhood of each vertex vi forms a set {vi−l, vi−l+1, . . . , vi+r} for some l, r ≥ 0. Here
l, r depend on i and the addition is modulo n. We shall refer to the circular enu-
meration v1, v2, . . . , vn as a concave-round enumeration and often denote it by L. A
graph is convex-round if it is the complement of a concave-round graph, that is, if
the neighborhood of each vertex forms an interval in the enumeration. Within the
class of bipartite graphs, convex-round graphs form a proper subclass of so-called
convex bipartite graphs. Convex bipartite graphs have nice algorithmic properties and
practical applications; see [7, 8, 12, 20, 22, 24, 29, 32]. In [20], a superclass of con-
vex bipartite graphs was introduced under the name circular convex bipartite graphs.
Even though this name seems to indicate that a circular convex bipartite graph must
also be convex-round, this is not the case, as one can see from the definition in [20].

Let L = v1, v2, . . . , vn be a circular enumeration of the vertices of a graph G. A
vertex vi is concave with respect to L if the closed neighborhood of vi forms an interval
in L. A vertex vi is convex with respect to L if its neighborhood forms an interval in
L. A circular enumeration L of V (G) is a concave-round (convex-round) enumeration
of V (G) if all vertices of G are concave (convex) with respect to L. Figure 1 shows a
concave-round and a convex-round enumeration of the same graph.

It is easy to see that every induced subgraph of a concave-round (convex-round)
graph is concave-round (convex-round). It follows from the definition of a concave-
round graph and an earlier remark on a feature of proper circular arc graphs that all
proper circular arc graphs are concave-round graphs. But the converse is not true,
that is, there exist concave-round graphs which are not proper circular arc graphs.
So the class of concave-round graphs strictly contains the class of proper circular arc
graphs. See Figure 2 for examples of graphs showing relationships between the above
classes.

In this paper we study the structure of concave-round and convex-round graphs.
We prove that the chromatic number problem can be solved in time O(n2) for both

CONVEX-ROUND AND CONCAVE-ROUND GRAPHS 181

1

2

35

6

2

3

4

5

6

G3

4

G1
G2

1

2

3

4

5

6

G4

G5 G6

1

2

3

4

5

6
1

2

3

4

5

6

7

8

1

Fig. 2. Graphs showing the relations between concave-round, convex-round graphs, and circular
arc graphs: G1, G4 are convex-round but not circular arc graphs; G3 is a circular arc graph but is
neither concave-round nor convex-round; G5 is a proper circular arc graph and concave-round; G6

is concave-round but not a proper circular arc graph; G2 is neither concave-round nor convex-round,
but with respect to the labelling shown, every vertex is either concave or convex.

of these classes. (The reason why our algorithms are O(n2) is that the operation of
taking complementary graphs is used.) We describe optimal linear time algorithms
for finding a maximum clique, a maximum matching, and a Hamiltonian cycle (if one
exists) for convex-round graphs. Since every concave-round graph is a circular arc
graph (see Theorem 3.1) and since the above three problems can be solved efficiently
for circular arc graphs (see [4, 23, 27]), these three problems are efficiently solvable
for concave-round graphs. Due to this and space considerations, we shall concentrate
more on the algorithmic aspects of convex-round graphs. However, we wish to point
out that none of the algorithms in [4, 23, 27] achieves optimal running time and we
believe this is possible for each of the above problems when restricted to concave-round
graphs.

2. Terminology and notation. We assume all graphs are finite and simple,
i.e., they contain no loops or multiple edges. For standard terminology, we refer to
[5].

Let G be a graph. We shall use V (G) (resp., E(G)) to denote the set of vertices
(resp., the set of edges) in G. We shall always use n (resp., m) to denote the number of

182 JØRGEN BANG-JENSEN, JING HUANG, AND ANDERS YEO

vertices (resp., edges) of G. Two vertices x, y ∈ V (G) are adjacent and y is a neighbor
of x if xy ∈ E(G). If xy /∈ E(G), then y is a nonneighbor of x. The neighborhood of
x, denoted by N(x), is the set of all neighbors of x. The closed neighborhood of x,
denoted by N [x], is defined as N(x) ∪ {x}.

A graph is bipartite if the vertex set V (G) can be partitioned into two sets A and
B such that every edge of G has one endvertex in A and the other in B. We shall
often use the terminology (A,B) for a bipartite graph with vertex set A ∪ B and we
only specify the set of edges E when this is necessary.

A graph G′ is a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). If, in
addition, E(G′) = {xy ∈ E| x, y ∈ V (G′)}, then G′ is an induced subgraph of G. For
each S ⊆ V (G), the subgraph of G induced by S, denoted by G〈S〉 or simply S, is the
unique induced subgraph of G with vertex set S. A clique of G is a subgraph G′ of G
for which every vertex in V (G′) is adjacent to every other vertex in V (G′). The size
of a largest clique in a graph G is denoted by ω(G).

Suppose that G is a graph and S ⊆ V (G) is a set of vertices of G. We shall use
G− S to denote the subgraph induced by V (G)− S. We shall write G− x instead of
G− {x}. If S contains no adjacent vertices, then S is called an independent set of G.
The size of a largest independent set is denoted by α(G).

Let G be a graph. The complement of G, denoted by G, is a graph such that the
vertex set of G is V (G) and two vertices are adjacent in G if and only if they are not
adjacent in G.

A path P of length k is a graph with the vertex set {x1, x2, . . . , xk+1} and the
edge set {x1x2, x2x3, . . . , xkxk+1}, such that all the vertices shown are distinct. We
shall call such a path an (x1, xk+1)-path and denote it by x1x2x3 . . . xkxk+1. A cy-
cle C of length k is a graph with the vertex set {v1, v2, . . . , vk} and the edge set
{x1x2, x2x3, . . . , xk−1xk, xkx1}. A Hamiltonian path (cycle) in a graph G is a path
(cycle) with vertex set V (G).

Suppose that x1x2x3 . . . xk is a path (resp., a cycle). Then vertices vi and vi+1

are called consecutive vertices. (The subscript addition is modulo k in the case of
cycle.) A path or a cycle is chordless (in a graph G) if nonconsecutive vertices are
not adjacent (in G).

A graph G is an interval graph if there is a one-to-one correspondence between
V (G) and a family I of intervals on the real line so that two vertices in G are adjacent
if and only if the two corresponding intervals intersect. If the family I can be chosen
so that no interval is contained in another, then G is called a proper interval graph. A
graph G is a circular arc graph if there is a one-to-one correspondence between V (G)
and a family F of circular arcs on a circle so that two vertices are adjacent in G if
and only if the corresponding two circular arcs intersect. As above, if the family F
can be chosen so that no circular arc is contained in another, then G is called a proper
circular arc graph.

A matrix whose entries belong to {0, 1} has the circular 1’s property for rows
(columns) if its columns (rows) can be permuted in such a way that the 1’s in each
row occur in a circular consecutive order. The augmented adjacency matrix of a graph
G is obtained from the adjacency matrix of G by adding 1’s along the main diagonal.

It is helpful to visualize a concave-round enumeration of the vertices of G by
putting the vertices v1, v2, . . . , vn clockwise around a circle. If a = vi and b = vj
are two vertices, then we define the interval [a, b] as the set {vi, vi+1, . . . , vj}, with
the subscription calculated modulo n. Thus in our visualized representation, the
interval extends from a to b clockwise. Similarly, we define (a, b) = [a, b] − {a, b},

CONVEX-ROUND AND CONCAVE-ROUND GRAPHS 183

[a, b) = [a, b] − {b}, and (a, b] = [a, b] − {a}. It is easy to see from the remark above
that a graph is concave-round if and only if its augmented adjacency matrix has the
circular 1’s property for columns (and rows). Similarly, a graph is convex-round if
and only if its adjacency matrix has the circular 1’s property for columns (and rows).

LetG be a convex-round graph with a convex-round enumeration L = v1, v2, . . . , vn.
Suppose that G is bipartite. Then G is said to be bipartite with respect to L if there
exist i and j with i �= j such that every edge of G has an endvertex in A = [vi, vj)
and an endvertex in B = [vj , vi). We shall refer to (A,B) as a bipartition of G with
respect to L.

3. Structure of concave-round graphs and convex-round graphs. In this
section we shall describe several structural results on graphs which are concave-round
or convex-round. These results will be used in the later sections. As we observed
earlier, concave-rounds graphs form a superclass of the class of proper circular arc
graphs. We will now show that they form a subclass of the class of circular arc
graphs.

Theorem 3.1. If a graph is concave-round, then it is a circular arc graph.
Proof. By a theorem of Tucker, see [13, Theorem 8.16, p. 190], a graph is a circular

arc graph if its augmented adjacency matrix has the circular 1’s property for columns.
As we remarked earlier the augmented adjacency matrix of any concave-round graph
has this property.

Theorem 3.2. There is a linear time algorithm for recognizing concave-round
(convex-round) graphs and finding (if it exists) a concave-round (convex-round) enu-
meration.

Proof. Checking whether a graph is convex-round can be done using PQ-trees
[6]: we are checking whether the adjacency matrix has the circular 1’s property for
columns. Instead of working with the adjacency matrix (whose size may not be
O(n+m) if m is not large) we can perform the checking by just giving the adjacency
lists of G (i.e., entries which correspond to a one). For details on PQ-trees, see [6, 13].
The same argument shows that we can decide whether a graph is concave-round in
time O(n+m). A convex-round (concave-round) enumeration can be found from the
resulting circular 1’s ordering.

A tournament is an orientation of a complete graph, i.e., an oriented graph in
which every pair of distinct vertices are joined by an arc. A tournament is transitive
if and only if it has no directed cycles. An oriented graph D = (V,A) is a local
tournament (local transitive tournament) if the set of out-neighbors as well as the set
of in-neighbors of each vertex v ∈ V forms a tournament (a transitive tournament)
[2, 14, 16].

The following lemma can be found in [16]; see also [28].
Lemma 3.3. Let G be an undirected graph; then each of the following are equiv-

alent:
1. G is a proper circular arc graph.
2. G can be oriented as a local tournament digraph.
3. G can be oriented as a local transitive tournament digraph.
Lemma 3.4. Let G be a concave-round graph with a concave-round enumeration

L = v1, v2, . . . , vn. Then G is a proper circular arc graph if G satisfies the following
three properties:

1. Every vertex of G has a nonneighbor.
2. G has no pair of vertices vi, vj such that (vi, vj] ⊆ N(vi) and (vj , vi] ⊆ N(vj).
3. G has no pair of vertices vi, vj such that [vj , vi) ⊆ N(vi) and [vi, vj) ⊆ N(vj).

184 JØRGEN BANG-JENSEN, JING HUANG, AND ANDERS YEO

Proof. By the assumption above, for each vertex vi we can distinguish those
neighbors of vi that are after vi and those that are before vi, namely, vj is after
(before) vi if and only if vi is adjacent to every vertex in [vi+1, vj] ([vj , vi−1]). Now
we orient G by orienting an edge vivj from vi to vj if vj is after vi and from vj to vi
otherwise. It follows from the assumption in the lemma that this orientation is well
defined. Furthermore, if vi→vj is an arc then vi is adjacent to every vertex in [vi+1, vj]
and since vj has a nonneighbor in [vj+1, vi] (by the assumption of the lemma), we also
have that vj is adjacent to every vertex in [vi, vj−1]. This shows that the orientation
is a local transitive tournament orientation of G. Hence, by Lemma 3.3, G is a proper
circular arc graph.

In [16], the second author characterized all possible orientations of a proper circu-
lar arc graph as local tournaments. The following problem may be seen as an attempt
to generalize that result.

Problem 3.5. Given a graph G which is concave-round, what are the possible
concave-round enumerations of G?

We now turn our attention to convex-round graphs.

Lemma 3.6. Let G = (A,B) be a connected bipartite graph. Suppose that G is
convex-round with a convex-round enumeration L. Then G is bipartite with respect to
L.

Proof. Let [x, y] ⊆ A be an interval (with respect to L) which is maximal (in
terms of cardinality of [x, y]). If A ⊆ [x, y], then we are done; otherwise let w be
a vertex in A − [x, y] and let P = u1u2 . . . ul be a shortest path from [x, y] to w.
Then u2 ∈ B, and we must have N(u2) ⊆ [x, y] since u2 is adjacent to neither x−

nor y+ (here x− is the vertex “next” to x in counterclockwise direction and y+ is the
vertex “next” to y in clockwise direction). Therefore u3 ∈ [x, y], contradicting the
minimality of P .

Lemma 3.7. Let G be a connected convex-round graph with a convex-round enu-
meration L = v1, v2, . . . , vn. If vivi+k �∈ E(G) for some i, then either G is bipartite,
or at least one of [vi, vi+k], [vi+k, vi] is independent. Moreover, it can be decided in
time O(n+m) which of the above properties holds for G.

Proof. Since vivi+k �∈ E(G) and G is convex-round, we have N(vi) ⊆ (vi, vi+k) or
N(vi) ⊆ (vi+k, vi) and, similarly, N(vi+k) ⊆ (vi, vi+k) or N(vi+k) ⊆ (vi+k, vi).

Suppose first thatN(vi) ⊆ (vi, vi+k) andN(vi+k) ⊆ (vi, vi+k). We shall show that
[vi+k, vi] is independent. Assume that [vi+k, vi] is not independent, i.e., there exists an
edge between two vertices in [vi+k, vi], say one of them is x1. Clearly, x1 can be chosen
such that x1 ∈ (vi+k, vi). Let P = x1x2 . . . xl be a shortest path from x1 to [vi, vi+k].
Then xl−1 is adjacent to xl ∈ (vi, vi+k) and a vertex in (vi+k, vi). Since xl−1 is convex,
we must either have xl−1vi ∈ E(G) or xl−1vi+k ∈ E(G). However, this contradicts
the assumption that N(vi) ⊆ (vi, vi+k) and N(vi+k) ⊆ (vi, vi+k). Therefore [vi+k, vi]
is independent. Analogously, if N(vi) ⊆ (vi+k, vi) and N(vi+k) ⊆ (vi+k, vi), then we
obtain that [vi, vi+k] is independent.

Suppose now that N(vi) ⊆ (vi, vi+k) and N(vi+k) ⊆ (vi+k, vi) (the case when
N(vi) ⊆ (vi+k, vi) and N(vi+k) ⊆ (vi, vi+k) can be handled analogously). Let x ∈
[vi+k, vi) be arbitrary. Observe that x cannot have edges to vertices in both (x, vi)
and in [vi, x), as this would imply that x is adjacent to vi, a contradiction. Thus we
can partition [vi+k, vi) into three sets A, L, and R as follows: A consists of vertices x
which have a neighbor in [vi, vi+k), L consists of vertices x with N(x) ⊆ (x, vi), and
R consists of vertices x with N(x) ⊆ [vi+k, x). Note that L �= ∅ as it contains vi+k.
Since G is connected, we have that A �= ∅.

CONVEX-ROUND AND CONCAVE-ROUND GRAPHS 185

Let a ∈ A be chosen so that [vi+k, a) ∩ A = ∅. We claim that [a, vi) must be
independent. Assume that this is not the case and let x1 ∈ [a, vi) be chosen such that
x1 has an edge to a vertex in (x1, vi). Let P = x1x2 . . . xl be a shortest path from x1

to [vi, a). Clearly, N(xl−1)∩ (xl−1, vi) = ∅, as otherwise xl−1 would be adjacent to vi,
a contradiction. This implies that l ≥ 3 and xl−1 �∈ L. If xl−2 ∈ L, then xl−1 must
be adjacent to a, since xl−1 is convex, xl−2 ∈ [a, xl−1), and xl ∈ [vi, a). However,
this implies that a is adjacent to vi, which is a contradiction. Hence xl−2 �∈ L, which
implies that xl−2 ∈ R (the minimality of l ensures xl−2 /∈ A). However, this implies
that N(xl−1) ∩ (xl−1, vi) �= ∅, a contradiction. Therefore [a, vi) is independent.

Now suppose that [vi+k, a) ∩ R �= ∅. Let r ∈ [vi+k, a) ∩ R be chosen such that
[vi+k, r) ⊆ L. We will show that [r, a) ⊆ R. If this is not true, then there is a vertex
l ∈ [r, a) ∩ L such that [r, l) ⊆ R. Let P = x1x2 . . . xm be a shortest path from
r = x1 to [l, vi+k). As [vi+k, a) ∩ A = ∅ we must have xm ∈ [l, vi), xm−1 ∈ L, and
xm−2 ∈ R. However this implies that xm−1 and l is adjacent, a contradiction against
l ∈ L. Therefore [r, a) ⊆ R.

Let w ∈ L∩ [vi+k, a) be chosen such that (w, a)∩L = ∅. The choice of w, together
with the fact that [a, vi) is independent, implies that (w, vi) is independent. Using
the above arguments, we see that [vi+k, w] is also independent and, furthermore, the
vertices in [vi+k, w] can have edges only into (w, vi).

Repeating all the above arguments for [vi, vi+k), we can analogously obtain a
vertex w′ (in [vi, vi+k)), such that both (w′, vi+k) [vi, w

′] are independent and vertices
in [vi, w

′] can have edges only into (w′, vi+k). This implies that both (w,w′] and (w′, w]
are independent, which proves G is bipartite.

By inspecting the proof above, we see that the following holds.

Corollary 3.8. Let G be a connected convex-round graph with a convex-round
enumeration L = v1, v2, . . . , vn. Suppose that vivi+k /∈ E(G). Then the following
statements hold:

1. If N(vi) ⊆ (vi, vi+k) and N(vi+k) ⊆ (vi+k, vi), then G is bipartite.
2. If N(vi) ⊆ (vi+k, vi) and N(vi+k) ⊆ (vi, vi+k), then G is bipartite.
3. If N(vi) ⊆ (vi, vi+k) and N(vi+k) ⊆ (vi, vi+k), then [vi+k, vi] is independent.
4. If N(vi) ⊆ (vi+k, vi) and N(vi+k) ⊆ (vi+k, vi), then [vi, vi+k] is independent.

The following lemma is easy to prove; we leave the details to the reader.

Lemma 3.9. Let C = v1v2 . . . vnv1 be a chordless cycle with n ≥ 5.

• If n = 2k with k ≥ 3, then (up to cyclic permutations and full reversal) there
is a unique concave-round enumeration L of C, namely, L = v1, v2, . . . , v2k.
Furthermore, there is no convex-round enumeration of C.
• If n = 2k + 1 with k ≥ 1, then (up to cyclic permutations and full rever-
sal) there is precisely one concave-round enumeration of C, namely, L1 =
v1, v2, . . . , v2k+1. Furthermore, there is precisely one convex-round enumera-
tion of C, namely, L2 = v1, v3, . . . , v2k+1, v2, v4, . . . , v2k.

Corollary 3.10. If a convex-round digraph is not bipartite, then it is con-
nected.

Proof. Suppose that G is convex-round with a convex-round enumeration L.
Assume that G contains an odd cycle C = v1v2 . . . v2k+1 (k ≥ 1). By Lemma 3.9, the
vertices of C must occur in the order v1, v3, . . . , v2k+1, v2, v4, . . . , v2k in L. Let v be
a vertex not on C. Then v must be between vi and vi+2 for some i ≤ 2k + 1 (the
addition is modulo 2k + 1). Since L is a convex-round enumeration, we see that v is
adjacent to vi+1. Hence every vertex of G is adjacent to at least one vertex of C and
therefore G is connected.

186 JØRGEN BANG-JENSEN, JING HUANG, AND ANDERS YEO

Lemma 3.11. If G is concave-round and G is not bipartite, then G is a proper
circular arc graph.

Proof. Let L = v1, v2, . . . , vn be a concave-round enumeration of G and let C be
an arbitrary odd cycle in G. Since C is odd it is easy to check that for every edge
vivj in G, there is some edge vkvr in C such that vk, vr are either both in (vi, vj), or
both in (vj , vi). Suppose, without loss of generality, that vk, vr are both in (vj , vi) and
that, according to L, the vertices come in the order vj , vk, vr, vi. Now apply Lemma
3.7 to G and the edge vivj . It follows from the lemma that [vi, vj] is an independent
set in G and hence a clique in G.

By Corollary 3.10, every vertex of G has a nonneighbor. Above we observed that
for every edge vivj in G, either [vi, vj], or [vj , vi] is a clique. Combining these two
facts we see that for every edge vivj in G, either vi, vj both have a nonneighbor in
[vi, vj], or they both have a nonneighbor in [vj , vi]. It follows that G satisfies 1–3 in
Lemma 3.4 and hence G is a proper circular arc graph.

4. Hamiltonian cycles in convex-round graphs.
Lemma 4.1. The Hamiltonian cycle problem is solvable in linear time for bipartite

graphs which are convex-round.
Proof. Since this follows from a more general result for circular convex bipartite

graphs (using a reduction to circular arc graphs) [20], we give here only the main idea
which is to reduce the problem to the same problem for interval graphs.

Let G be a connected bipartite graph which is convex-round with a convex-round
enumeration L = v1, v2, . . . , vn. By Lemma 3.6, there is a bipartition (A,B) of G
with respect to L. We have A = [vi, vj) and B = [vj , vi) for some i and j. We
assume that |A| = |B| as otherwise G has no Hamiltonian cycles. Let G′ be a graph
obtained from G by adding edges xy if x, y ∈ A and N(x) ∩ N(y) �= ∅. The new
graph G′ is an interval graph: the interval family which represents G′ consists of one
interval containing just one point for each vk ∈ B = [vj , vi), and one interval which
represents the neighborhood of vs for each vs ∈ A = [vi, vj). It is easy to see that G is
Hamiltonian if and only if G′ is. Note that, given G and a convex-round enumeration
L of G, we can construct in time O(n + m) the interval representation of G′ (here
n and m are, respectively, the numbers of vertices and edges of G). Thus the claim
follows from the existence of an O(n) algorithm for finding a Hamiltonian cycle (if
one exists) in an interval graph with a given interval representation [18].

Theorem 4.2. The Hamiltonian cycle problem is solvable in time O(n+m) for
convex-round graphs.

Proof. Let L = v1, v2, . . . , vn be a convex-round enumeration of G. By Corollary
3.2, such an enumeration can be found in time O(n+m). If G is not connected, then
G is not Hamiltonian. So assume that G is connected.

If n is odd, then do the following. Let k = 1
2 (n − 1). If vivi+k ∈ E(G) for

all vi ∈ V (G), then the subgraph containing precisely the edge set {vivi+k : i =
1, 2, . . . , 2k+1} is a Hamiltonian cycle. If there is some vi ∈ V (G) such that vivi+k �∈
E(G), then Lemma 3.7 implies that either α(G) ≥ k+1 = 1

2 (n+1) or G is bipartite,
which in both cases implies that G is not Hamiltonian.

If n is even, then do the following. Let k = 1
2n. If there is some vi ∈ V (G) such

that vivi+k−1 �∈ E(G), then Lemma 3.7 implies that either [vi, vi+k−1] is independent,
or [vi+k−1, vi] is independent, or G is bipartite with respect to L. If [vi+k−1, vi]
is independent, then G is not Hamiltonian, because α(G) > 1

2n. If [vi, vi+k−1] is
independent, then by deleting all edges in G with both endpoints in (vi+k−1, vi) we
obtain a new convex-round graph, G′. Now G′ is bipartite with respect to L and,

CONVEX-ROUND AND CONCAVE-ROUND GRAPHS 187

furthermore, G′ is Hamiltonian if and only if G is Hamiltonian. By Lemma 4.1, we
can decide whether G′ is Hamiltonian in time O(n+m), and thereby also whether G
is Hamiltonian in time O(n+m). If G is bipartite with respect to L, then by Lemma
4.1 we can decide whether it is Hamiltonian in time O(n + m). Therefore we may
assume that vivi+k−1 ∈ E(G) for all vi ∈ V (G). As G is convex-round, we must have
{vi+k−1, vi+k, vi+k+1} ⊆ N(vi). Now we see that G is Hamiltonian: If k is even, then
G contains the following Hamiltonian cycle:

v1vk+2v3vk+4 . . . v2kvkv2k−1vk−2v2k−3 . . . vk+1v1.

If k is odd, then G contains the following Hamiltonian cycle:

v1vk+2v3vk+4v5vk+6 . . . vkv2kvk−1v2k−2vk−3v2k−4 . . . v2vk+1v1.

Note that there exist highly connected convex-round graphs which contain a factor
(a spanning collection of disjoint cycles) but not a Hamiltonian cycle. Such a graph
can be obtained from the graph G = ({a, b, c, d}, {ab, bc, bd, ca}) by substituting for
each vertex an independent set of size k > 1.

5. Maximum matchings in convex-round graphs. The following lemma is
due to Glover [12]. For the sake of completeness and since the paper [12] may not be
easily accessible, we give a short outline of Glover’s (greedy) algorithm.

Lemma 5.1. The maximum matching problem is solvable in time O(n +m) for
bipartite graphs which are convex-round.

Description of Glover’s algorithm. Let G = (A,B,E) be a bipartite graph.
We may assume that G is connected, as otherwise we consider the components of
G separately. According to Lemma 3.6, G has a convex-round enumeration L =
a1, . . . as, b1, . . . , bt where A consists of the first s vertices and B consists of the next
t vertices. Such an enumeration can be found in time O(n + m) ensured by Theo-
rem 3.2. Now sort the vertices of A according to their highest numbered neighbor in
B. The sorting is done in increasing order. Let a′1, . . . , a

′
s denote this order. This

takes time O(n + m) since we are sorting numbers in the range 1, 2, . . . , t (see [25,
pp. 127–128]).

Perform the following greedy algorithm A:
1. Let M = ∅ and let i = 1.
2. If a′i has a neighbor that is not yet matched by M , then let bj be the smallest

numbered nonmatched neighbor of a′i and let M :=M + a′ibj .
3. If i < s, then let i := i+ 1 and goto 2.

Glover proved that the matching M , produced by A, is a maximum matching of
G. The algorithm A can be performed in time O(n+m) and hence the total time to
find M is O(n+m) as claimed.

LetG be a convex-round graph with convex-round enumeration L = v1, v2, . . . , vn.
An interval [vi, vj] is called potentially independent if either N(vi) ∩ [vi, vj] = ∅ or
N(vj) ∩ [vi, vj] = ∅. In general, a largest potentially independent interval can be
found as follows: Treat the convex-round enumeration L as a circular order. For each
vertex x, find the furthest vertex y in clockwise order with N(x) ∩ [x, y] = ∅ and the
furthest vertex z in counterclockwise order with N(x) ∩ [z, x] = ∅. Then both [x, y]
and [z, x] are potentially independent intervals. Compare the size of all these intervals
to obtain a largest potentially independent interval. It is clear that these procedures
can be conducted in time O(n+m).

Theorem 5.2. The maximum matching problem is solvable in time O(n + m)
for convex-round graphs.

188 JØRGEN BANG-JENSEN, JING HUANG, AND ANDERS YEO

Proof. Let G be a convex-round graph with a convex-round enumeration L =
v1, v2, . . . , vn. We may assume that G is connected, as otherwise we consider the
components of G separately. We claim that the following algorithm will find a maxi-
mum matching in G in time O(n+m).

Algorithm B:
1. If vivi+�n/2� ∈ E(G) for all i = 1, 2, . . . , �n/2�, then these edges form a

matching of size �n/2� which clearly is maximum. Otherwise find a largest
potentially independent interval in L. Without loss of generality, let the
interval be [v1, vl] for some l ≥ 1. (Since vivi+�n/2� /∈ E(G) for some i,
either N(vi) ∩ [vi, vi+k] = ∅ or N(vi) ∩ [vi+k, vi] = ∅. This means that either
[vi, vi+�n/2�] or [vi+�n/2�, vi] is a potentially independent interval. Hence a
largest potentially independent interval must contain at least �n/2� vertices
and, in particular, l ≥ �n/2�.)

2. If G is bipartite, then use Lemma 5.1 to find a maximum matching in G and
return this.

3. If G is not bipartite, then let G′ be the bipartite graph obtained from G by
deleting all edges in [vl+1, vn]. (We will show this is bipartite below.) Now
find a maximum matching in G′ using Lemma 5.1 and return this matching.

The complexity of the algorithm is O(n+m) by Lemma 5.1 and the remarks in
step 1 of B. To prove it is correct, it is enough to show that, when G is not bipartite,
the graph G′ defined in step 3 is in fact bipartite and convex-round and, furthermore,
the size of a maximum matching in G equals the size of a maximum matching in G′.
So we assume below that G is not bipartite.

It is easy to see that G′ is convex-round. Since G is connected, either v1 or vl
has an edge into [vl, v1] and thus [vl, v1] is not independent. However, since G is not
bipartite, Lemma 3.7 now ensures that [v1, vl] must be independent, which implies
that G′ (in step 3) is bipartite.

It remains to show that the size of a maximum matching in G equals the size of
a maximum matching in G′. To do this, we shall construct a maximum matching in
G, which is also a matching in G′. Define

j = max{j : j ≤ l and vl+ivi ∈ E(G) for all i = 1, 2, . . . , j − 1},
k = max{k : k ≤ l and vn−ivl−i ∈ E(G) for all i = 0, 1, . . . , k − 1}.

If l+ j ≥ n− k+1 (i.e., k− 1 ≥ n− l− j), then we obtain the following matching
of size n− l, which is in both G and G′:

{v1vl+1, v2vl+2, . . . , vj−1vl+(j−1), vlvn, vl−1vn−1, vl−2vn−2, . . . , vl−(n−l−j)vn−(n−l−j)}.
Since [v1, vl] is independent, a matching of G contains at most n − l edges and

thus the above matching is maximum in G. So assume that l + j ≤ n − k. We will
now make some useful observations.

(i) For all vr ∈ [vl+1, vn], we have N(vr)∩ [v1, vl] �= ∅: Assume N(vr)∩ [v1, vl] = ∅
for some vr ∈ [vl+1, vn]. If N(vr) ⊆ [vr, vn], then [v1, vr] is a potentially independent
interval of size greater than that of [v1, vl], a contradiction. If N(vr) ⊆ [vl+1, vr],
then [vr, vl] is a potentially independent interval of size greater than that of [v1, vl], a
contradiction.

(ii) j ≥ 2 and k ≥ 1: As G is not bipartite, there exists an edge vavb in G with
l + 1 ≤ a < b ≤ n. By (i), we have that vavn ∈ E(G) and vbvl+1 ∈ E(G). Using (i)
again, we get that vl+1v1 ∈ E(G) and vnvl ∈ E(G). Therefore j ≥ 2 and k ≥ 1.

CONVEX-ROUND AND CONCAVE-ROUND GRAPHS 189

(iii) N(vl+j)∩ [v1, vj] = ∅ and N(vn−k)∩ [vl−k, vl] = ∅: The definition of j implies
that vjvl+j �∈ E(G). If N(vl+j) ∩ [v1, vj] �= ∅, then N(vl+j) ∩ [vj , vl+j] = ∅ (as G
is convex-round). However, this implies that [vj , vl+j] is a potentially independent
interval of size l + 1, a contradiction. An analogous argument shows that N(vn−k) ∩
[vl−k, vl] = ∅.

(iv) N(vq) ∩ ([v1, vj−1] ∪ [vl−k+1, vl]) = ∅ for all vq ∈ [vl+j , vn−k]: Assume
that N(vq) ∩ [v1, vj−1] �= ∅ for some vq ∈ [vl+j , vn−k] (the case when N(vq) ∩
[vl−k+1, vl] �= ∅ can be handled analogously). If vqvj−1 ∈ E(G), then vj−1vl+j ∈ E(G)
(as vj−1vl+j−1 ∈ E(G)) which contradicts (iii). Therefore vqvj−1 �∈ E(G), which im-
plies that [vj−1, vq] is a potentially independent interval of size q − (j − 1) + 1 ≥
(l + j)− j + 2 = l + 2, a contradiction.

Combining (i), (ii), and (iv), we have thatN(vq) ⊆ [vj , vl−k] for all vq ∈ [vl+j , vn−k]
(in particular, [vl+j , vn−k] is independent). Now let M ′ be a maximum matching in
the bipartite graph G′′ = G〈[vl+j , vn−k] ∪ [vj , vl−k]〉. It is clear that any matching in
G can have at most |M ′| edges with an endpoint in [vl+j , vn−k] and at most (j−1)+k
edges with one endpoint in [vl+1, vl+j−1] ∪ [vn−k+1, vn]. Since [v1, vl] is independent,
the following edges form a maximum matching in G (and G′):

M ′ ∪ {v1vl+1, v2vl+2, . . . , vj−1vl+(j−1), vlvn, vl−1vn−1, . . . , vl−k+1vn−k+1}.
6. Maximum cliques in convex-round graphs. In this section, we shall

present a linear time algorithm for solving the maximum clique problem for convex-
round graphs. We observe that an O(n2) algorithm may be obtained by adapting the
algorithm in [15], for solving the maximum independent set problem for circular arc
graphs. (Although the algorithm in [15] is linear, we obtain only an O(n2) algorithm,
as we have to take the complement of the input graph.) The algorithm below is more
efficient and in fact it applies for a larger class of graphs, which is of independent
interest.

We say that a graph G is interval enumerable if there exists a linear enumeration
I = v1, v2, . . . , vn of V (G) such that, for each vertex vi, there exists numbers 1 ≤
*i, hi ≤ i − 1 such that N(vi) ∩ [v1, vi−1] = [v�i , vhi], where *i > hi is used to
indicate that vi has no neighbor vi with a label less than i. That is, we require that
for each vi the neighbors with labels less than i form an interval. (Note that there is
no restriction on the neighbors of vi with index higher than i.) We shall refer to the
enumeration I as an interval enumeration of G.

Theorem 6.1. The maximum clique problem is solvable in time O(n +m) for
interval enumerable graphs, provided that we are given an interval enumeration of the
input graph.

Proof. Given an interval enumeration I = v1, . . . , vn of G, we can find all the
numbers *1, . . . , *n, h1, . . . , hn in time O(n+m) just by scanning the neighbors of each
vertex once. So assume below that all the numbers *1, . . . , *n, h1, . . . , hn have been
computed.

Now execute the following algorithm C:
1. For i = 1, . . . , n do begin
2. C(i) := {vi};
3. s(i) := 1;
4. p(i) := i;
5. end;
6. For i := 1 to n do
7. For j :=
i to hi do
8. If p(j) ≤ hi then begin

190 JØRGEN BANG-JENSEN, JING HUANG, AND ANDERS YEO

9. C(j) := C(j) ∪ {vi};
10. p(j) := i;
11. s(j) := s(j) + 1
12. end;
13. t := 0; (* t denotes the size of a maximum clique found so far *)
14. For i := 1 to n do
15. If s(i) > t then begin
16. t := s(i);
17. q := i
18. end;

It should be clear from the description of the algorithm above that C(i) is the
set of vertices of a clique whose lowest (highest) labeled vertex is vi (vp(i)) and whose
size is s(i).

We claim that the algorithm C returns a maximum clique, namely, the one starting
at the vertex vq and whose vertices are stored in the set C(q). In fact, we claim that
the clique represented by C(q) is the lexicographically smallest maximum clique1

according to the ordering of V (G). Suppose this is not the case and let vi1 , vi2 , . . . , vik ,
1 ≤ i1 < · · · < ik ≤ n, denote the vertices of the lexicographically smallest maximum
clique Ω of G. Then C(q) �= Ω. It is clear from lines 14–18 that the clique C(q)
returned by C has the lowest numbered first vertex vq among all the C(i) of the same
size as C(q). Consider C(i1) which is one of the possible choices for C in steps 14–18.
By definition, vi1 belongs to C(i1) and by the assumption that C(q) �= Ω, there is
some j ≤ k so that vij does not belong to C(i1), but each of the vertices vi1 , . . . , vij−1

belong to C(i1).
Now, the reason vij could not be added to C(i1) in step 9 above must have been

that at this point there was already another vertex vb with ij−1 < b < ij that had
been added to C(i1) after vij−1 with the property that vij and vb are not adjacent.
On the other hand, since every vir , j < r ≤ k is adjacent to vij−1 and to vij , it
follows that vir is also adjacent to vb. However, this contradicts the fact that Ω is
lexicographically smallest, since vb is adjacent to each of vi1 , . . . , vij−1 (implying that
{vi1 , . . . , vij−1 , vb, vij+1

, . . . , vik} is also a clique of the same size as Ω). Hence, we have
shown that C(i1) is precisely the clique Ω (it cannot contain more vertices since Ω is
maximum) and by the previous remark this is exactly the clique returned by C.

The complexity claim follows from the description of C. Note that the total
work of the loop 6–12 is O(n +m), since vi is adjacent to all vertices in the interval
[v�i , vhi] and hence scanning that interval in the loop 7–12 corresponds to scanning
the neighbors of vi once.

If a graph is convex-round with convex-round enumeration v1, v2, . . . , vn, then
the same enumeration shows that G is interval enumerable. Thus the class of convex-
round graphs form a subclass of the interval enumerable graphs. (The inclusion is
proper, since the graph obtained from an induced cycle of length 5 by adding any
number of new vertices adjacent to all 5 vertices on the cycle is interval enumerable
but not convex-round.) Hence we have the following corollary.

Corollary 6.2. The maximum clique problem is solvable in time O(n+m) for
convex-round graphs.

We remark that the complement of an interval enumerable graph may not be
a circular arc graph. An example of such a graph is the 5-cycle C with two extra
vertices joined to all 5 vertices on C.

1We say that an ordered set of vertices {vi1 , vi2 , . . . , vik} is lexicographically smaller than another
ordered set {vj1 , vj2 , . . . , vjr} if either is = js for s = 1, 2, . . . , k, or there exist p such that iq = jq
for 1 ≤ q ≤ p− 1 and ip < jp.

CONVEX-ROUND AND CONCAVE-ROUND GRAPHS 191

7. Chromatic number of concave-round and convex-round graphs. Re-
call that the chromatic number χ(G) is the least number of sets in a partition V (G) =
V1 ∪ · · · ∪ Vt such that each of the graphs G〈Vi〉 has no edges.

Note that we can have that χ(G) > ω(G) for convex-round graphs. The comple-
ment of any odd cycle is such an example and, in general, complements of powers of
Hamiltonian cycles (on an odd number of vertices) provide such examples. For each
of these examples we have χ(G) = ω(G) + 1. Through the correspondence between
convex-round and concave-round graphs (by taking complements) and the fact that
concave-round graphs are circular arc graphs, we obtain the following results. (Note
again that the O(n2) algorithm is the best we can get because we need to consider
the complement of the input graph.)

Theorem 7.1 (see [15]). The chromatic number of a convex-round graph can be
found in time O(n2).

Translating the proof of [15, Theorem 3.2] we get that the chromatic number of
a convex-round graph is closely related to the size of a largest clique.

Theorem 7.2 (see [15]). For every convex-round graph G: χ(G) ≤ ω(G) + 1.
There exist concave-round graphs for which χ(G) = � 32ω(G)�. Namely, χ(Ci−1

3i−1) =

� 3i−1
2 � and ω(Ci−1

3i−1) = � 3i−1
3 �. Here Crk denotes the rth power of a k-cycle. It follows

from this example that the bound in the following theorem is best possible even for
concave-round graphs.

Theorem 7.3 (see [17]). For every circular arc graph G, χ(G) ≤ � 32ω(G)�.
Theorem 7.4. For concave-round graphs, the minimum coloring problem is solv-

able in time O(n2).
Proof. We can construct G in time O(n2) and then check in linear time whether G

is bipartite. Suppose first that G is not bipartite. Using the linear algorithm from [9]
for recognizing and representing proper circular arc graphs we obtain a representation
of G by inclusion-free circular arcs. Now we apply the O(n1.5) algorithm of [26] for
coloring a proper circular arc graph to find an optimal coloring of G.

Suppose now that G is bipartite with bipartition (A,B), where |A| ≥ |B|. It is
not difficult to check that χ(G) = n− k, where k is the size of a maximum matching
in G (recall that A and B induce cliques in G and hence all vertices inside these sets
must receive different colors). Second, if we are given a maximum matching M of
G, then we can construct an optimal coloring with n − |M | colors in linear time as
follows: Color each vertex in A with its own color. Let M = a1b1, . . . , akbk. Color bi
with the color of ai for i = 1, 2, . . . , k. Finally give each vertex in B − {b1, . . . , bk} a
new color. By Lemma 5.1, we can find a maximum matching in G in linear time and
hence the whole algorithm is O(n2).

Recall that the minimum coloring problem is NP-complete for general circular
arc graphs [11] and polynomially solvable for proper circular arc graphs [3, 26].

8. Conjectures and open problems.
Conjecture 8.1. For concave-round graphs, the maximum clique problem, the

maximum matching problem, and the Hamiltonian cycle problem can all be solved in
time O(n+m).

Problem 8.2. Find a characterization in terms of forbidden subgraphs of concave-
round (convex-round) graphs.

Conjecture 8.3. Interval enumerable graphs can be recognized in polynomial
time.

Conjecture 8.4. The Hamiltonian cycle problem is solvable in polynomial time
for interval enumerable graphs.

192 JØRGEN BANG-JENSEN, JING HUANG, AND ANDERS YEO

Acknowledgments. We would like to thank Stephan Brandt for stimulating
discussions, in particular, for his insight which lead to the results on concave-round
graphs in section 7. We would also like to thank the anonymous referees for several
remarks that have improved on the presentation. The third author also wishes to
acknowledge the hospitality of the Department of Mathematics and Statistics, Uni-
versity of Victoria, where part of this research was carried out.

REFERENCES

[1] A. Appostolico and S.E. Hambrush, Finding maximum cliques on circular arc graphs, In-
form. Process. Lett., 26 (1987), pp. 209–215.

[2] J. Bang-Jensen, Locally semicomplete digraphs: A generalization of tournaments, J. Graph
Theory, 14 (1990), pp. 371–390.

[3] B. Bhattacharya, P. Hell, and J. Huang, A linear algorithm for maximum weight cliques
in proper circular arc graphs, SIAM J. Discrete Math., 9 (1996), pp. 274–289.

[4] B.K. Bhattacharya and D. Kaller, An O(m + n logn) algorithm for the maximum clique
problem in circular arc graphs, J. Algorithms, 35 (1997), pp. 336–358.

[5] J.A. Bondy and U.S.R. Murty, Graph Theory and Applications, American Elsevier, New
York, 1976.

[6] K.S. Booth and G.S. Lueker, Testing for the consecutive ones property using PQ-tree algo-
rithm, J. Comput. System Sci., 13 (1976), pp. 335–379.

[7] A. Czumaj, K. Diks, and T.M. Przytycka, Parallel maximum independent set in convex
bipartite graphs, Inform. Process. Lett., 59 (1996), pp. 289–294.

[8] P. Damaschke, H. Müller, and D. Kratch, Domination in convex and chordal bipartite
graphs, Inform. Process. Lett., 36 (1990), pp. 231–236.

[9] X. Deng, P. Hell, and J. Huang, Linear time representation for proper circular-arc graphs
and proper interval graphs, SIAM J. Comput., 25 (1996), pp. 390–403.

[10] E.M. Eschen and J. Spinrad, O(n2) recognition and isomorphism algorithms for circular
arc graphs, in Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), Austin, TX, SIAM, Philadelphia, 1993, pp. 128–137.

[11] M.R. Garey, D.S. Johnson, G.L. Miller, and C.H. Papadimitriou, The complexity of
coloring circular arcs and chords, SIAM J. Alg. Discrete Methods, 1 (1980), pp. 216–227.

[12] F. Glover, Maximum matching in convex bipartite graphs, Naval. Res. Logist., 14 (1967),
pp. 313–316.

[13] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[14] P. Hell, J. Bang-Jensen, and J. Huang, Local tournaments and proper circular arc graphs,
in Algorithms, Lecture Notes in Comput. Sci. 450, T. Asano, T. Ibaraki, H. Imai, and T.
Nishizeki, eds., Springer, Berlin, 1990, pp. 101–108.

[15] W.L. Hsu and K.H. Tsai, Linear time algorithms on circular arc graphs, Inform. Process.
Lett., 40 (1991), pp. 123–129.

[16] J. Huang, On the structure of local tournaments, J. Combin. Theory Ser. B, 63 (1995), pp. 200–
221.

[17] I.A. Karapetjan, Coloring of arc graphs, Akad. Nauk Armyan. SSR Dokl., 70 (1980), pp. 306–
311.

[18] J.M. Keil, Finding Hamiltonian circuits in interval graphs, Inform. Process. Lett., 20 (1985),
pp. 201–206.

[19] N. Korte and R.H. Möhring, An incremental linear-time algorithm for recognizing interval
graphs, SIAM J. Comput., 18 (1989), pp. 68–81.

[20] Y.D. Liang and N. Blum, Circular convex bipartite graphs: Maximum matching and Hamil-
tonian circuits, Inform. Process. Lett., 56 (1995), pp. 215–219.

[21] Y.D. Liang, G.K. Manacher, C. Rhee, and T.A. Mankus, A linear algorithm for Hamil-
tonian circuits in circular arc graphs, in Proceedings of the Southeast ACM Conference,
Tuscaloosa, AL, 1994, pp. 15–22.

[22] Y.D. Liang and Maw-Shang Chang, Minimum feedback vertex sets in cocomparability graphs
and convex bipartite graphs, Acta Inform., 34 (1997), pp. 337–346.

[23] Y.D. Liang and C. Rhee, Finding a maximum matching in a circular-arc graph, Inform.
Process. Lett., 45 (1993), pp. 185–190.

[24] W. Lipski and F.P. Preparata, Efficient algorithms for finding a maximum matching in
convex bipartite graphs and related problems, Acta Inform., 15 (1981), pp. 329–346.

CONVEX-ROUND AND CONCAVE-ROUND GRAPHS 193

[25] U. Manber, Introduction to Algorithms, Addison-Wesley, Reading, MA, 1989.
[26] W.K. Shih and W.L. Hsu, An O(n1.5) algorithm to color proper circular arcs, Discrete Appl.

Math., 25 (1989), pp. 321–323.
[27] W.K. Shih, T. C. Chern, and W.L. Hsu, An O(n2 logn) algorithm for the Hamiltonian cycle

problem on circular-arc graphs, SIAM J. Comput., 21 (1992), pp. 1026–1046.
[28] D.J. Skrien, A relationship between triangulated graphs, comparability graphs, proper interval

graphs, proper circular arc graphs, and nested interval graphs, J. Graph Theory, 6 (1982),
pp. 309–316.

[29] G. Steiner and J.S. Yeomans, A linear time algorithm for maximum matchings in convex
bipartite graphs, Comput. Math. Appl., 31 (1996), pp. 91–96.

[30] K.E. Stouffers, Scheduling of traffic lights–A new approach, Transportation Res., 2 (1968),
pp. 199–234.

[31] A. Tucker, Matrix characterizations of circular-arc graphs, Pacific J. Math., 39 (1971),
pp. 535–545.

[32] C.W. Yu and G.H. Chen, Efficient parallel algorithms for doubly convex-bipartite graphs,
Theoret. Comput. Sci., 147 (1995), pp. 249–265.

LATTICE-SIMPLEX COVERINGS AND THE 84-SHAPE∗

ROD FORCADE† AND JACK LAMOREAUX†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 2, pp. 194–201

Abstract. It is known that diameters of abelian Cayley graphs with n generators are related
to Manhattan diameters of a particular type of lattice tile called a Cayley tile and that determining
the lower bound of those diameters is related to the density of lattice-simplex coverings of Rn. We
construct a natural tile associated with each lattice-simplex covering and show that the 84-shape
(discovered in [R. Dougherty and V. Faber, The Degree-Diameter Problem for Several Varieties of
Cayley Graphs, http://www.c3.lanl.gov/dm/pub/laces.html (1994) and C.M. Fiduccia, J.S. Zito, and
E. Mann, Network Interconnection Architectures and Translational Tilings, Tech. report, Center for
Computing Science, Bowie, MD, 1994]) represents a local mininum of the density of lattice coverings
of R3 by a particular simplex D (the convex hull of the unit basis vectors).

Key words. covering, diameter, lattice, simplex

AMS subject classifications. 05C12, 11H31, 52C17

PII. S0895480198349622

1. Introduction and preliminaries. The problems of finding the thinnest cov-
ering density ϑ(C) by translates of an object C and finding the thinnest covering
density ϑL(C) by lattice of translates of C have been studied extensively (see Conway
and Sloane [1], Rogers [5] and Fejes Tóth and Kuperberg [6]), especially when C is
a sphere or simplex in n dimensions. We concern ourselves with the case where the
covering object is a simplex and its translates are given by a lattice. Note that if
S and S1 are n-dimensional simplices in Rn, then ϑL(S) = ϑL(S1), since a linear
transformation can be found to carry S onto a translate of S1.

The simplex covering density problem is related to diameters of abelian Cayley
graphs as follows. Note that an abelian group G with n generators provides a homo-
morphism from Zn onto G. The kernel is a sublattice L of Zn; and the diameter δ of
the Cayley graph is the Manhattan diameter of a tile T (T +L

.
= Zn) which is formed

by choosing (in short-lex order, see [2] and [3]) a transversal of the cosets of L in the
first orthant. If C = [0, 1)n (the half-open n-cube) is added to T , the set T ′ = T +C
is a tile (with L) of Rn. Thus (as observed in [2]) its Manhattan diameter (λ = δ+n)
represents a dilation λD of the base simplex which covers Rn with L (L+λD = Rn).
So ϑL(S) for simplices S ∈ Rn provides a lower bound (n

√
ϑL(S)mn! − n) for the

diameter of Cayley graphs of abelian groups with m elements and n generators. The
diameter bound problem for abelian Cayley graphs is unsolved for dimensions greater
than two but leads to some nice mathematics in three dimensions.

For our purposes, a lattice will be a discrete, rank-n subgroup of Rn, and a simplex
will be the convex hull of n+ 1 points in general position.

2. A setting for the infimum covering density problem. Let L be a lattice
and S a simplex in Rn. Note that L + S ⊇ Rn iff S contains a transversal—a set of
distinct representatives—of the cosets of L in Rn. Such a transversal T is a tile for the
lattice L. In other words, every element of Rn is contained in exactly one translate

∗Received by the editors December 22, 1998; accepted for publication (in revised form) September
22, 1999; published electronically April 6, 2000.

http://www.siam.org/journals/sidma/13-2/34962.html
†Department of Mathematics, Brigham Young University, Provo, UT 84602 (forcader@math.

byu.edu, jack@math.byu.edu).

194

LATTICE-SIMPLEX COVERINGS AND THE 84-SHAPE 195

x+ T , x ∈ L. Equivalently, every element of Rn is uniquely expressible as the sum of
an element of L plus an element of T , a situation commonly denoted by L+ T

.
= Rn.

Thus, for a given lattice L and simplex S, L + S ⊇ Rn iff S contains a tile for the
lattice L.

Our strategy will be to choose a fixed simplex, up to scaling, and to vary the
lattice. Let D be the base simplex defined by

D =

{
(x1, x2, . . . , xn) ∈ Rn

∣∣xi ≥ 0 (∀ i),

n∑

i=1

xi ≤ 1

}

with volume 1
n! , and let

λD =

{
(x1, x2, . . . , xn) ∈ Rn

∣∣xi ≥ 0 (∀ i),

n∑

i=1

xi ≤ λ

}

with volume λn

n! for any positive real number λ. For any lattice L, there is a minimum
λ such that λD contains a tile for L (see the subtraction construction below). Call it
λ(L). Note that λ is often referred to as the Manhattan diameter or taxicab diameter

of the contained tile. The density of the covering is then θ(L) = (λ(L)n/n!)
V ol(L) . We seek

to minimize θ(L) over all lattices. Since, for real nonzero r, θL = θ(rL), it suffices to
minimize θ(L) over lattices with V ol(L) = 1.

3. The subtraction construction. Given a lattice L, we will construct a tile
which is contained in all of the dilations λD for which L+λD ⊇ Rn. Our construction
also proves that, given any fixed lattice L, there exists a minimum dilation λD such
that L+ λD ⊃ Rn.

Since a tile is a transversal, it suffices to choose, from each coset of L, an element
in the smallest possible λD. We do that by constructing a well-ordering ≺ of the
intersection of each coset with the first orthant and then choosing the ≺-least element
of the coset. This will work if we ensure that ≺ is consistent with the ordering by
scalings of D. In other words, if x = (x1, . . . , xn), y = (y1, . . . , yn), and

∑
xi <

∑
yi,

then we must have x ≺ y.
If x and y are in the same coset of L, we will define x ≺ y iff y − x ∈ L0, where

L0 is a special subset of L. To make this consistent with scalings of D, we need L0

to contain all elements of L1 = {(x1, . . . , xn) ∈ L
∣∣∑xi > 0}. To make ≺ a linear

ordering, we need antisymmetry and transitivity. Respectively, we have the following.
(i) If x ∈ L and x �= 0 then exactly one of {x,−x} is in L0.
(ii) If x, y ∈ L0 then x+ y ∈ L0.

If L has no nonzero points on the hyperplane H = {(x1, . . . , xn)
∣∣∑xi = 0}, then

conditions (i) and (ii) are already satisfied by letting L0 = L1. If (L ∩ H) \ {0} is
nonempty, intersect it with a half-space U whose boundary intersects L only at the
origin—and join that intersection to L1 to make L0 = L1 ∪

(
((H ∩ L) \ {0}) ∩ U

)

satisfy the required conditions.
Now each coset of L is linearly ordered by ≺, and the intersection of each coset

with the first orthant is well ordered (because initial segments are bounded, thus
finite). The set T of ≺-least elements of those intersections is thus a tile contained in
all dilations λD for which L+ λD ⊇ Rn. One may easily verify that

T = On \
⋃

x∈L0

(x+On)

196 ROD FORCADE AND JACK LAMOREAUX

(subtract from the first orthant On, by set-complementation, all translates of the first
orthant by elements of L0). We call this the subtraction construction and observe that
it effectively defines the smallest dilation of D which will tile with a given lattice.

It is worth mentioning that this yields a perfect tile, in the sense that its lattice
translates do not intersect each other, even on their boundaries. Note also that
this construction can be applied to more general cones than On, and to any subset
L0 ⊂ L satisfying the conditions above, to yield tiles satisfying a variety of minimality
conditions. In particular, we can similarly construct a tile for the minimum dilation
of any given simplex which forms a covering with a given lattice.

Since the intersection of all λD containing T is a dilation of D containing T , we
have also shown there is a minimum such dilation. The corresponding λ(L) gives the

density θ(L) = λ(L)n

n! V ol(L) as noted before.

The minimum of θ(L) over all lattices is ϑL(D) (or ϑL(S) for any simplex S).
The interesting implication is that there must exist a minimum simplex covering with
D, hence a corresponding tile for each dimension which characterizes the minimum
diameter in the abelian Cayley graph problem. What does it look like, one wonders.
Is it unique? One expects it to be a simple object with a lot of symmetry, but our
experience in three dimensions suggests that is not the case.

4. The two-dimensional case. We explore the planar situation first, although
the results in that case are well known (see [7] for example), because this case exposes
the basic ideas.

The subtraction construction above produces a tile which is the relative com-
plement, in the first quadrant, of a family of translates of the first quadrant. Since
the tile is necessarily bounded (being contained in the smallest covering simplex), it
only touches a finite number of L-translates of T . Thus the construction of T can be
effected by subtracting only a finite number of translates of the first quadrant from
itself. In two dimensions, this means the tile must look like one of the following (with
one, two, three, or more outer corners; see Figure 4.1).

Fig. 4.1.

In other words, it must look like a rectangle at the origin with a finite number of
rectangular “notches” taken out of it. It clearly cannot be a tile, however, if there is
more than one notch (like the right-hand object in Figure 4.1), since the translates
sitting in those notches would overlap. Thus we have only two shapes to consider, the
rectangle and the “L-shape” (the first two shapes in Figure 4.1). It is easy to verify
that all such shapes, with one or fewer notches, are tiles with appropriate lattices.

In each case, the density of the corresponding simplex covering can be calculated
by dividing the area of the smallest λD containing the tile by the area of the tile
itself (which is equal to the area of the lattice domains). Elementary calculus then
determines that the minimum ratio is produced by an L-shape with its outer corners
trisecting the outer edge of the enclosing simplex; see Figure 4.2.

Thus the minimum lattice simplex covering density in two dimensions is 1.5 (the
area of the enclosing triangle divided by the area of the tile).

LATTICE-SIMPLEX COVERINGS AND THE 84-SHAPE 197

(2/3, 1/3)

(1/3, 2/3)

Fig. 4.2.

5. The three-dimensional case. The two-dimensional case is easy because we
can characterize, independently of lattices, the possible tiles. There are only two
combinatorial types. Unfortunately there are infinitely many combinatorial types of
tiles in three dimensions. For example, if n is a positive integer greater than one,
let Mn be the lattice generated by (1, 1,−1), (1, 1 − n, n − 1), and (1 − n, n, 0). It
is also the sublattice of Z3 defined by the modular relation (n + 1)y + z ≡ nx (mod
n2). Using the subtraction construction (section 3 above) with this lattice yields the
order-n double staircase tile (described in [3, p. 166], discovered by Fiduccia, Zito,
and Mann [4]). Its volume is n2, it has 2n − 1 outer corners, and it fits inside the
dilation (n+ 2)D of the base simplex, yielding a covering density of in Figure 5.1.

Fig. 5.1.

What does a minimum tile (characterizing the minimum simplex covering density)
in three dimensions look like? How many corners does it have? How complicated is
it? A possible candidate was discovered via computer search by Fiduccia, Zito, and
Mann [4] and independently by Dougherty and Faber [2]. It is the so-called “84-
shape,” formed by applying the subtraction construction to the sublattice L84 of Z3

defined by the modular relation 2x+ 9y + 35z ≡ 0 (mod 84).

Denoted T84 henceforth, it (see Figure 5.2) is a tile with volume 84 and is contained
in 10D (its Manhattan diameter is 10), so it corresponds to a covering density of
(103/6)

84 = (2− 1
63) (the smallest discovered so far). Its outer corners are at (1, 7, 2),

(1, 8, 1), (1, 1, 8), (1, 2, 7), (3, 2, 5), (2, 6, 2), (3, 5, 2), (5, 2, 3), (4, 4, 2), (5, 3, 2), (3, 6, 1),
(6, 3, 1), and (8, 1, 1). Note that

T84 = On \
⋃

x∈S
(x+On),

198 ROD FORCADE AND JACK LAMOREAUX

z

yx

Fig. 5.2.

where S = {(x, y, z) ∈ L84

∣∣ x+y+ z > 0}. (The nonzero elements of L84 lying in the
plane x+ y+ z = 0 prove to have no effect on the construction, so there is no need in
this case to intersect those elements with a half-space U , as was done in the general
construction.)

There are heuristic reasons for suspecting that T84 might be the minimum
characterizing tile for three dimensions, but no proof. First, despite extensive com-
puter searches of finite abelian groups with three generators (the quotient groups
for sublattices of Z3), no lower density covering has been found. Second, the ones
which come close look very similar to the 84-shape, suggesting that no simple, highly
symmetric tile will do.

Third, we now show that the lattice associated with the 84-shape represents a
local minimum in the covering-density function θ(L).

6. The local minimum property of the 84-lattice. Note that the 13 outer
corners of T84 represent critical points in the covering L84 + 10D, in the sense that
L84 + (10 − ε)D will expose part of a neighborhood of each of those points (when
ε > 0). Thus any such corner must have L84-coset-equivalent points (we’ll call them
cousins for brevity) on each of the other faces of 10D. We list here the 13 corners and
their respective cousins.

(1, 7, 2) : (0, 1, 6), (8, 0, 1), (3, 5, 0)
(1, 8, 1) : (0, 2, 5), (2, 0, 3), (8, 1, 0)
(1, 1, 8) : (0, 2, 3), (2, 0, 1), (6, 3, 0)
(1, 2, 7) : (0, 3, 2), (3, 0, 5), (2, 1, 0)
(3, 2, 5) : (0, 5, 2), (5, 0, 3), (2, 3, 0)
(2, 6, 2) : (0, 1, 1), (1, 0, 6), (4, 4, 0)
(3, 5, 2) : (0, 1, 8), (1, 0, 1), (5, 3, 0)
(5, 2, 3) : (0, 7, 2), (7, 0, 1), (2, 5, 0)
(4, 4, 2) : (0, 1, 3), (1, 0, 8), (6, 2, 0)
(5, 3, 2) : (0, 8, 1), (1, 0, 3), (7, 1, 0)
(3, 6, 1) : (0, 2, 7), (2, 0, 5), (1, 1, 0)
(6, 3, 1) : (0, 2, 4), (2, 0, 2), (1, 8, 0)
(8, 1, 1) : (0, 2, 6), (2, 0, 4), (3, 6, 0)

The cousins were generated on a computer by searching for integer points on the coor-
dinate planes having the same value of 2x+9y+35z (modulo 84) as the corresponding
corner.

LATTICE-SIMPLEX COVERINGS AND THE 84-SHAPE 199

Note also that L + λD ⊇ Rn iff (x + λD) ∩ L �= ∅ (∀ x ∈ Rn), so the covering
diameter is determined by the largest λD which can be translated to fit inside the
lattice without any lattice points in its interior. Notice that any λD, so translated, will
necessarily have at least one lattice point on each of its faces. Thus the 13 corners
above, with their cousins, when translated into the lattice, represent 13 four-point
configurations in the lattice L84 where a translate of 10D can fit neatly inside.

Our analysis of the lattice L84, though somewhat complicated, is facilitated by the
fact that each of those configurations is simple — consisting of exactly four points, one
in the interior of each face. The analysis of other lattices is usually not so “simple.”

If we can show that every slight modification of L84 preserving the lattice-volume
causes at least one of those 13 configurations to expand (admitting a larger dilation of
D), then we will know that θ(L) attains a local minimum on the lattice L84. Note that
modification of the lattice must be small enough to avoid introducing other lattice
points into the simplices enclosed by the 13 configurations. That condition determines
the neighborhood within which θ(L84) is minimum.

For the ith configuration pi : qi, ri, si above, we form a configuration matrix Ci
whose rows are elements of L84, namely, pi − qi, pi − ri, and pi − si, respectively.
Since qi, ri, si are on the yz-plane, the xz-plane and the xy-plane, respectively, the
trace of each matrix represents the Manhattan diameter of the largest dilation of D
which will fit inside each corresponding configuration (10 in the present case). Thus
the first two configurations above give rise to the matrices

C1 =

1 6 −4
−7 7 1
−2 2 2

 ,

C2 =

1 6 −4
−1 8 −2
−7 7 1

 ,

etc.
If M is an (arbitrary) basis matrix for the lattice (i.e., the rows of M generate

the lattice), we wish to consider the effect on the traces of the Ci matrices when we
vary the matrix M . We assume that M is so arranged that its determinant is positive
(not negative) 10. Let L be a new lattice generated by M(I + εK), where I is the
(3 by 3 identity matrix), K is an arbitrary 3 by 3 matrix, and ε is a small positive
real number. The new ith configuration matrix will be Ci(I + εK). Its trace will be
tr(Ci) + ε tr(CiK), and the determinant of the new basis will be

det(M) · det(I + εK) = det(M)
(
1 + ε tr(K) + ε2E2(K) + ε3det(K)

)
,

where E2(K) is the sum of all 2× 2 principal minors of K.
Dividing the new trace by the cube-root of the new basis determinant and mul-

tiplying by the cube-root of the determinant of M yields a function

fi(ε) =
tr(Ci) + ε tr(CiK)

3
√
1 + ε tr(K) + ε2E2(K) + ε3det(K)

,

whose maximum over i is proportional to the cube-root of the new covering density.
Developing its Taylor series as a function of ε gives

200 ROD FORCADE AND JACK LAMOREAUX

fi = tr(Ci) + ε
(
tr(CiK)− 1

3
tr(Ci)tr(K)

)

+ ε2
(
2

9
tr(Ci)(tr(K))2 − 1

3
tr(CiK)tr(K)− 1

3
tr(Ci)E2(K)

)
+ · · ·

(we will not need the higher-order terms).
The linear coefficient tr(CiK)− 1

3 tr(Ci)tr(K) can also be written
〈
(Ci− 1

3 tr(Ci)I),

Kτ
〉
, where Kτ is the transpose of K and 〈U, V 〉 denotes the standard inner product

(sum of the products of corresponding entries) of matrices U and V . By using symbolic
manipulation software (we used Maple), one can check that the 13 gradient matrices
Gi = Ci − 1

3 tr(Ci)I = Ci − 10
3 I lie in a seven-dimensional subspace of R9. One can

also check that

6G1+2G2+6G3+G4+47G5+11G6+12G7+6G8+11G9+6G10+6G11+6G12+6G13 = 0.

Thus within the seven-dimensional subspace, the origin lies in the interior of the
convex hull of the Gi. Thus any nonzero matrix Kτ must have a positive scalar
product with at least one of the Gi or must have a zero scalar product with all of
them. In the former case, one of the configurations will necessarily admit a simplex
with a larger covering density (increasing the function θ(L)).

In the latter case, we must examine the second-order term. Since we now assume
tr(CiK) = 1

3 tr(Ci)tr(K), (∀ i), the second-order coefficient of fi becomes

1

9
tr(Ci)

(
(tr(K))2 − 3E2(K)

)

=
10

9

(
(tr(K))2 − 3E2(K)

)
.

Again, using symbolic software (Maple), we find that the two-dimensional subspace of
K’s such that 〈Gi,K

τ 〉 = 0 (∀ i) is generated by the identity matrix (corresponding
to the fact that θ(λL) = θ(L)) and the matrix

K0 =

23 −2 2
9 −2 9
7 7 0

 .

We may describe a generic matrix K, having a zero scalar-product with all of the
Gi’s by K = αK0 +βI. Then tr(K) = 21α+3β and E2(K) = −105α2 +42αβ+3β2,
so the second-order term is

(21α+ 3β)2 − 3(−105α2 + 42αβ + 3β2) = 756α2.

This will be positive in all cases except when K is a multiple of I (corresponding once
again to the fact that dilations of L leave the covering density unchanged). Thus we
have shown the following.

Theorem 1. The lattice L84 associated with the 84-shape attains a local minimum
in the covering-density function θ(L).

CONJECTURE. θ(L84) = ϑL(S), where S is any full-dimensional simplex in R3.

LATTICE-SIMPLEX COVERINGS AND THE 84-SHAPE 201

As for that curious matrix K0 above, it seems to correspond to a modification of
L84 which keeps the 13 corners at equal Manhattan distances from the origin, though
not in the same positions relative to one another, while varying the lattice volume in
such a way that the change in covering density is proportional to the sixth power of
the distances which the corners move—until one or more of the configuration simplices
are penetrated by other lattice points. Is this a characteristic phenomenon associated
with a local minimum or perhaps with a global minimum?

REFERENCES

[1] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag,
New York, 1993.

[2] R. Dougherty and V. Faber, The Degree-Diameter Problem for Several Varieties of Cayley
Graphs I: The Abelian Case, http://www.c3.lanl.gov/dm/pub/laces.html (1994).

[3] C. M. Fiduccia, R. W. Forcade, and J. S. Zito, Geometry and diameter bounds of directed
Cayley graphs of Abelian groups, SIAM J. Discrete Math., 11 (1998), pp. 157–167.

[4] C. M. Fiduccia, J. S. Zito, and E. Mann, Network Interconnection Architectures and Trans-
lational Tilings, Tech. report, Center for Computing Science, Bowie, MD, 1994.

[5] C. A. Rogers, Packing and Covering, Cambridge Tracts in Math. and Mathematical Physics
54, Cambridge University Press, Cambridge, UK, 1964.

[6] G. Fejes Tóth and W. Kuperberg, Packings and coverings with convex sets, in Handbook of
Convex Geometry, Vol. B, P.M. Gruber and J.M. Wills, eds., North-Holland, Amsterdam,
1993, pp. 799–860.

[7] C. K. Wong and D. Coppersmith, A combinatorial problem related to multimodule memory
organizations, J. ACM, 21 (1974), pp. 392–402.

CONNECTED DOMINATION AND SPANNING TREES WITH
MANY LEAVES∗

YAIR CARO† , DOUGLAS B. WEST‡ , AND RAPHAEL YUSTER†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 2, pp. 202–211

Abstract. Let G = (V,E) be a connected graph. A connected dominating set S ⊂ V is a
dominating set that induces a connected subgraph of G. The connected domination number of G,
denoted γc(G), is the minimum cardinality of a connected dominating set. Alternatively, |V |−γc(G)
is the maximum number of leaves in a spanning tree of G. Let δ denote the minimum degree of G.

We prove that γc(G) ≤ |V | ln(δ+1)
δ+1

(1 + oδ(1)). Two algorithms that construct a set this good are

presented. One is a sequential polynomial time algorithm, while the other is a randomized parallel
algorithm in RNC.

Key words. connectivity, domination, spanning trees

AMS subject classifications. 05C69, 05C40, 05C05

PII. S0895480199353780

1. Introduction. All graphs considered here are finite, undirected, and simple.
For standard graph-theoretic terminology the reader is referred to [5]. A major area of
research in graph theory is the theory of domination. Recently two books [14, 15] have
been published that present most of the known results concerning domination param-
eters. Among the most popular of these parameters is the “connected domination
number,” which we study here.

A subset D of vertices in a graph G is a dominating set if every vertex not in D
has a neighbor in D. If the subgraph induced by D is connected, then D is called a
connected dominating set. The domination number, denoted γ(G), and the connected
domination number, denoted γc(G), are the minimum cardinalities of a dominating set
and a connected dominating set, respectively. A graph G has a connected dominating
set if and only if G is connected; thus γc(G) is well defined on the class of connected
graphs. Also, trivially, γc(G) ≥ γ(G). Results on the connected domination number
appear in [3, 4, 7, 8, 10, 11, 16, 17, 23, 25, 26, 28].

Spanning trees of connected graphs are a major topic of research in the area
of graph algorithms (see, e.g., [9]). The problem of finding a spanning tree that
maximizes the number of leaves is equivalent to the problem of computing γc(G),
because a vertex subset is a connected dominating set if and only if its complement
is (contained in) the set of leaves of a spanning tree.

The problem of connected domination would arise in “real life” in the following
scenario. An existing computer network with direct connections described by a graph
G must have the property that any computer turned “on” must always be able to send
a message to any other computer turned “on.” One can make sure a computer is always
on by connecting it to an (expensive) unlimited power supply (UPS) source. We can
meet the requirement by connecting only the computers in a connected dominating
set to such power sources.

∗Received by the editors March 24, 1999; accepted for publication (in revised form) November
18, 1999; published electronically April 6, 2000.

http://www.siam.org/journals/sidma/13-2/35378.html
†Department of Mathematics, University of Haifa-Oranim, Tivon 36006, Israel (yairc@macam98.

ac.il, raphy@macam98.ac.il).
‡Department of Mathematics, University of Illinois, Urbana, IL 61801 (west@math.uiuc.edu).

202

CONNECTED DOMINATION 203

In this paper we consider computational and extremal aspects of γc(G). Finding
the maximum number of leaves in a spanning tree of G is NP-hard (cf. [12, p. 206]),
so we will be content with constructing a spanning tree having many leaves. The NP-
hardness of the optimization problem leads us to seek constructive proofs for related
extremal problems. A constructive proof that all graphs in a particular class have
spanning trees with at least µ leaves becomes an algorithm to produce such a tree for
graphs in this class.

When G is a cycle, we can guarantee only two leaves. Let Gn,k be the class of
simple connected n-vertex graphs with minimum degree at least k. Let l(n, k) be the
maximum m such that every G ∈ Gn,k has a spanning tree with at least m leaves.
Alternatively, define γc(n, k) = n − l(n, k) to be the minimum m such that every
G ∈ Gn,k has a connected dominating set of size at most m. Finally, define γ(n, k) to
be the minimum m such that each (not necessarily connected) n-vertex graph with
minimum degree at least k has a dominating set of size at most m.

The value l(n, k) is known for k ≤ 5. We have seen that l(n, 2) = 2. For arbitrary
k, Cn generalizes to a well-known graph in Gn,k having no tree with “very many”
leaves. Let m = � n

k+1�. Form cliques R1, . . . , Rm of orders k+1 and k+2, altogether
having n vertices. Place the cliques in a ring. Delete one edge xiyi from each Ri, and
restore minimum degree k by adding edges of the form xiyi+1. In forming a spanning
tree of this graph, there must be a nonleaf other than {xi, yi} in each Ri, except
possibly for two of them. The construction yields l(n, k) ≤ 	k−2

k+1n
+ 2.
This construction is essentially optimal when k is small. Linial and Sturtevant

(unpublished) proved that l(n, 3) ≥ n
4 + 2. For k = 4, the optimal bound l(n, 4) ≥

2
5n + 8

5 is proved in Griggs and Wu [13] and in Kleitman and West [19] (two small
graphs have no tree with 2

5n+2 leaves). In [13] it is also proved that l(n, 5) ≥ 3
6n+2.

These proofs are algorithmic, constructing a tree with at least this many leaves in
polynomial time. For k ≥ 6 the exact value of l(n, k) remains unknown.

The example above was thought to be essentially optimal for all k. However, Alon
[1] proved by probabilistic methods that when n is large there exists a graph with

minimum degree k and with no dominating set of size less than (1+ok(1))
1+ln(k+1)

k+1 n.
Since connected dominating sets are also dominating sets, this shows that γc(n, k) ≥
(1 + ok(1))

1+ln(k+1)
k+1 n. Equivalently, l(n, k) ≤ (1 + ok(1))

k−ln(k+1)
k+1 n.

A well-known result of Lovász [21] (see [2]) states that γ(G) ≤ n 1+ln(k+1)
k+1 for

every n-vertex graph G with minimum degree k > 1. Together with Alon’s result,

this yields γ(n, k) = (1+ok(1))n
1+ln(k+1)

k+1 . Thus γ(n, k) is asymptotically determined
(it is known exactly for k ≤ 3 [22, 24]).

Kleitman and West [19] gave an upper bound for γc(n, k) that is only 2.5 times
larger than Alon’s lower bound. They proved that if n is sufficiently large, then
γc(n, k) ≤ C ln k

k n, where C is very close to 2.5. Our main result in this paper improves
this result of Kleitman and West and is asymptotically sharp. We summarize our
result in the following theorem.

Theorem 1.1.

γc(n, k) = (1 + ok(1))n
ln(k + 1)

k + 1
.

An interesting consequence of Theorem 1.1 is that γc(n, k) behaves essentially like
γ(n, k) when k is sufficiently large.

We supply two proofs for Theorem 1.1. The first uses a probabilistic approach
similar to the proof of the Lovász bound in [2] and to the proof in [6]. Our proof here

204 YAIR CARO, DOUGLAS B. WEST, AND RAPHAEL YUSTER

is more complicated since we need to use several large deviation inequalities along
with a sharpened form of a result of Duchet and Meyniel [11]. The proof yields the
following technical statement, which immediately implies Theorem 1.1.

Theorem 1.2. If G is an n-vertex connected graph with minimum degree k, then

γc(G) ≤ n145 + 0.5
√
ln(k + 1) + ln(k + 1)

k + 1
.

Furthermore, there exists a polynomial time randomized algorithm that generates a
connected dominating set this good, with constant probability. This algorithm can also
be implemented in parallel in RNC.

Our second proof for Theorem 1.1 yields a purely sequential algorithm for finding
a spanning tree with the required number of leaves. At each stage in the algorithm
we maintain a subtree of the final spanning tree, and vertices are added to the tree in
ways that tend to increase the number of leaves. Unlike the first proof, this algorithm
cannot be parallelized, but it has the advantage of being purely deterministic. We
summarize this algorithm in the following theorem.

Theorem 1.3. Given ε > 0, and given k sufficiently large in terms of ε, every
connected simple graph with order n and minimum degree k has a spanning tree with

more than (1− (1+ε) ln k
k)n leaves. Furthermore, there is a polynomial time algorithm

that constructs such a tree.

Note that Theorem 1.1 follows also from Theorem 1.3. In the next section we
prove Theorem 1.2, and in section 3 we prove Theorem 1.3.

2. The probabilistic proof. We begin with a lemma that sharpens a result of
Duchet and Meyniel [11], who proved that γ(G) ≤ γc(G) ≤ 3γ(G)− 2.

Lemma 2.1. Let G be a connected graph. If X is a dominating set of G that
induces a subgraph with t components, then γc(G) ≤ |X|+ 2t− 2. In particular,

γ(G) ≤ γc(G) ≤ 3γ(G)− 2.

Proof. It suffices to show that whenever t > 1, we can find at most two vertices
in V \X such that adding them to X decreases the number of components by at least
one. Partition X into parts X1 and X2 such that X1 and X2 have no edge connecting
them. Let x1 ∈ X1 and x2 ∈ X2 be two vertices whose distance in G is the smallest
possible. The distance between x1 and x2 is at most 3, because otherwise there is a
vertex (in the middle of a shortest path from x1 to x2) that has distance at least 2
from both X1 and X2 and is undominated.

Proof of Theorem 1.2. The theorem clearly holds for k < 100, so we assume

k ≥ 100. Let p = ln(k+1)
k+1 ; note that 0 ≤ p < 1. Pick each vertex of V , randomly

and independently, with probability p. Let X denote the set of vertices that are
picked. Let Y denote the set of vertices that are not picked and have no picked
neighbor. Finally, let z denote the number of components in the subgraph induced by
X. Clearly, x = |X|, y = |Y |, and z are random variables. By definition, S = X ∪ Y
is a dominating set of G. Since S has at most z + y components, Lemma 2.1 yields
γc(G) ≤ x+ y+2(z+ y)− 2 = x+2z+3y− 2. It therefore suffices to show that with
positive probability,

x+ 2z + 3y − 2 ≤ n145 + 0.5
√
ln(k + 1) + ln(k + 1)

k + 1
.(2.1)

CONNECTED DOMINATION 205

Claim 1.

Prob

[
x > n

ln(k + 1)

k + 1
+ n

0.5
√
ln(k + 1)

k + 1

]
< 0.91.

Proof of Claim 1. The expectation of x is E[x] = np = n ln(k+1)
k+1 . We shall use

the following large deviation result attributed to Chernoff (cf. [2, Appendix A]):

Prob
[
x− E[x] > a

]
< exp

(−a2/(2pn) + a3/(2p2n2)
)
.

(We use here the fact that x is a sum of n independent indicator random variables

each having probability p of success.) Substituting n
0.5
√

ln(k+1)

k+1 for a in this inequality
yields

Prob

[
x > n

ln(k + 1)

k + 1
+ n

0.5
√
ln(k + 1)

k + 1

]

< exp

− n2 ln(k + 1)

8(k + 1)2n ln(k+1)
k+1

+
n3 ln3/2(k + 1)

16(k + 1)3n2 ln2(k+1)
(k+1)2

= exp

(
− n

8(k + 1)
+

n

16(k + 1)
√
ln(k + 1)

)
≤ exp

(
−1
8
+

1

16
√
ln(k + 1)

)

≤ exp

(
−1
8
+

1

16
√
ln(101)

)
< 0.91.

In the last inequality we used n ≥ k + 1 ≥ 101. This establishes Claim 1.
Claim 2.

Prob

[
y > 25

n

k + 1

]
< 0.04.

Proof of Claim 2. For each vertex v, the probability that v ∈ Y is exactly
(1− p)dv+1 where dv is the degree of v. Since dv ≥ k, it follows that the expectation
of y satisfies E[y] ≤ n(1−p)k+1. By using the well-known inequality from elementary
calculus

(
1− ln(k + 1)

k + 1

)k+1

<
1

k + 1
,

we obtain E[y] < n/(k + 1). It now follows immediately from Markov’s inequality
that

Prob

[
y > 25

n

k + 1

]
<

1

25
= 0.04.

This establishes Claim 2.

206 YAIR CARO, DOUGLAS B. WEST, AND RAPHAEL YUSTER

It is not easy to bound z directly. Instead, we will show that the total number of
vertices in small components in X is rather small. We say that a vertex v ∈ V is
weakly dominated if v has fewer than 0.1 ln(k + 1) neighbors in X. We now bound
the probability that a vertex is weakly dominated. Let Xv denote the number of
neighbors of v in X. Clearly,

E[Xv] = pdv ≥ pk = ln(k + 1)

k + 1
k ≥ 100

101
ln(k + 1).

Claim 3.

Prob
[
Xv < 0.1 ln(k + 1)

]
<
(1

k + 1

)0.4

.

Proof of Claim 3. Once again, we use a large deviation inequality. However, now we
need to bound the lower tail, so we use the inequality (cf. [2, Appendix A])

Prob
[
Xv − E[Xv] < −a

]
< exp

(
− a2

2E[Xv]

)
,

which is valid for every a > 0. Using a = (1− 101/1000)E[Xv], we obtain

Prob
[
Xv < 0.1 ln(k + 1)

]
≤ Prob

[
Xv <

101E[Xv]

1000

]

= Prob

[
Xv − E[Xv] < −(1− 101

1000
)E[Xv]

]

< exp

(
− (1− 101/1000)2E[Xv]

2

2E[Xv]

)
= exp

(
− (1− 101/1000)2

2
E[Xv]

)

< exp

(
− ln(k + 1)

100

101

(1− 101/1000)2

2

)
<

(
1

k + 1

)0.4

.

This establishes Claim 3.
The event that a vertex v is picked for X is independent of the event that v is

weakly dominated. Therefore, by Claim 3, the probability that a vertex is weakly
dominated and in X is

Prob
[
v ∈ X and Xv < 0.1 ln(k + 1)

]
< p

(
1

k + 1

)0.4

=
ln(k + 1)

(k + 1)1.4
.

Thus, the expected number of weakly dominated vertices in X is at most

n
ln(k + 1)

(k + 1)1.4
.

Let U be the set of weakly dominated vertices in X. By Markov’s inequality,

Prob

[
|U | > 20n

ln(k + 1)

(k + 1)1.35

]
<

n ln(k+1)
(k+1)1.4

20n ln(k+1)
(k+1)1.35

=
1

20(k + 1)0.05
≤ 1

20 · 1010.05
< 0.04.

CONNECTED DOMINATION 207

From Claim 1, Claim 2, and the last inequality, it follows that with probability
at least

1− 0.91− 0.04− 0.04 = 0.01 > 0

all of the following events happen simultaneously:

x ≤ n ln(k + 1)

k + 1
+n

0.5
√
ln(k + 1)

k + 1
, y ≤ 25

n

k + 1
, |U | ≤ 20n

ln(k + 1)

(k + 1)1.35
.(2.2)

We now fix a choice of X where all these events happen simultaneously. Every
component of X that contains no weakly dominated vertex has size at least 0.1 ln(k+
1). Thus the number z of components in X satisfies

z ≤ x

0.1 ln(k + 1)
+ 20n

ln(k + 1)

(k + 1)1.35
≤ n ln(k+1)

k+1 + n
0.5
√

ln(k+1)

k+1

0.1 ln(k + 1)
+ 20n

ln(k + 1)

(k + 1)1.35

≤ 10n

k + 1
+

5n

k + 1
+

20n

k + 1
=

35n

k + 1
.(2.3)

(We have used that k ≥ 100 implies (k + 1)0.35 > ln(k + 1).) Finally, (2.2) and (2.3)
yield

x+ 2z + 3y − 2 < n
145 + 0.5

√
ln(k + 1) + ln(k + 1)

k + 1
,

as required in (2.1).
We end this section by describing a parallel implementation of Theorem 1.2. The

reader unfamiliar with the parallel random access machines (PRAM) model of parallel
computing is referred to [18]. Let M be a Boolean array of order n. At the end of
the algorithm, the set of indices with M(i) = True will be a connected dominating
set in G. In constant parallel time, initialize all of M to False. Next, each vertex
picks itself for X with probability p. If v ∈ X, then we put M(v) = True. Since each
vertex is selected independently, this step also runs in constant parallel time.

Each v /∈ X now checks to see whether all its neighbors are also not in X (the
set of such vertices is denoted Y in the proof). In the concurrent real and concurrent
write (CRCW) PRAM model, this test can also be done in constant time (it is a
Boolean “and” operation for each v /∈ X). If v ∈ Y , then we also put M(v) = True.
Clearly, X ∪ Y is a dominating set.

Using well-known NC algorithms for finding components (such as [27]), we can
compute the components of the subgraph of G induced by X ∪ Y in O(log n) parallel
time on a CRCW PRAM. If there is only one component, then we are finished.

Otherwise, we proceed as follows. We compute distances joining all pairs of
vertices of G (namely, the n · n matrix A of the distances). It is well known that
computing A can be done in NC using iterated matrix multiplication. We now create
a graph H whose vertices are the components of X ∪ Y and whose edges connect two
components C1 and C2 of X ∪ Y if, and only if, for some c1 ∈ C1 and some c2 ∈ C2,
the distance between c1 and c2 is at most 3. Given A, one can clearly construct H in
constant time on a CRCW PRAM.

By the proof of Lemma 2.1, H is connected. Thus H has a spanning tree. Span-
ning trees are also known to be computed in NC. (In fact, spanning trees are by-
products of the algorithms that find components.) Since H has at most z+ y vertices

208 YAIR CARO, DOUGLAS B. WEST, AND RAPHAEL YUSTER

Fig. 1. The admissible operations for k = 3.

(recall that z is the number of components of X), the spanning tree has at most
z + y − 1 edges. Each such edge corresponds to a path of length 3 between two com-
ponents of X ∪Y . Thus the total number of internal vertices in these paths is at most
2(z + y − 1). If u is such an internal vertex, we put M(u) = True. This can be done
in constant time on a CRCW PRAM.

Thus we conclude that finding a connected dominating set ofG is in NC. The proof
of Theorem 1.2 shows that with constant positive probability, this set has size at most

n
145+0.5

√
ln(k+1)+ln(k+1)

k+1 . This proves the existence of the desired RNC algorithm. In
fact, the overall running time is O(log n) on a CRCW PRAM using a polynomial
number of (in fact, O(n3)) parallel processors.

3. The deterministic proof. Before giving the proof of Theorem 1.3, we de-
scribe the method as it applies to the iterative construction of a tree with at least
n/4 + 1.5 leaves when k = 3. When G �= K4, we can start with a star at a vertex of
degree at least 4 including all its neighbors, or with a double star where both centers
have degree 3. (A double star is a tree with exactly two adjacent nonleaves called
centers.) Let T denote the current tree, with s vertices and l leaves. If x is a leaf of
T , then the external degree of x, denoted d′(x), is the number of neighbors it has in
G− V (T). An expansion at x is performed by adding to T the d′(x) edges from x to
N(x) − V (T). We grow T by operations, which are sequences of expansions. After
each operation, all edges from T to G− V (T) are incident to leaves of T .

A leaf x of T with d′(x) = 0 is dead; no expansion is possible at a dead leaf, and
it must be a leaf in the final tree. Let m be the number of dead leaves in T . We
call an operation admissible if its effect on T satisfies the “augmentation inequality”
3∆l+∆m ≥ ∆s, where ∆l,∆m,∆s denote the change in the numbers of leaves, dead
leaves, and vertices, respectively, in T .

If T is grown to a spanning tree with L leaves by admissible operations, then
all leaves eventually die. We begin with four leaves and six vertices if G is 3-regular
(the double-star case above); otherwise we begin with r leaves and r + 1 vertices
for some r > 3. In any case, we start with at least four leaves, so the total of ∆m
from the augmentation inequalities for the operations is at most L− 4. Summing the
augmentation inequalities over all operations yields 3(L− 4)+ (L− 4) ≥ n− 6 if G is
3-regular and 3(L− r) + (L− 4) ≥ n− r− 1 otherwise. These simplify to 4L ≥ n+6
and 4L ≥ n+ 2r + 1 ≥ n+ 7, respectively, which yield L ≥ n/4 + 1.5.

The proof for k = 3 is now completed by providing a set of admissible operations
that can be applied until T absorbs all vertices. The three operations suggested in
Figure 1 suffice.

If some leaf x of the current tree has external degree at least 2, we perform
operation O1, which is an expansion at x. Otherwise, if two leaves x and y of T have
external degree 1, and both have the same unique neighbor outside of T , we perform

CONNECTED DOMINATION 209

Fig. 2. The operations Oi and Pi.

an expansion at one of them, say x. Note that y becomes dead after the expansion.
This is operation O2. The only remaining case is where some leaf has external degree
1, and the unique neighbor outside of T , denoted y, has no other neighbor in T . So
y has at least two other neighbors outside of T . We perform an expansion at x and
then an expansion at y. This is operation O3. Note that all operations satisfy the
augmentation inequality.

We use the notions of deadness, augmentation inequality, and admissible oper-
ation to develop an algorithm to grow a tree with many leaves when the minimum
degree is large. Our operations generalize operations O1 and O3 in Figure 1.

Proof of Theorem 1.3. We describe a polynomial time algorithm that grows the
desired tree. Beginning with a star at a vertex of degree k, we again proceed by
expanding the current tree T , which has order s, leaf count l, and external degree d′(x)
at each leaf x. We seek operations satisfying the augmentation inequality r∆l+∆M ≥
(r−1)∆s, where the parameter r depends on k andM is a measure of total “deadness”
of leaves. The final value of M is a multiple counting of the leaves of the final tree.
Each expansion at a leaf adds all outside neighbors, and an operation with one or
more expansions is admissible if it satisfies the augmentation inequality.

For coefficients r > α0 ≥ α1 ≥ · · · ≥ αr = 0 to be chosen later, we define
M =

∑r−1
i=0 αimi, where T has mi leaves with external degree i. For the final tree,

M = α0L. If we grow a tree by admissible operations, then summing the augmentation
inequalities yields r(L − k) + α0L ≥ (r − 1)(n − k − 1). Solving for L yields L ≥
(r−1)n+k+1−r

r+α0
. We choose r < k; this permits dropping the additive constant. We

then divide top and bottom by r and apply 1/(1 + α0

r) > 1 − α0

r to obtain L >

(1− 1
r)(1− α0

r)n > (1− 1+α0

r)n.
We define operations Oi and Pi for each i, applied only when the maximum

external degree of current leaves is i. The operation Oi is a single expansion at a
vertex of external degree i. The operation Pi is expansion at a vertex of external
degree i and expansion at one of its new neighbors that introduces the maximum
number of additional leaves. The operations are depicted in Figure 2. When the
maximum external degree is i, we perform a Pi if the number of vertices introduced
by the second expansion is at least βi = 2r+ αi − i; if no such Pi exists, we apply an
Oi. By construction, some such operation is always available until we grow a spanning
tree. It remains to choose r and the constants αi so that all operations are admissible
and so that (1 + α0)/r < (1 + ε) ln k/k.

The net change to M by Oi or Pi includes −αi for the loss of x as a leaf; other
changes are gains. We ignore contributions to M from deadness of new leaves, since
we have no control over their external degree. For each edge between a new vertex y

210 YAIR CARO, DOUGLAS B. WEST, AND RAPHAEL YUSTER

and a current leaf z other than x, we gain αj−1 − αj ≥ 0 if this edge reduces d′(z)
from j to j − 1. Note that j ≤ i. We choose constants c1 ≥ · · · ≥ cr ≥ 0 and define
αi to be

∑r
j=i+1 cj . This yields αj−1−αj = cj ≥ ci if j ≤ i. Hence ∆M ≥ −αi+ qci,

where q is the number of edges from new vertices to old leaves other than x.
It thus suffices to show that ∆s − r(∆s −∆l) − αi + ciq ≥ 0 for each operation

performed when the maximum external degree is i. If when applying Pi the second
expansion introduces t leaves, then ∆s = t + i and ∆l = t + i − 2. The desired
inequality becomes t+ i− 2r − αi + ciq ≥ 0, which holds since we use Pi only when
t ≥ 2r + αi − i.

When we apply Oi at x, our inability to apply Pi ensures that each of the i new
vertices has at most 2r+αi− i neighbors not yet in T and at most i neighbors among
x and the other new vertices. Hence it has at least k − 2r − αi edges to other leaves
of T . With i new vertices, this yields q ≥ i(k− 2r−αi). With ∆s = i and ∆l = i− 1,
the desired inequality becomes cii(k − 2r − αi) ≥ r − i+ αi.

We must choose r and nonincreasing {ci} to satisfy this inequality for all i. We
set ci = x/i for 1 ≤ i ≤ r, where x is a positive constant to be chosen in terms
of ε. The desired inequality becomes x(k − 2r − αi) ≥ r − i + αi. Since αi ≥
αi+1 and i < i + 1, it suffices to choose r so that the inequality holds when i = 1,
where it becomes k − (2 + 1/x)r ≥ (1 + 1/x)α1 − 1/x. Our choice of ci yields
α0 = x

∑r
i=1

1
i ≤ x[ln r+(1/2r)+0.577]. (Knuth [20, pp. 73–78] discusses

∑r
i=1 1/i.)

Similarly, α1 ≤ x[ln r + (1/2r)− 0.423] < x ln r. Hence it suffices to choose r so that
k− (2 + 1/x)r ≥ (1 + x) ln r. We choose r = 	 k

2+1/x − 1+x
2 ln k
; this satisfies the last

inequality.

We have achieved 1+α0

r = (2x+1) ln k
k +o(ln k

k). By making x < ε/2 and k sufficiently
large, we have the desired lower bound on the number of leaves in the final tree.

Acknowledgments. The authors wish to thank Noga Alon, Teresa W. Haynes,
and Jerry Griggs for helpful references.

REFERENCES

[1] N. Alon, Transversal numbers of uniform hypergraphs, Graphs Combin., 6 (1990), pp. 1–4.
[2] N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley, New York, 1991.
[3] L. Arseneau, A. Finbow, B. Hartnell, A. Hynick, D. Maclean, and L. O’Sullivan, On

minimal connected dominating sets, J. Combin. Math. Combin. Comput., 24 (1997), pp.
185–191.

[4] C. Bo and B. Liu, Some inequalities about the connected domination number, Discrete Math.,
159 (1996), pp. 241–245.

[5] B. Bollobás, Extremal Graph Theory, Academic Press, London, UK, 1978.
[6] Y. Caro, On k-domination and k-transversal numbers of graphs and hypergraphs, Ars Combin.,

29A (1990), pp. 49-55.
[7] E.J. Cockayne, T.W. Haynes, and S.T. Hedetniemi, Extremal Graphs for Inequalities In-

volving Domination Parameters, manuscript, 1997.
[8] C.J. Colbourn and L.K. Stewart, Permutation graphs: Connected domination and Steiner

trees, Discrete Math., 86 (1990), pp. 179-189.
[9] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, MIT Press,

Cambridge, MA, 1990.
[10] A. D’Atri and M. Moscarini, Distance-hereditary graphs, Steiner trees, and connected dom-

ination, SIAM J. Comput., 17 (1988), pp. 521–538.
[11] P. Duchet and H. Meyniel, On Hadwiger’s number and stability numbers, North-Holland

Math. Stud., 62 (1982), pp. 71–73.
[12] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory of

NP -Completeness, W. H. Freeman and Company, New York, 1979.
[13] J.R. Griggs and M. Wu, Spanning trees in graphs with minimum degree 4 or 5, Discrete

Math., 104 (1992), pp. 167-183.

CONNECTED DOMINATION 211

[14] T. Haynes, S.T. Hedetniemi, and P. Slater, Domination in Graphs: The Theory, Marcel
Dekker Publishers, New York, 1997.

[15] T. Haynes, S.T. Hedetniemi, and P. Slater, Domination in Graphs: Selected Topics, Marcel
Dekker Publishers, New York, 1997.

[16] S.T. Hedetniemi and R. Laskar, Connected domination in graphs, in Graph Theory and
Combinatorics, B. Bollobás, ed., Academic Press, London, UK, 1984, pp. 209–218.

[17] S.T. Hedetniemi and R. Laskar, Bibliography of domination in graphs and some basic defi-
nitions of domination parameters, Discrete Math., 86 (1990), pp.257–277.

[18] R.M. Karp and V. Ramachandran, Parallel algorithms for shared memory machines, in
Handbook of Theoretical Computer Science A, Chapter 17, J. van Leeuwen, ed., Elsevier,
Amsterdam, 1990, pp. 869–941.

[19] D. J. Kleitman and D. B. West, Spanning trees with many leaves, SIAM J. Discrete Math.,
4 (1991), pp. 99-106.

[20] D.E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, 1973.
[21] L. Lovász, On the ratio of optimal and integral fractional covers, Discrete Math., 13 (1975),

pp. 383–390.
[22] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J. Graph

Theory, 13 (1989), pp. 749–762.
[23] M. Moscarini, Doubly chordal graphs, Steiner trees, and connected domination, Networks, 23

(1993), pp. 59–69.
[24] B. Reed, Paths, stars and the number three, Combin. Probab. Comput., 5 (1996), pp. 267–276.
[25] E. Sampathkumar and H. Walikar, The connected domination number of a graph, J. Math.

Phys. Sci., 13 (1979), pp. 607–613.
[26] L.A. Sanchis, On the Number of Edges of a Graph with a Given Connected Domination

Number, manuscript, 1998.
[27] Y. Shiloach and U. Vishkin, An O(logn) parallel connectivity algorithm, J. Algorithms, 3

(1982), pp. 57-63.
[28] K. White, M. Farber, and W.R. Pulleyblank, Steiner trees, connected domination and

strongly chordal graphs, Networks, 15 (1985), pp. 109-124.

BOOLEAN NORMAL FORMS, SHELLABILITY, AND RELIABILITY
COMPUTATIONS∗

ENDRE BOROS† , YVES CRAMA‡ , OYA EKIN§ , PETER L. HAMMER† , TOSHIHIDE
IBARAKI¶, AND ALEXANDER KOGAN†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 2, pp. 212–226

Abstract. Orthogonal forms of positive Boolean functions play an important role in reliability
theory, since the probability that they take value 1 can be easily computed. However, few classes
of disjunctive normal forms are known for which orthogonalization can be efficiently performed. An
interesting class with this property is the class of shellable disjunctive normal forms (DNFs). In
this paper, we present some new results about shellability. We establish that every positive Boolean
function can be represented by a shellable DNF, we propose a polynomial procedure to compute the
dual of a shellable DNF, and we prove that testing the so-called lexico-exchange (LE) property (a
strengthening of shellability) is NP-complete.

Key words. Boolean functions, orthogonal DNFs, dualization, shellability, reliability

AMS subject classifications. Primary, 90B25; Secondary, 05C65, 68R05

PII. S089548019732180X

1. Introduction. A classical problem of Boolean theory is to derive an orthog-
onal form, or disjoint products form, of a positive Boolean function given in DNF
(see section 2 for definitions). In particular, this problem has been studied exten-
sively in reliability theory, where it arises as follows. One of the fundamental issues in
reliability is to compute the probability that a positive Boolean function (describing
the state—operating or failed—of a complex system) take value 1 when each vari-
able (representing the state of individual components) takes value 0 or 1 randomly
and independently of the value of the other variables (see, for instance, [3, 25]). For
functions in orthogonal form, this probability is very easily computed by summing
the probabilities associated to all individual terms, since any two terms correspond
to pairwise incompatible events. This observation has prompted the development of
several reliability algorithms based on the computation of orthogonal forms (see, e.g.,
[18, 21]).

In general, however, orthogonal forms are difficult to compute and few classes of
DNFs seem to be known for which orthogonalization can be efficiently performed. An
interesting class with this property, namely, the class of shellable DNFs, has been in-
troduced and investigated by Ball and Provan [2, 22]. As discussed by these authors,
the DNFs describing several important classes of reliability problems (k-out-of-n sys-
tems, all-terminal connectedness, all-point reachability, etc.) are shellable. Moreover,

∗Received by the editors May 21, 1997; accepted for publication October 14, 1999; published
electronically April 6, 2000. This research was partially supported by the National Science Founda-
tion (grants DMS 98-06389 and INT 9321811), NATO (grant CRG 931531), and the Office of Naval
Research (grant N00014-92-J1375).

http://www.siam.org/journals/sidma/13-2/32180.html
†Rutgers Center for Operations Research, Rutgers University, 640 Bartholomew Road, Pis-

cataway, NJ 08854 (boros@rutcor.rutgers.edu, hammer@rutcor.rutgers.edu, kogan@rutcor. rut-
gers.edu).

‡Ecole d’Administration des Affaires, Université de Liège, 4000 Liège, Belgium (y.crama@ulg.
ac.be).

§Department of Industrial Engineering, Bilkent University, Bilkent, Ankara 06533, Turkey
(karasan@bilkent.edu.tr).

¶Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto Uni-
versity, Kyoto, Japan 606-8501 (ibaraki@kuamp.kyoto-u.ac.jp).

212

BOOLEAN NORMAL FORMS, SHELLABILITY, AND RELIABILITY 213

besides its unifying role in reliability theory, shellability also provides a powerful the-
oretical and algorithmic tool in the study of simplicial polytopes, abstract simplicial
complexes, and matroids. (This is actually where the shellability concept originates
(see, e.g., [7, 8, 11, 16]); let us simply mention here, without further details, that
abstract simplicial complexes are in a natural one-to-one relationship with positive
Boolean functions.)

Shellability is the main topic of this paper. In section 2, we briefly review the
basic concepts and notations to be used in this paper. In section 3, we establish
that every positive Boolean function can be represented by a shellable DNF, and
we characterize those orthogonal forms that arise from shellable DNFs by a classical
orthogonalization procedure. In section 4, we prove that the dual (or, equivalently,
the inverse) of a shellable DNF can be computed in polynomial time. Finally, in
section 5, we define an important subclass of shellable DNFs, namely, the class of
DNFs which satisfy the so-called LE property, and we prove that testing membership
in this class is NP-complete.

2. Notations, definitions, and basic facts. Let B = {0, 1} and let n be a
natural number. For any subset S ⊆ {1, 2, . . . , n}, 1S is the characteristic vector of
S, i.e., the vector of B

n whose jth coordinate is 1 if and only if j ∈ S. Similarly,
0S ∈ B

n denotes the binary vector whose jth coordinate is 0 exactly when j ∈ S.
The lexicographic order ≺L on subsets of {1, 2, . . . , n} is defined as usual: for all
S, T ⊆ {1, 2, . . . , n}, S ≺L T if and only if min{j ∈ {1, 2, . . . , n} | j ∈ S \ T} <
min{j ∈ {1, 2, . . . , n} | j ∈ T \ S}.

We assume that the reader is familiar with the basic concepts of Boolean algebra
and we introduce here only the notions that we explicitly use in the paper (see, e.g.,
[19, 20] for more information).

A Boolean function of n variables is a mapping f : B
n −→ B. We denote by

x1, x2, . . . , xn the variables of a Boolean function and we let x = (x1, . . . , xn). The
complement of variable xj is x j = 1−xj . A DNF is a Boolean expression of the form

Ψ(x1, . . . , xn) =

m∨

k=1

∧

j∈Ik
xj
∧

j∈Jk
x j ,(2.1)

where Ik, Jk ⊆ {1, 2, . . . , n} and Ik ∩ Jk = ∅ for all 1 ≤ k ≤ m. The terms of Ψ are
the elementary conjunctions

Tk(x1, . . . , xn) = TIk,Jk(x1, . . . , xn) =
∧

j∈Ik
xj
∧

j∈Jk
x j (k = 1, 2, . . . ,m).

(By abuse of terminology, we sometimes call “terms” the pairs (Ik, Jk) themselves.)
It is customary to view any DNF Ψ (or, more generally, any Boolean expression)

as defining a Boolean function: for any assignment of 0 − 1 values to the variables
(x1, . . . , xn), the value of Ψ(x1, . . . , xn) is simply computed according to the usual
rules of Boolean algebra. With this in mind, we say that the DNF Ψ represents
the Boolean function f (and we simply write f = Ψ) if f(x) = Ψ(x) for all binary
vectors x ∈ B

n. It is well known that every Boolean function admits (many) DNF
representations.

A Boolean function f is called positive if f(x) ≥ f(y) whenever x ≥ y, where the
latter inequality is meant componentwise. For a positive Boolean function f , there is
a unique minimal family of subsets of {1, 2, . . . , n}, denoted Pf , such that f(1S) = 1
if and only if S ⊇ P for some P ∈ Pf . A subset S for which f(1S) = 1 is called an

214 BOROS, CRAMA, EKIN, HAMMER, IBARAKI, AND KOGAN

implicant set (or implicant, for short) of f , and if S ∈ Pf , then S is called a prime
implicant (set) of f .

Prime implicants of positive Boolean functions have a natural interpretation in
many applied contexts. For instance, in reliability theory, prime implicants of a co-
herent structure function are in one-to-one correspondence with the minimal pathsets
of the system under study, i.e., with those minimal subsets of elements which, when
working correctly, allow the whole system to work (see, e.g., [3, 25]).

Every positive Boolean function can be represented by at least one positive DNF,
i.e., by a DNF of the form

Φ(x1, . . . , xn) =

m∨

k=1

∧

j∈Ik
xj .(2.2)

Clearly, if Ik ⊆ Il for some k �= l, then the Boolean function represented by (2.2)
does not change when we drop the term corresponding to Il. Hence, Φ represents f
if and only if the (containment wise) minimal subsets of I = {I1, . . . , Im} are exactly
the prime implicants of f .

Besides its representations by positive DNFs, every positive Boolean function can
also be represented by a variety of nonpositive DNFs. Let us record the following fact
for further reference.

Lemma 2.1. If the DNF Ψ given by (2.1) represents a positive Boolean function
f , then f =

∨m
k=1

∧
j∈Ik xj (and f ≡ 1 if Ik = ∅ for some k ∈ {1, 2, . . . ,m}).

Proof. If Ψ represents f , then f(x) = Ψ(x) ≤ ∨mk=1

∧
j∈Ik xj for all x ∈ B

n (since
the inequality holds termwise).

To prove the reverse inequality, assume that
∨m
k=1

∧
j∈Ik x

∗
j = 1 for some x∗ ∈ B

n.
Then there is an index k, 1 ≤ k ≤ m, such that

∧
j∈Ik x

∗
j = 1, or, equivalently,

1Ik ≤ x∗. Now, f(1Ik) = Ψ(1Ik) = 1 and hence, since f is positive, f(x∗) = 1.
As explained in the Introduction, this paper pays special attention to orthogonal

DNFs: the DNF (2.1) is said to be orthogonal (or is an ODNF, for short) if, for every
pair of terms Tk, Tl (k, l ∈ {1, 2, . . . ,m}, k �= l) and for every x ∈ B

n, Tk(x)Tl(x) = 0.
Equivalently, (2.1) is orthogonal if and only if (Ik ∩ Jl) ∪ (Il ∩ Jk) �= ∅ for all k �= l.

In subsequent sections, we use the following basic properties of ODNFs.
Lemma 2.2. Let us assume that (2.1) is an ODNF of a positive Boolean function,

let k ∈ {1, 2, . . . ,m}, and let Ak = {Il | l ∈ {1, 2, . . . ,m}, and Il∩Jk �= ∅}. Then Jk is
a minimal transversal of Ak, and S ∩ Ik �= ∅ holds for all other minimal transversals
S �= Jk of Ak.

Proof. Let us assume that S is a transversal of Ak for which S ∩ Ik = ∅. Then
0S ≥ 1Ik , and hence Ψ(0S) ≥ Ψ(1Ik) = 1. Furthermore, for every term Tl(x) of
Ψ, l �= k, we have Tl(0S) = 0, since either Ik ∩ Jl �= ∅ or Il ∩ Jk �= ∅, i.e., Il ∈ Ak
and hence Il ∩ S �= ∅, and in both cases the literals of Tl corresponding to these
intersections have value 0 at the vector 0S . Thus Tk(0S) = 1 must hold, and hence
Jk ⊆ S is implied.

On the other hand, Jk itself is a transversal of Ak (by definition of Ak), which
proves that Jk is the only minimal transversal of Ak which is disjoint from Ik.

Lemma 2.3. Let us assume that (2.1) is an ODNF of a positive Boolean function,
let k ∈ {1, 2, . . . ,m}, and let Ψk denote the disjunction of all terms of Ψ but term
Tk. Then Ψk represents a positive Boolean function if and only if Jk ∩ Il �= ∅ for all
l ∈ {1, 2, . . . ,m} \ k.

Proof. Assume first that Ψk represents a positive Boolean function and let l ∈
{1, 2, . . . ,m}, l �= k. Then, by Lemma 2.1, Ψk(1Il) = 1. On the other hand, Tk(0Jk) =

BOOLEAN NORMAL FORMS, SHELLABILITY, AND RELIABILITY 215

1 and, since Ψ is an ODNF, all terms other than Tk vanish at 0Jk , so that Ψk(0Jk) = 0.
Thus we conclude that 1Il �≤ 0Jk , or, equivalently, Jk ∩ Il �= ∅.

Let us assume next that Ψk does not represent a positive Boolean function. In
particular, Ψk does not represent

∨m
l=1
l �=k

∧
j∈Il xj . Hence there exists l �= k and there

exists a set S containing Il such that Ψk(1S) = 0. On the other hand, since Ψ defines
a positive Boolean function, Ψ(1S) = 1 must hold (by Lemma 2.1). This implies that
Tk(1S) = 1, i.e., Jk ∩ S = ∅. Therefore, Jk ∩ Il = ∅ follows.

3. Shellable DNFs. As mentioned earlier, any positive Boolean function can be
represented by a variety of DNFs. We now introduce one particular way of generating
such a DNF representation.

In what follows, the symbol I always denotes an arbitrary family of subsets of
{1, 2, . . . , n}, and π denotes a permutation of the sets in I. Let us denote by π(I) the
rank of the set I ∈ I (i.e., its placement order) in the order of π.

Definition 3.1. For every family I of subsets of {1, 2, . . . , n}, every permutation
π of the sets in I, and every set I ∈ I, the (I, π)-shadow JI,π(I) of I is the set

JI,π(I) = {j ∈ {1, 2, . . . , n} | ∃ I ′ ∈ I, π(I ′) < π(I), I ′ \ I = {j}}.(3.1)

Lemma 3.1. For every permutation π of the sets of I, the positive Boolean
function f =

∨
I∈I

∧
j∈I xj is represented by the DNF

ΨI,π =
∨

I∈I

∧

j∈I
xj

∧

j∈JI,π(I)

x j .(3.2)

Proof. Clearly, f(x) ≥ ΨI,π(x) for every Boolean vector x. In order to prove the
reverse inequality, let us consider any Boolean vector x∗ such that f(x∗) = 1. Denote
by I ∈ I the first set (according to the permutation π) for which

∧
j∈I x

∗
j = 1. We

claim that x∗j = 0 for all j ∈ JI,π(I), from which there follows
∧
j∈I x

∗
j

∧
j∈JI,π(I) x

∗
j =

1 and ΨI,π(x∗) = 1, as required. To establish the claim, notice that, for every
j ∈ JI,π(I), there is a set I ′ ∈ I such that I ′ ⊆ I ∪ {j} and π(I ′) < π(I). By choice
of I,

∧
k∈I′ x

∗
k = 0, and thus x∗j = 0.

Example 3.1. Let us consider the family I = {I1 = {1, 2}, I2 = {2, 3}, I3 = {3, 4}}
and the permutation π = (I1, I3, I2). Then JI,π(I1) = JI,π(I3) = ∅, JI,π(I2) = {1, 4},
and thus the positive Boolean function f = x1x2 ∨ x2x3 ∨ x3x4 is also represented by
the DNF

f = ΨI,π = x1x2 ∨ x3x4 ∨ x 1x2x3x 4.

The notion of “shadow” has been put to systematic use by Ball and Provan [2] in
their discussion of shellability and upper bounding procedures for reliability problems,
and by Boros [9] in his work on “aligned” Boolean functions (a special class of shellable
functions). Let us now recall one of the definitions of shellable DNFs.

Definition 3.2. A positive DNF Ψ =
∨
I∈I

∧
j∈I xj is called shellable if there

exists a permutation π of I (called shelling order of I, or of Ψ) with the following
property: for every pair of sets I1, I2 ∈ I with π(I1) < π(I2), there exists j ∈ I1 ∩
JI,π(I2) (or equivalently: there exists j ∈ I1 and I3 ∈ I such that π(I3) < π(I2) and
I3 \ I2 = {j}).

Definition 3.2 is due to Ball and Provan [2], who observe that it is essentially
equivalent (up to complementation of all sets in I) to the “classical” definition of
shellability used, for instance, in [8, 11, 16]. The connection between Lemma 3.1 and

216 BOROS, CRAMA, EKIN, HAMMER, IBARAKI, AND KOGAN

the notion of shellability is clarified in the next lemma (this result is implicit in [2],
where alternative characterizations of shellability can also be found).

Lemma 3.2. Permutation π is a shelling order of I if and only if the DNF ΨI,π
defined by (3.2) is orthogonal.

Proof. Consider any two terms, e.g., T1 =
∧
j∈I1 xj

∧
j∈JI,π(I1)

x j and T2 =∧
j∈I2 xj

∧
j∈JI,π(I2)

x j of ΨI,π, for which π(I1) < π(I2).
Assume first that π is a shelling order of I. By Definition 3.2, there is an index

j in I1 ∩ JI,π(I2). This shows that ΨI,π is orthogonal.
Conversely, assume that ΨI,π is orthogonal. If I1 ∩ JI,π(I2) is nonempty, then I1

and I2 satisfy the condition in Definition 3.2. So, assume now that I1 ∩ JI,π(I2) = ∅,
and assume further that I ∩ JI,π(I2) �= ∅ for all I ∈ I such that π(I) < π(I1) (if this
is not the case, simply replace I1 by I in the proof). Since ΨI,π is orthogonal, there
must be some index j in I2 ∩ JI,π(I1). By Definition 3.1, there exists a set I3 ∈ I
with π(I3) < π(I1) such that I3\I1 = {j}. Now, we derive the following contradiction:
on the one hand, by our choice of I1, I3 ∩ JI,π(I2) may not be empty (since
π(I3) < π(I1)); on the other hand, I3∩JI,π(I2) must be empty, since j �∈ JI,π(I2) and
I1 ∩ JI,π(I2) = ∅.

Observe that the DNF ΨI,π associated to a shelling order π of I is orthogonal in
a rather special way: namely, for any two terms T1 and T2 such that π(I1) < π(I2),
the “positive part”

∧
j∈I1 xj of the first term is orthogonal to the “negative part”∧

j∈JI,π(I2)
x j of the second term (this follows directly from Definition 3.2).

As one may expect, not every positive DNF is shellable: a minimal counterexam-
ple is provided by the DNF

Φ(x1, . . . , x4) = x1x2 ∨ x3x4.

On the other hand, it can be shown that every positive Boolean function can be
represented by shellable DNFs (see also [9, Theorem 1]).

Theorem 3.3. Every positive Boolean function f can be represented by a shellable
DNF.

Proof. As a first proof, let us consider the DNF

Φ =
∨

I∈I

∧

j∈I
xj ,

where I denotes the family of all implicants of the function f , and let π be a permu-
tation ordering these implicants in a nonincreasing order by their cardinality. Then
Φ represents f , and it is easy to see by Definition 3.2 that π is a shelling order of Φ.

Since the above DNF can, in general, be very large compared to the number of
prime implicants of f , let us show below another construction, using only a smaller
subset of the implicants.

Call a leftmost implicant of f any implicant I of f for which I \ {h(I)} is not an
implicant of f , where h(I) denotes the highest-index element of the subset I. Let L
denote the family of leftmost implicants of f . Clearly, all prime implicants of f are in
L; therefore f is represented by the DNF ΨL =

∨
I∈L

∧
j∈I xj . Let us now consider

the permutation π of L induced by the lexicographic order of these implicants. We
claim that π is a shelling order of L.

To prove the claim, let I1 and I2 be two leftmost implicants of f with I1 ≺L I2,
and let j = min{i|i ∈ I1 \ I2}. If j = h(I1), then j ∈ I1 ∩ JI,π(I2) (take I3 = I1 in
Definition 3.2), and we are done. So, assume next that j < h(I1). Let T = I2∪{j} and

BOOLEAN NORMAL FORMS, SHELLABILITY, AND RELIABILITY 217

denote by j1, . . . , jh the elements of {i ∈ I2|i ≥ j} ordered by increasing value: j =
j1 < j2 < · · · < jh = h(I2). Clearly, T is an implicant of f , while T \{j2, j3, . . . , jh} is
not (since the latter set is contained in I1 \ {h(I1)}). Consider now the last implicant
in the sequence T , T \ {jh}, T \ {jh−1, jh}, . . . , T \ {j2, j3, . . . , jh}, and call it I3. By
definition, I3 is a leftmost implicant of f . Moreover, I3 ≺L I2 and I3 \I2 = {j}. Thus,
here again j ∈ I1 ∩ JI,π(I2), and we conclude that π is a shelling order of L.

Example 3.2. The leftmost implicants of the function f(x1, . . . , x4) = x1x2∨x3x4

are the sets {1, 2}, {1, 3, 4}, {2, 3, 4}, and {3, 4}, listed here in lexicographic order.
The corresponding DNF

ΨL = x1x2 ∨ x1x3x4 ∨ x2x3x4 ∨ x3x4

represents f and is shellable, since the DNF

ΨL,≺L
= x1x2 ∨ x1x 2x3x4 ∨ x 1x2x3x4 ∨ x 1x 2x3x4

(which also represents f , by Lemma 3.1) is orthogonal.
Observe that, as illustrated by the above example, the number of leftmost im-

plicants of a positive function f is usually (much) larger than the number pf of its
prime implicants. As a matter of fact, one can construct functions with n variables
and pf prime implicants for which the smallest shellable DNF representation involves
a number of terms that grows exponentially with n and pf . A proof of this statement
will be provided in the next section.

In the remainder of this section, we concentrate on characterizing those ODNFs
that arise from shellable DNFs in the following sense. Let us consider an arbitrary
DNF

Ψ(x1, . . . , xn) =

m∨

k=1

∧

j∈Ik
xj
∧

j∈Jk
x j .(3.3)

We say that DNF Ψ is a shelled ODNF if Ψ is orthogonal and Ψ is of the form ΨI,π
(see (3.2)), where I = {I1, . . . , Im} and π is a shelling order of I.

The initial segments of Ψ are the m DNFs Ψ1, . . . ,Ψm defined by

Ψl(x1, . . . , xn) =

l∨

k=1

∧

j∈Ik
xj
∧

j∈Jk
x j(3.4)

for l = 1, 2, . . . ,m. The next lemma provides a partial characterization of shelled
ODNFs.

Lemma 3.4. For a DNF Ψ of the form (3.3), the following statements are equiv-
alent.

(i) Ψ is orthogonal and Ψ is of the form ΨI,id, where id denotes the identity
permutation (I1, . . . , Im).

(ii) Il ∩ Jk �= ∅ for all 1 ≤ l < k ≤ m, and, for every k ≤ m and every index
j ∈ Jk, there exists l < k such that Il \ Ik = {j}.

(iii) Ψ is orthogonal and each initial segment of Ψ represents a positive function.
Proof. The equivalence of statements (i) and (ii) follows easily from Definition

3.1 and from the comments formulated after the proof of Lemma 3.2.
In view of Lemma 3.1, statement (i) implies statement (iii).
Finally, let us assume that statement (iii) holds, and let us establish statement

(ii). Repeated use of Lemma 2.3 implies that Il ∩ Jk �= ∅ for all 1 ≤ l < k ≤

218 BOROS, CRAMA, EKIN, HAMMER, IBARAKI, AND KOGAN

m. Together with Lemma 2.2, this also implies that Jk is a minimal transversal
of Ak = {I1, I2, . . . , Ik−1} for every 1 < k ≤ m. Fix j ∈ Jk and consider the set
L(j) = {l | 1 ≤ l < k, Il ∩ Jk = {j}}. Since Jk is a minimal transversal of Ak, L(j)
is not empty. Moreover, for each l ∈ L(j), j ∈ Il \ Ik (since Ik and Jk are disjoint).
Now there are two cases.
• There is some l ∈ L(j) such that Il \ Ik = {j}: then statement (ii) holds, and

we are done.
• For all l ∈ L(j), there exists il ∈ {1, 2, . . . , n}, il �= j, such that il ∈ Il \ Ik. In

this case, the set S := (Jk \ {j}) ∪ {il | l ∈ L(j)} is a transversal of Ak, is disjoint
of Ik, and does not contain Jk. But this contradicts Lemma 2.2, and so the proof is
complete.

Notice that, for a positive DNF Ψ =
∨
I∈I

∧
j∈I xj and a permutation π of I,

Definition 3.2 provides a straightforward polynomial-time procedure to test whether
π is a shelling order of Ψ. By contrast, the complexity of recognizing shellable DNFs
is an important and intriguing open problem (mentioned, for instance, in [2, 11]). We
shall return to this issue in section 5. For now, let us show that Lemma 3.4 allows for
easy recognition of shelled ODNFs, even when π is not given.

Theorem 3.5. One can test in polynomial time whether a given DNF is a shelled
ODNF.

Proof. Consider a DNF Ψ =
∨m
k=1

∧
j∈Ik xj

∧
j∈Jk x j , as in (3.3). First, we can

easily check in polynomial time whether Ψ is orthogonal. In the affirmative, then
we test whether Ψ represents a positive Boolean function: in view of Lemma 2.1, it
suffices to test whether Ψ represents the function f =

∨m
k=1

∧
j∈Ik xj or, equivalently,

whether Ψ(1Ik) ≡ 1 for k = 1, 2, . . . ,m; this is again polynomial, since Ψ is orthogonal.
Now we try to find the last term in the shelling order of f (assuming that there

is one) with the help of Lemma 3.4(iii) and Lemma 2.3. Indeed, in view of these
lemmas, Ik (k ∈ {1, 2, . . . ,m}) is a candidate for being the last term in a shelling
order of f if and only if Jk ∩ Il �= ∅ for all l ∈ {1, 2, . . . ,m} \ {k}. This condition can
be tested easily in polynomial time. Moreover, it is clear that every candidate remains
a candidate after deletion of any other term. Thus by Lemma 2.3, we can choose an
arbitrary candidate as the last term, delete it from Ψ, and repeat the procedure with
the remaining terms.

We conclude that Ψ is a shelled ODNF if and only if this procedure terminates
with a complete order of its terms.

4. Dualization of shellable DNFs. Let us start by recalling some definitions
and facts about dualization (see, e.g., [12, 20] for more information). The dual of a
Boolean function f(x) is the Boolean function fd(x) defined by

fd(x1, x2, . . . , xn) = f (x 1, x 2, . . . , x n).

It is well known that the dual of a positive function is positive. If f =
∨
I∈I

∧
j∈I xj ,

then fd =
∧
I∈I

∨
j∈I xj (by De Morgan’s laws), and a DNF representation of fd can

be obtained by applying the distributive laws to the latter expression. As a result,
it is easy to see that the prime implicants of fd are exactly the minimal transversals
of the family of prime implicants of f , i.e., Pf . In the context of reliability theory,
the prime implicants of fd represent the minimal cutsets of the system under study,
namely, the minimal subsets of elements whose failure causes the whole system to fail
(see [3, 25]).

The dualization problem can now be stated as follows: given the list of prime
implicants of a positive Boolean function f (or, more generally, given a positive DNF

BOOLEAN NORMAL FORMS, SHELLABILITY, AND RELIABILITY 219

Ψ representing f), compute all prime implicants of fd. Because of the fundamental
role played by duality in many applications, the dualization problem has attracted
some attention in the literature (sometimes under the name of “inversion” or “com-
plementation” problem; see, e.g., [17, 26] and the thorough discussions in [6, 12]).
The question of the algorithmic complexity of dualization, however, has not been
completely settled yet. Observe that, in general, fd may have many more prime
implicants than f , as illustrated by the following example.

Example 4.1. For each n ≥ 1, define the function

hn(x1, x2, . . . , x2n) =

n∨

j=1

x2j−1x2j .

Then hn has n prime implicants, but its dual is easily seen to have 2n prime implicants
(each prime implicant of hdn contains exactly one of the indices 2j − 1 and 2j for
j = 1, 2, . . . , n).

Recently, Fredman and Khachiyan [13] gave a dualization algorithm which runs in
time O(Lo(logL)) on an arbitrary positive function f , where L is the number of prime
implicants of f and fd. The existence of a dualization algorithm whose running time
is bounded by a polynomial of L is, however, still an open problem. (It is generally
assumed that such a dualization algorithm does not exist; see, e.g., [6, 12, 15] for
further discussion.)

In this section, we are going to prove that shellable DNFs can be dualized in
time polynomial in their input size. Notice that this implies, in particular, that
the number of prime implicants of the dual is polynomially bounded in the number of
prime implicants of the shellable DNF. These results generalize a sequence of previous
results on regular and aligned DNFs, since these are special classes of shellable DNFs
(see [5, 9, 10, 23, 24]).

We first state an easy lemma.

Lemma 4.1. If I1, I2 ∈ I, and I1 ⊂ I2, then π(I2) < π(I1) in any shelling order
of I.

Proof. This is an immediate consequence of Definition 3.2.

Theorem 4.2. If a positive Boolean function f(x1, x2, . . . , xn) can be represented
by a shellable DNF of m terms, then its dual fd can be represented by a shellable DNF
of at most nm terms.

Proof. We prove the theorem by induction on m.

If f has a shellable DNF consisting of 1 term, i.e., if f =
∧
j∈I xj is an elementary

conjunction, then its dual is represented by
∨
j∈I xj , which is a shellable DNF with

at most n terms.

Let us now assume that the statement has been established for functions repre-
sentable by shellable DNFs of at most m − 1 terms. Let Ψ =

∨
I∈I

∧
j∈I xj be a

shellable DNF of f and σ be a shelling order of I.
Then, by Lemma 3.2,

ΨI,σ = g ∨
∧

j∈A
xj
∧

j∈B
x j

is an ODNF of f , where A is the last element of I according to σ, B is the (I, σ)-
shadow of A, and g is the function represented by the disjunction of the first m − 1
terms of Ψ.

220 BOROS, CRAMA, EKIN, HAMMER, IBARAKI, AND KOGAN

Notice that g is a positive function (by Lemma 3.4(iii)) and that g has a shellable
DNF of m − 1 terms. So, according to the induction hypothesis, gd has a shellable
DNF of at most n(m− 1) terms. Let us write

gd =
∨

R∈R

∧

j∈R
xj ,

where R is a family of implicants of gd containing all of its prime implicants, |R| ≤
n(m− 1), and R admits a shelling order that we denote by π.

By Lemmas 2.2 and 2.3, B is a prime implicant of gd (so that B ∈ R), and, for
all other sets R ∈ R \ {B}, there holds R ∩ A �= ∅. Hence, for all R ∈ R \ {B}, we
have the identity

∧

j∈R
xj

∨

j∈A
xj
∨

j∈B
x j

 =
∧

j∈R
xj ,

and for R = B we have

∧

j∈B
xj

∨

j∈A
xj
∨

j∈B
x j

 =
∨

i∈A

∧

j∈B∪{i}
xj .

Thus we can write

fd = gd

∨

j∈A
xj
∨

j∈B
x j

 =

∨

R∈R\{B}

∧

j∈R
xj

 ∨

∨

i∈A

∧

j∈B∪{i}
xj

 .(4.1)

Let Bi = B ∪ {i} for all i ∈ A, and define

R′ = (R \ {B}) ∪ {Bi | i ∈ A and � ∃R ∈ R with (R ⊆ Bi, π(R) < π(B))}.
In view of (4.1), the DNF

Φ =
∨

R∈R′

∧

j∈R
xj(4.2)

represents fd. We are going to show that R′ admits a shelling order. Since |R′| < mn,
this will complete the proof.

Let us define a permutation π′ of R′ by inserting the sets Bi (i ∈ A,Bi ∈ R′)
in place of B in π. More precisely, for each pair of sets R,S ∈ R′, R �= S, we let
π′(R) < π′(S) if any of the following holds:
• R,S ∈ R and π(R) < π(S), or
• R ∈ R, S = Bi for some i ∈ A, and π(R) < π(B), or
• R = Bi for some i ∈ A, S ∈ R, and π(B) < π(S), or
• R = Bi and S = Bj for some i, j ∈ A and i < j.
We claim that π′ is a shelling order of R′. To prove the claim, let us show first

that

JR′,π′(R) ⊇ JR,π(R)(4.3)

for every R ∈ R ∩ R′. If π(R) < π(B), this is obvious. So let us assume that
π(R) > π(B), and let j ∈ JR,π(R). If {j} = S \R for some S ∈ R ∩R′, then clearly

BOOLEAN NORMAL FORMS, SHELLABILITY, AND RELIABILITY 221

j ∈ JR′,π′(R) too. On the other hand, if {j} = B \ R, let i be any element in A ∩ R
(remember that A ∩ R �= ∅ by Lemma 2.2). Then {j} = Bi \ R. If Bi ∈ R′, we
conclude again that j ∈ JR′,π′(R). If Bi /∈ R′, there is a set S ∈ R ∩ R′ such that
π(S) < π(B) and S ⊆ Bi. Moreover, j ∈ S since otherwise S ⊂ R would follow,
contradicting Lemma 4.1. Thus {j} = S \ R, implying again j ∈ JR′,π′(R). This
establishes (4.3).

Let us show next that

JR′,π′(Bi) ⊇ JR,π(B) ∪ {j ∈ A |Bj ∈ R′, j < i}(4.4)

for every Bi ∈ R′. Clearly, if Bj ∈ R′ and j < i, then {j} = Bj \ Bi, and thus
j ∈ JR′,π′(Bi). If j ∈ JR,π(B), let R ∈ R be such that π(R) < π(B) and {j} = R\B.
Since R ⊆ Bj and Bi ∈ R′, we deduce j �= i, and thus {j} = R \ Bi, which implies
j ∈ JR′,π′(Bi).

Relations (4.3) and (4.4), together with the hypothesis that π is a shelling order
of R, prove that the DNF ΦR′,π′ associated to (4.2) is orthogonal. Hence by Lemma
3.2, π′ is a shelling order of R′ and the proof is complete.

As a side remark, we notice that equality actually holds in relations (4.3) and
(4.4). More interestingly, we can now prove the following result.

Corollary 4.3. Let f(x1, x2, . . . , xn) be a positive Boolean function. Given Ψ,
a positive DNF of f , and given π, a shelling order of Ψ, we can generate all prime
implicants of fd in O(nm2) time, where m is the number of terms of Ψ.

Proof. Let Ψ =
∨m
k=1

∧
j∈Ik xj and assume that the identity permutation

(I1, . . . , Im) is a shelling order of Ψ. The proof of Theorem 4.2 immediately suggests
a recursive dualization procedure, whereby the initial segments Ψ1,Ψ2, . . . ,Ψm = Ψ
(see (3.4)) are sequentially dualized. Using relation (4.1), all prime implicants of Ψi+1

can easily be generated in O(nm) time once the prime implicants of Ψi are known for
i = 1, 2, . . . ,m− 1. The overall O(nm2) time bound follows.

Let us mention here that in the special cases of aligned and regular functions,
there are more efficient dualization algorithms known in the literature (see, e.g., [5,
9, 10, 24]), which run in O(n2m) time. None of those procedures, however, seem to
be extendable for the class of shellable functions.

In the previous section, we have established that every positive function can be
represented by a shellable DNF (Theorem 3.3). This result, combined with Theo-
rem 4.2, might raise the impression that every positive function can be dualized in
polynomial time. This, however, is not the case. In fact, there exist positive Boolean
functions in 2n variables which have only n prime implicants but for which every
shellable DNF representation involves at least 2n−1 terms. Consider, e.g., the family
of functions hn (n = 1, 2, . . .) introduced in Example 4.1. It was shown in [1] that any
ODNF, thus in particular any shellable DNF of hn, must have at least 2n − 1 terms.

Observing the similarity between dualization and orthogonalization procedures,
one might think that the main reason one needs so many terms in an ODNF of hn
is that its dual hdn has many prime implicants. (As we observed in Example 4.1, hdn
has 2n prime implicants.) While this might be true, such a direct relation between
the size of an ODNF of a Boolean function f and the size of its dual fd, as far as we
know, has not been established yet.

5. The LE property for DNFs. As mentioned before, the computational com-
plexity of recognizing shellable DNFs is currently unknown (see [2, 11]). In this sec-
tion, we consider a closely related problem, namely, the problem of recognizing DNFs
with the so-called LE property, and we show that this problem is NP-complete.

222 BOROS, CRAMA, EKIN, HAMMER, IBARAKI, AND KOGAN

Definition 5.1. A positive DNF Ψ(x1, x2, . . . , xn) =
∨
I∈I

∧
j∈I xj has the LE

property with respect to (x1, x2, . . . , xn) if, for every pair of terms I1, I2 ∈ I with
I1 ≺L I2, there exists I3 ∈ I such that I3 ≺L I2 and I3 \ I2 = {j}, where j =
min{i | i ∈ I1 \ I2}.

We say that Ψ has the LE property with respect to a permutation σ of (x1, x2, . . . ,
xn), or that σ is an LE order for Ψ, if

Ψσ(x1, . . . , xn) =
∨

I∈I

∧

j∈I
σ(xj)

has the LE property with respect to (x1, x2, . . . , xn).
Finally, we simply say that Ψ has the LE property if Ψ has the LE property with

respect to some permutation of its variables.
The LE property has been studied extensively by Ball and Provan [2, 22]. The

interest in this concept is motivated by the simple observation that every DNF with
the LE property is also shellable: more precisely, if σ is an LE order for Ψ, then
the lexicographic order is a shelling order of Ψσ (just compare Definition 3.2 and
Definition 5.1). As a matter of fact, most classes of shellable DNFs investigated in
the literature do have the LE property (see [2, 9]).

In view of Definition 5.1, verifying whether a DNF Ψ has the LE property with
respect to (x1, x2, . . . , xn) can easily be done in polynomial time. Provan and Ball [22]
present an O(n2m) procedure for this problem, where n is the number of variables
and m is the number of terms of Ψ. However, these authors also point out that
the existence of an efficient procedure to determine whether a given DNF has the
LE property (with respect to some unknown order of its variables) is an “interesting
open question.” The remainder of this paper will be devoted to a proof that such an
efficient procedure is unlikely to exist.

Theorem 5.1. It is NP-complete to decide whether a given DNF has the LE
property.

The proof of Theorem 5.1 involves a transformation from the following balanced
partition problem.
Input: A finite set V and a family H = {H1, H2, . . . , Hm} of subsets of V such that

|Hi| = 4 for i = 1, 2, . . . ,m.
Question: Is there a balanced partition of (V,H), i.e., a partition of V into V1 ∪ V2

such that |V1 ∩Hi| = |V2 ∩Hi| = 2 for i = 1, 2, . . . ,m?
Lemma 5.2. The balanced partition problem is NP-complete.
Proof. We provide a transformation from hypergraph 2-colorability to balanced

partition, where hypergraph 2-colorability is defined as follows.
Input: A finite set X and a family E = {E1, E2, . . . , Em} of subsets of X such that

|Ei| = 3 for i = 1, 2, . . . ,m.
Question: Is there a 2-coloring of (X, E), i.e., a partition of X into X1 ∪ X2 such

that X1 ∩ Ei �= ∅ and X2 ∩ Ei �= ∅ for i = 1, 2, . . . ,m?
Hypergraph 2-colorability is NP-complete (see [14]). Given an instance (X, E)

of this problem, we let V = X ∪ {e1, e2, . . . , em}, where e1, e2, . . . , em are m new
elements, and we let H = {H1, H2, . . . , Hm}, where Hi = Ei∪{ei} for i = 1, 2, . . . ,m.
Then (X, E) has a 2-coloring if and only if (V,H) has a balanced partition.

The proof of Theorem 5.1 also requires a series of technical lemmas (the proofs
of which may be skipped in a first reading).

Lemma 5.3. If the DNF Ψ(x1, x2, . . . , xn) =
∨
I∈I

∧
j∈I xj has the LE property

with respect to (x1, x2, . . . , xn), then the DNF Ψ|xi=0 obtained by fixing xi to 0 in Ψ,

BOOLEAN NORMAL FORMS, SHELLABILITY, AND RELIABILITY 223

that is,

Ψ|xi=0(x1, . . . , xi−1, xi+1, . . . , xn) =
∨

I∈I
i/∈I

∧

j∈I
xj ,

has the LE property with respect to (x1, x2, . . . , xi−1, xi+1, . . . , xn) for all i = 1, 2, . . . ,
n.

Proof. This is a straightforward consequence of Definition 5.1.
Lemma 5.4. The DNF

φ(a, b, c, d, y) = abcd ∨ aby ∨ acy ∨ ady ∨ bcy ∨ bdy ∨ cdy
does not have the LE property with respect to any permutation of {a, b, c, d, y} in which
y has rank either 4 or 5. On the other hand, φ has the LE property with respect to
all permutations in which y has rank 3.

Proof. Consider first any permutation π of {a, b, c, d, y} in which y has rank 5.
By symmetry, we can assume without loss of generality that π = (a, b, c, d, y). Then
the first two terms of φ in lexicographic order are I1 = abcd and I2 = aby, and these
terms do not fulfill the condition in Definition 5.1.

An identical reasoning applies when y has rank 4 (say, as in π = (a, b, c, y, d)).
Assume next that y has rank 3 in π. By symmetry, we can assume that π =

(a, b, y, c, d). Then the terms of φ satisfy

aby ≺L abcd ≺L acy ≺L ady ≺L bcy ≺L bdy ≺L cdy,

and it is easy to verify that φ has the LE property with respect to π.
Lemma 5.5. The DNF

θ(a, b, c, d, y) = aby ∨ cdy ∨ abc ∨ abd ∨ acd ∨ bcd
does not have the LE property with respect to any permutation of {a, b, c, d, y} in
which y has rank 1, nor with respect to any of the eight permutations (a, y, c, d, b),
(a, y, d, c, b), (b, y, c, d, a), (b, y, d, c, a), (c, y, a, b, d), (c, y, b, a, d), (d, y, a, b, c), (d, y, b,
a, c) (in words, these are all permutations π = (π1, . . . , π5) in which y has rank 2
and either {π3, π4} = {a, b} or {π3, π4} = {c, d}). On the other hand, θ has the LE
property with respect to all permutations in which y has rank 3.

Proof. Consider any permutation π of {a, b, c, d, y} in which y has rank 1. Then,
I1 = aby and I2 = cdy are the first two terms of θ in lexicographic order, and these
terms do not satisfy Definition 5.1.

Consider next any of the 8 permutations listed; without loss of generality say
π = (a, y, c, d, b) (the other cases are similar due to simple symmetries). Then the
first two terms of θ are aby and acd, and they violate again Definition 5.1.

Now let π be an arbitrary permutation of {a, b, c, d, y} in which y has rank 3. By
symmetry, we only need to distinguish between the permutations π1 = (a, b, y, c, d),
π2 = (a, c, y, b, d), and π3 = (a, c, y, d, b). The lexicographic order of the terms of θ
with respect to π1 is

aby ≺L abc ≺L abd ≺L acd ≺L bcd ≺L cdy.

Similarly, with respect to π2 we get

abc ≺L acd ≺L aby ≺L abd ≺L cdy ≺L bcd,

224 BOROS, CRAMA, EKIN, HAMMER, IBARAKI, AND KOGAN

and with respect to π3 we get

acd ≺L abc ≺L aby ≺L abd ≺L cdy ≺L bcd.

In all three cases, θ has the LE property with respect to the corresponding permuta-
tion.

Lemma 5.6. Let ψ1, ψ2, . . . , ψk be positive DNFs in the same variables x1, . . . , xn,
and assume that ψ1, ψ2, . . . , ψk all have the LE property with respect to (x1, . . . , xn).
Then, the DNF

Ψ(t1, . . . , tk, x1, . . . , xn) =
∨

1≤i<j≤k
titj ∨

k∨

i=1

tiψi(x1, . . . , xn)

has the LE property with respect to (t1, . . . , tk, x1, . . . , xn).
Proof. Let I1 and I2 be two terms of Ψ with I1 ≺L I2 in the lexicographic order

induced by π = (t1, . . . , tk, x1, . . . , xn). We consider four cases which together exhaust
all possibilities.

Case 1: I1 = titj and I2 = tiT , where i, j ∈ {1, . . . , k} and T is either one of the
variables {tj+1, . . . , tk} or a term of Ψi. In both cases, we can set I3 = I1 in Definition
5.1.

Case 2: I1 = titj and I2 = trT , where i, j, r ∈ {1, . . . , k}, i < j, i < r, and T is
either one of the variables {tr+1, . . . , tk} or a term of Ψr. Here, we can set I3 = titr.

Case 3: I1 = tiT1 and I2 = tjT2, where i, j ∈ {1, . . . , k}, i < j, and T1, T2 are
terms of Ψi and Ψj , respectively. Then I3 = titj satisfies Definition 5.1.

Case 4: I1 = tiT1 and I2 = tiT2, where i ∈ {1, . . . , k} and T1, T2 are terms of Ψi.
Since I1 ≺L I2 and Ψi has the LE property with respect to (x1, . . . , xn), there exists
a term of Ψi, say, T3, such that T3 ≺L T2 and T3 \ T2 = {min(j | j ∈ T1 \ T2)}. Then
we can set I3 = tiT3 in Definition 5.1.

We are now ready for a proof of Theorem 5.1.
Proof of Theorem 5.1. Let V = {1, 2, . . . , n} and H = {H1, . . . , Hm} define an

instance of the balanced partition problem. With this instance, we associate n+1+4m
variables, denoted xi (i = 1, 2, . . . , n), y, and tjk (j = 1, 2, . . . ,m; k = 1, 2, 3, 4).
We also define 4m DNFs ψjk (j = 1, 2, . . . ,m; k = 1, 2, 3, 4) as follows: if Hj =
{i1, i2, i3, i4}, with i1 < i2 < i3 < i4, then we let

ψj1(x1, x2, . . . , xn, y) = φ(xi1 , xi2 , xi3 , xi4 , y),
ψj2(x1, x2, . . . , xn, y) = θ(xi1 , xi2 , xi3 , xi4 , y),
ψj3(x1, x2, . . . , xn, y) = θ(xi1 , xi3 , xi2 , xi4 , y),
ψj4(x1, x2, . . . , xn, y) = θ(xi1 , xi4 , xi2 , xi3 , y),

where φ and θ are the functions introduced in Lemma 5.4 and Lemma 5.5, respectively.
We look at ψj1, . . . ψj4 as DNFs in the variables (x1, x2, . . . , xn, y).

Now we define

Ψ(t11, . . . , tm4, x1, . . . , xn, y) =
∨

i,j∈{1,2,...,m}
l,k∈{1,2,3,4}
(i,l)�=(j,k)

tiltjk ∨
∨

j∈{1,2,...,m}
k∈{1,2,3,4}

tjkψjk(x1, . . . , xn, y).

We claim that Ψ has the LE property if and only if (V,H) has a balanced partition.
Indeed, assume that Ψ has the LE property with respect to some permutation π.

We associate with π the following partition of V into V1 ∪ V2:

BOOLEAN NORMAL FORMS, SHELLABILITY, AND RELIABILITY 225

V1 = {i ∈ {1, 2, . . . , n} |xi precedes y in π},
V2 = {i ∈ {1, 2, . . . , n} |xi follows y in π}.

To show that this partition is balanced, consider an arbitrary subset in H, say,
H1, and assume without loss of generality that H1 = {1, 2, 3, 4}. Since Ψ has the LE
property with respect to π, we deduce from Lemma 5.3 that each of ψ11, ψ12, ψ13, and
ψ14 has the LE property with respect to the permutation of {x1, x2, x3, x4, y} induced
by π (to see this, simply fix all variables tjk to 0 except one of them, e.g., t11).

Now, combining Lemma 5.4 and Lemma 5.5, we conclude that y must have rank 3
in the permutation of {x1, x2, x3, x4, y} induced by π (notice that Lemma 5.5, applied
simultaneously to ψ12, ψ13, and ψ14, excludes all 24 permutations in which y has rank
2). Hence, |V1 ∩H1| = |V2 ∩H1| = 2, as required of a balanced partition.

Conversely, assume now that (V,H) has a balanced partition (V1, V2). Say without
loss of generality that V1 = {1, 2, . . . , l} and V2 = {l + 1, . . . , n}, and define the
permutation

π = (t11, t12, . . . , tm4, x1, x2, . . . , xl, y, xl+1, . . . , xn).

Consider any set Hj ∈ H, say, Hj = {i1, i2, i3, i4}. Since (V1, V2) is balanced,
y has rank 3 in the permutation of {xi1 , xi2 , xi3 , xi4 , y} induced by π. Thus Lemma
5.4 and Lemma 5.5 imply that ψj1, ψj2, ψj3, and ψj4 all have the LE property with
respect to π. By Lemma 5.6, we conclude that Ψ also has the LE property with
respect to π.

This concludes the proof.
The proof of Theorem 5.1 establishes that testing the LE property is already

NP-complete for DNFs of degree 5 or more (if we call degree of a DNF the number
of literals in its longest term). On the other hand, for a DNF Ψ =

∨
(i,j)∈E xixj of

degree 2, it can be shown that Ψ has the LE property if and only if Ψ is shellable,
or equivalently, if and only if the graph G = ({1, 2, . . . , n}, E) is cotriangulated (see
Theorem 2 in [4]). This implies, in particular, that the LE property can be tested in
polynomial time for DNFs of degree 2. The complexity of this problem remains open
for DNFs of degree 3 or 4.

REFERENCES

[1] M. O. Ball and G. L. Nemhauser, Matroids and a reliability analysis problem, Math. Oper.
Res., 4 (1979), pp. 132–143.

[2] M. O. Ball and J. S. Provan, Disjoint products and efficient computation of reliability,
Oper. Res., 36 (1988), pp. 703–715.

[3] R. E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing, Holt,
Rinehart and Winston, New York, 1975.

[4] C. Benzaken, Y. Crama, P. Duchet, P. L. Hammer, and F. Maffray, More characteri-
zations of triangulated graphs, J. Graph Theory, 14 (1990), pp. 413–422.

[5] P. Bertolazzi and A. Sassano, An O(mn) algorithm for regular set-covering problems,
Theoret. Comput. Sci., 54 (1987), pp. 237–247.

[6] J. C. Bioch and T. Ibaraki, Complexity of identification and dualization of positive Boolean
functions, Inform. and Comput., 123 (1995), pp. 50–63.

[7] A. Björner, Homology and shellability of matroids and geometric lattices, in Matroid Appli-
cations, N. White, ed., Cambridge University Press, Cambridge, UK, 1992, pp. 226–283.

[8] A. Björner, Topological methods, in Handbook of Combinatorics, R. Graham, M. Grötschel,
and L. Lovász, eds., Elsevier, Amsterdam, 1995, pp. 1819–1872.

[9] E. Boros, Dualization of Aligned Boolean Functions, RUTCOR Research Report RRR 9-94,
Rutgers University, New Brunswick, NJ, 1994.

[10] Y. Crama, Dualization of regular Boolean functions, Discrete Appl. Math., 16 (1987), pp. 79–
85.

226 BOROS, CRAMA, EKIN, HAMMER, IBARAKI, AND KOGAN

[11] G. Danaraj and V. Klee, Which spheres are shellable?, in Algorithmic Aspects of Combi-
natorics, Ann. Discrete Math., 2 (1978), pp. 33–52.

[12] T. Eiter and G. Gottlob, Identifying the minimal transversals of a hypergraph and related
problems, SIAM J. Comput., 24 (1995), pp. 1278–1304.

[13] M. Fredman and L. Khachiyan, On the complexity of dualization of monotone disjunctive
normal forms, J. Algorithms, 21 (1996), pp. 618–628.

[14] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman, New York, 1979.

[15] V. Gurvich and L. Khachiyan, On Generating the Irredundant Conjunctive and Disjunctive
Normal Forms of Monotone Boolean Functions, Discrete Appl. Math., 96/97 (1999),
pp. 363–373.

[16] V. Klee and P. Kleinschmidt, Convex polytopes and related complexes, in Handbook of
Combinatorics, R. Graham, M. Grötschel, and L. Lovász, eds., Elsevier, Amsterdam,
1995, pp. 875–917.

[17] M. O. Locks, Inverting and minimalizing path sets and cut sets, IEEE Trans. Reliability,
R-27 (1978), pp. 107–109.

[18] M. O. Locks, Recursive disjoint products: A review of three algorithms, IEEE Trans. Relia-
bility, R-31 (1982), pp. 33–35.

[19] E. Mendelson, Theory and Problems of Boolean Algebra and Switching Circuits, Schaum’s
Outline Series, McGraw-Hill, New York, London, Sydney, 1970.

[20] S. Muroga, Threshold Logic and its Applications, Wiley-Interscience, New York, 1971.
[21] J. S. Provan, Boolean decomposition schemes and the complexity of reliability computations,

DIMACS Ser. Discrete Math. 5, Amer. Math. Soc., Providence, RI, 1991, pp. 213–228.
[22] J. S. Provan and M. O. Ball, Efficient recognition of matroid and 2–monotonic systems,

in Applications of Discrete Mathematics, Proceedings in Applied Mathematics 33, R.D.
Ringeisen and F.S. Roberts, eds., SIAM, Philadelphia, PA, 1988, pp. 122–134.

[23] U. N. Peled and B. Simeone, Polynomial time algorithms for regular set-covering and thresh-
old synthesis, Discrete Appl. Math., 12 (1985), pp. 57–69.

[24] U. N. Peled and B. Simeone, An O(nm)-time algorithm for computing the dual of a regular
Boolean function, Discrete Appl. Math., 49 (1994), pp. 309–323.

[25] K. G. Ramamurthy, Coherent Structures and Simple Games, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1990.

[26] D. R. Shier and D. E. Whited, Algorithms for generating minimal cutsets by inversion,
IEEE Trans. Reliability, R-34 (1985), pp. 314–318.

A STUDY ON r-CONFIGURATIONS—A RESOURCE ASSIGNMENT
PROBLEM ON GRAPHS∗

SATOSHI FUJITA† , MASAFUMI YAMASHITA‡ , AND TIKO KAMEDA§

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 2, pp. 227–254

Abstract. Let G be an undirected graph with a set of vertices V and a set of edges E. Given
an integer r, we assign at most r labels (representing “resources”) to each vertex. We say that such
an assignment is an r-configuration if, for each label c, the vertices labeled by c form a dominating
set for G. In this paper, we are interested in the maximum number, Dr(G), of labels that can be
assigned to the vertices of graph G by an r-configuration. The decision problem “D1(G) ≥ K?”
(known as the domatic number problem) is NP-complete.

We first investigate Dr(G) for general graphs and establish bounds on Dr(G) in terms of D1(G)
and the minimum vertex degree of G. We then discuss Dr(G) for d-regular graphs. We clearly
have Dr(G) ≤ r(d + 1). We show that the problem of testing if Dr(G) = r(d + 1) is solvable
in polynomial time for d-regular graphs with |V | = 2(d + 1), but is NP-complete for those with
|V | = a(d + 1) for some integer a ≥ 3. Finally, we discuss cubic (i.e., 3-regular) graphs. It is easy
to show 2r ≤ Dr(G) ≤ 4r for cubic graphs. We show that the decision problem for D1(G) = K
is co-NP-complete for K = 2 and is NP-complete for K = 4. Although there are many cubic
graphs G with D1(G) = 2, surprisingly, every cubic graph has a 2-configuration with five labels, i.e.,
D2(G) ≥ 5 and such a 2-configuration can be constructed in polynomial time. We use this fact to
show Dr(G) ≥ �5r/2� in general.

Key words. resource assignment, dominating set, vertex labeling, cubic graph

AMS subject classifications. 05C70, 68M07, 68R10, 90B80

PII. S0895480196311328

1. Introduction. Consider a computer network modeled by an undirected graph
H = (V (H), E(H)) with the vertices in V (H) and the edges in E(H) representing
computers and communication links, respectively. In resource allocation within a
computer network we are faced with the problem of distributing the minimum number
of copies of a (hardware or software) resource, say, a printer or a (part of a) database,
to computers in such a way that every computer in the network can quickly access a
copy of the resource. V (H) could also model towns in a geographic region, in which
case each edge in E(H) connects two neighboring towns that are willing to share
expenses for public facilities such as a library, a fire station, a stadium, etc.

We say that a computer u can quickly access a copy allocated to a computer v if
dH(u, v) ≤ d for some d, where the distance dH(u, v) between u and v in H is defined
by the length of a shortest path inH connecting u and v. LetG = (V (G), E(G)) = Hd

be defined by V (G) = V (H) and {u, v} ∈ E(G) if and only if dH(u, v) ≤ d. A set

∗Received by the editors October 28, 1996; accepted for publication (in revised form) August
3, 1999; published electronically April 6, 2000. Earlier versions of some results contained in this
paper appear as A resource assignment problem on graphs, in Proceedings of the 6th International
Symposium on Algorithms and Computations, Cairns, Australia, 1995, Lecture Notes in Comput.
Sci. 1004, Springer-Verlag, Berlin, 1995, pp. 418–427. This work was partly supported by the
Science Research Grant-in-aid from the Ministry of Education, Science and Culture of Japan and
the Natural Sciences and Engineering Research Council of Canada.

http://www.siam.org/journals/sidma/13-2/31132.html
†Department of Electrical Engineering, Faculty of Engineering, Hiroshima University,

Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527, Japan (fujita@se.hiroshima-u.ac.jp).
‡Department of Computer Science and Communication Engineering, Kyushu University, 6-10-1,

Hakozaki, Fukuoka, 812-8581, Japan (mak@csce.kyushu-u.ac.jp).
§School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

(tiko@cs.sfu.ca).

227

228 S. FUJITA, M. YAMASHITA, AND T. KAMEDA

D ⊆ V (G) is said to be a dominating set for G if, for each u ∈ V (G), there exists a
v ∈ D such that dG(u, v) ≤ 1. Given any dominating set D for G, by definition, for
each u ∈ V (H) = V (G), there exists a v ∈ D such that dH(u, v) ≤ d. Therefore, our
problem of resource allocation on H is reducible to the problem of determining the
size of a minimum dominating set in G, i.e., to the dominating set problem [9, 10].
Another problem of interest is finding the maximum number of resources to which

the computer network as a whole can provide quick access, provided that each com-
puter has bounded “capacity” and can maintain copies of at most r distinct resources.
When r = 1, under the above criterion of efficiency, the problem is reducible to the
domatic number problem for G [9], i.e., the problem of determining the size of a finest
partition of V (G) such that each partition block is a dominating set for G. Our study
of r-configurations reported in this paper was motivated by this problem for general
r.
Let G be an undirected graph with a set of vertices V (G) and a set of edges

E(G). Let C be a countably infinite set of labels representing the set of resources.1

Given an integer r, we assign at most r labels to each vertex. Such an assignment
can be expressed by a function f : V → 2C , such that |f(v)| ≤ r for each v ∈ V (G).
Let Cf = {c ∈ C | c ∈ f(v) for some v ∈ V }, i.e., the set of labels that are actually
assigned to a vertex by f . We say that f is an r-configuration if, for each label c ∈ Cf ,
the vertices in {v | c ∈ f(v)} form a dominating set for G.
It is known that the problem of determining if a given graph G has a dominating

set of size K is NP-complete for planar graphs with maximum vertex degree 3, as well
as for planar graphs that are regular of degree 4 [8].
We are particularly interested in the maximum number, Dr(G), of labels that can

be assigned to the vertices of graph G by an r-configuration, i.e.,

Dr(G) = max{|Cf | : f is an r-configuration}.
D1(G) is known as the domatic number [6], and obviously D1(G) ≤ δ(G) + 1

holds by definition, where δ(G) denotes the minimum degree of graph G. However,
in general, testing if D1(G) ≥ K is known to be NP-complete, for any fixed K ≥ 3.
Conversely, forK = 2, the problem is solvable in linear time. To see this note that if G
contains no isolated vertex, for any maximal independent set U (⊂ V) of G, subsets U
and V −U are both dominating sets for G. If G contains an isolated vertex, however,
we clearly have D1(G) = 1 [8]. Therefore, D1(G) ≥ 2 if and only if G contains no
isolated vertex.
For restricted classes of graphs several positive results on the domatic number are

known. For example,
1. In [7], Farber showed that any strongly chordal graph G is domatically full,
i.e., D1(G) = δ(G) + 1, and based on this fact, several linear time algorithms
have been proposed to compute an optimal domatic partition for strongly
chordal graphs [7] and interval graphs [3, 14, 17].

2. If G is a triangulated disk (i.e., a triangulation of a planar graph), then
D1(G) ≥ 3 [15].

A dominating set V ′ for G = (V,E) is said to be perfect if each vertex not in
V ′ is adjacent to exactly one vertex in V ′ [4, 13] and is said to be independent if it
is an independent set with respect to graph G. The problems of finding a perfect

1Although a finite set C with r|V | elements is enough for our definition of r-configuration, because
r and V are not bounded, it is convenient to assume that C is infinite, without making its definition
overly complicated.

A STUDY ON r-CONFIGURATIONS 229

dominating set and finding an independent, perfect dominating set are both NP-
hard. Several positive results concerning those notions have been obtained, including
polynomial-time algorithms for exactly solving several domination related problems
by restricting the class of graphs [1, 2, 5, 18] and an algorithm to find an approximate
solution for a nonrestricted graph [12].
Obviously, given a 1-configuration f with k labels {c1, c2, . . . , ck}, we can obtain

an r-configuration with kr labels by replacing each label ci (i = 1, 2, . . . , k) with a set
of r labels {ci,1, . . . , ci,r}. We thus have the following proposition.

Proposition 1.1. For any graph G and integer r ≥ 1,

rD1(G) ≤ Dr(G).

In this paper, we first estimate Dr(G) for general graph G. Our intuition tells us
that D1(G) should be roughly proportional to δ(G) and that Dr(G) could be much
greater than rD1(G), since we could take advantage of the freedom provided by a
large δ(G) and a large r to pack more labels. However, it turns out that this intuition
is only partially correct, as we show below. It is easy to see that D1(G) ≤ δ(G) + 1
generalizes to the following.

Proposition 1.2. For any graph G and integer r ≥ 1,
Dr(G) ≤ r(δ(G) + 1).

However, we can also show the following: For any constant ε > 0 and for any r,
there is a class of graphs G such that

Dr(G) < r(εδ(G) + o(δ(G))).

Observe that for the graphs G in this class the above intuition is wrong; i.e., we have
(1) D1(G) = o(δ(G)) and (2) Dr(G)− rD1(G) = r × o(δ(G)).
It turns out that our intuition is not totally wrong. We show that for any λ > 0

and r ≥ 2, there is a graph G such that Dr(G) − rD1(G) ≥ rλ. Therefore, the
difference between Dr(G) and rD1(G) can grow arbitrarily large. We also derive an
upper bound on D2(G) in terms of D1(G).
Next, we discuss the time complexity issues. Since the domatic number problem

is NP-complete, so also is the problem of determining if Dr(G) ≥ K, in general.
We therefore restrict our attention to d-regular graphs and try to find the boundary
between NP-complete and polynomially solvable problems. Since a vertex is adjacent
to exactly d other vertices and each vertex can be assigned up to r labels, we clearly
have

Dr(G) ≤ r(d+ 1).(1.1)

We are particularly interested in testing if Dr(G) = r(d + 1). If Dr(G) = r(d + 1),
then |V (G)| = a(d+1) for some integer a ≥ 1. Note that when G is a complete graph
Kd+1, then it is d-regular and a = 1. So, testing if Dr(G) = r(d + 1) in the case
where a = 1 is trivial. We show that for any d-regular graph, the problem of testing if
Dr(G) = r(d+1) is solvable in polynomial time if |V | = 2(d+1) but is NP-complete
if |V | = 3(d + 1). It is worth pointing out that graphs with |V (G)| = 2(d + 1) are
more dense than those with |V (G)| = 3(d+ 1), and therefore the former would have
more r-configurations than the latter.
Testing if Dr(G) = r(d + 1) is NP-complete in general. We therefore explore

the boundary between NP-complete and polynomially solvable problems by further

230 S. FUJITA, M. YAMASHITA, AND T. KAMEDA

Fig. 2.1. Graph G1 in the proof of Lemma 2.1.

restricting our attention to the 3-regular (also called cubic) graphs. Since any graph
with no isolated vertex has a domatic partition of size 2, it follows that 2r ≤ Dr(G),
and from (1.1) we have Dr(G) ≤ 4r. Hence, D1(G) = 2, 3, or 4. We can show that
the problem of testing if D1(G) = K is, unfortunately, co-NP-complete for K = 2 and
is NP-complete for K = 4. For r = 2, the above inequalities yield 4 ≤ D2(G) ≤ 8.
Although there are infinitely many cubic graphs G with D1(G) = 2, surprisingly, any
cubic graph has a 2-configuration with five labels, i.e., D2(G) ≥ 5 in general, and such
a 2-configuration can be constructed in polynomial time. We use this fact to show
Dr(G) ≥ �5r/2.
The rest of this paper is organized as follows. Section 2 is devoted to investigating

Dr(G) for general graphs G. Section 3 discusses d-regular graphs with Dr(G) =
r(d + 1). In section 4, we discuss the problem of testing if D1(G) = K for cubic
graphs. In section 5, we show that any cubic graph has a 2-configuration with five
labels. Section 6 concludes the paper with some open problems.

2. r-Configurations of general graphs.

2.1. Graphs G with Dr(G) = o(δ(G))r. As we saw in Proposition 1.2,
Dr(G) ≤ r(δ(G) + 1) holds for any graph G. In this subsection, we show that for
any integer r ≥ 1 and for any constant ε > 0, there is a class of graphs G such
that Dr(G) ≤ r(εδ(G) + o(δ(G))). The key to our constructive proof is the following
lemma.

Lemma 2.1. Let U be a minimum dominating set for a given graph G = (V,E).
Then, Dr(G) ≤ �r|V |/|U |.

Proof. Let f be an r-configuration for G such that |Cf | = Dr(G), and imagine
that the vertices of G are labeled by f . Each label is assigned to at least |U | vertices
and at most r labels are assigned to each vertex, which implies Dr(G)|U | ≤ r|V |.
As the first step, consider the following graph G1: V (G1) = {(i, j) | 1 ≤

i, j ≤ m}, and two vertices (i1, j1), (i2, j2) ∈ V (G1) are connected by an edge, i.e.,
((i1, j1), (i2, j2)) ∈ E(G1), if and only if i1 = i2 or j1 = j2. Note that G1 is isomor-
phic to the Cartesian product of two copies of Km. See Figure 2.1 for an illustration
(m = 4). In the figure, the neighbors of the black vertex are painted gray. Note that
|V (G1)| = m2 and δ(G1) = 2m− 2. It is easy to see that a minimum dominating set

A STUDY ON r-CONFIGURATIONS 231

for G1 has size m. Hence, by Lemma 2.1,

Dr(G1) ≤
⌊

r|V (G1)|
m

⌋
= rm.

Since m = δ(G1)/2 + 1, Dr(G1) is at most rδ(G1)/2 + r.
As the next step, consider a three-dimensional “cube” instead of a two-dimensional

“mesh,” and define graph G2 as follows: V (G2) = {(i, j, k) | 1 ≤ i, j, k ≤ m} and two
vertices in V (G2) are connected by an edge in E(G2) if and only if they agree on at
least one coordinate. Note that |V (G2)| = m3 and δ(G2) = 3m

2 − 3m. The size of a
minimum dominating set for G2 is clearly m. Since Dr(G2) ≤ � r|V (G2)|/m = rm2

and m2 = δ(G2)/3 +m, we have

Dr(G2) ≤ rδ(G2)

3
+ ro (δ(G2)) .

The idea described above can be extended to higher dimensions in a natural
way. Let � = �1/ε� + 1, and define graph G3 based on an �-dimensional cube, in a
similar way to G1 and G2. Note that |V (G3)| = m� and that the size of a minimum
dominating set for G3 is m as well. Since Dr(G3) ≤ r|V (G3)|/m = rm�−1 and

δ(G3) =

�∑

i=1

(
�
i

)
(−1)i+1m�−i − 1,

we have

Dr(G3) ≤ rm�−1 =
rδ(G3)

�
+ rO

(
(δ(G3))

1−1/(�−1)
)
< r(εδ(G3) + o(δ(G3))).

Hence, we have the following theorem.
Theorem 2.2. For any integer r ≥ 1 and for any constant ε > 0, there is a class

of graphs G such that Dr(G) < r(εδ(G) + o(δ(G))).

2.2. Relation between D1(G) and Dr(G). The objective of this subsection
is to investigate the relation between D1(G) and Dr(G) for a general graph G.

Proposition 2.3. For any graph G, there is a graph G′ such that D1(G
′) =

Dr(G).
Proof. Given a graph G = (V,E), let G′ denote the graph constructed from G

as follows: For each v ∈ V , G′ has a clique of size r, and for each (u, v) ∈ E, G′

has a complete bipartite subgraph connecting the two r-cliques representing u and v,
respectively; i.e., each (u, v) ∈ E corresponds to a joining of two r-cliques representing
u and v, respectively. It is easy to see that D1(G

′) = Dr(G).
Proposition 2.4. Let k and l be any nonnegative integers. Then D2k+l(G) ≥

kD2(G) + lD1(G) holds for any graph G.
Proof. We use the approach used in the proof of Proposition 1.1 in the previous

section. Start with a 2-configuration, C2, with D2(G) labels, and a 1-configuration,
C1, withD1(G) labels. Make k copies of C2, using a distinct set of labels for each copy.
Similarly, make l copies of C1, using a distinct set of labels for each copy. Consider
these k + l copies as one (2k + l)-configuration with kD2(G) + lD1(G) labels.
Our initial conjecture that D1(G) = �Dr(G)/r for any r ≥ 1 has turned out to

be incorrect.
Theorem 2.5. There is a graph G = (V,E) such that D1(G) ≤ �D2(G)/2− 1.

232 S. FUJITA, M. YAMASHITA, AND T. KAMEDA

V1

V2

V2

(a) (b)

20 2100 02 10 11 1201 22

0 1 2

20 2100 02 10 11 1201 22

Fig. 2.2. Graph G in the proof of Theorem 2.5. (a) Connection between V1 and V2. (b) Con-
nection among the vertices of V2.

Proof. In the following, we use strings of {0,1,2} as vertex labels. Given such a
string, v = vpvp−1 . . . v1, by v̄ we denote its value interpreted as a ternary num-
ber, i.e., v̄ =

∑p
i=1 vi3

i−1. Let V = V1 ∪ V2, where V1 = {0, 1, 2} and V2 =
{00, 01, 02, 10, 11, 12, 20, 21, 22}. We connect the 12 vertices of G as follows (see Figure
2.2):

• For any u, v ∈ V1, {u, v} ∈ E.
• For any u, v ∈ V2, {u, v} ∈ E if and only if ū = v̄ + 1 (mod 9) or ū = v̄ + 2
(mod 9).
• For any u ∈ V1 and v ∈ V2, {u, v} ∈ E if and only if u �= v1, where v = v2v1.
Any dominating set V ′ (⊆ V) for G must contain at least two vertices in V1 or at

least two vertices in V2. For example, if V
′ contains only one vertex in V2, then this

vertex cannot cover all other vertices in V2, and V
′ must contain at least two vertices

from V1. Hence,

D1(G) ≤ �|V1|/2+ �|V2|/2 = 4 + 1 = 5.

Conversely, we can label the vertices in V using 12 labels in a 2-configuration
as observed below. Any two vertices u, v ∈ V1 and any two vertices u, v ∈ V2 such
that v̄ = ū + 4(mod 32) form a dominating set for G. Thus there are 12 different
dominating sets altogether, and every vertex belongs to exactly two dominating sets.
Now we prepare 12 different labels corresponding to dominating sets and label a vertex
using the two labels corresponding to the dominating sets to which it belongs. Clearly,
it is a 2-configuration using 12 labels. We thus have

D2(G) ≥ 12,

which completes the proof.
This proof can be extended to prove the following theorem.
Theorem 2.6. For any integer m ≥ 1, there is a graph G = (V,E) such that

D2(G) ≥ m and 2D1(G) ≤ D2(G)− log3(2m/3 + 1).
Proof. Let us use strings of {0,1,2} as vertex labels, as in the proof of Theorem

2.5. Let p = � log3(2m/3 + 1) �. Then we have ∑p
i=1 3

i ≥ m. Let V =
⋃p
i=1 Vi,

where, for 1 ≤ i ≤ p, Vi is the set of all ternary strings of length i. Thus we have
|Vi| = 3i. A vertex in Vi is denoted as u = uiui−1 . . . u1, where uj ∈ {0, 1, 2} for
1 ≤ j ≤ i. Vertices in V are connected as follows:

A STUDY ON r-CONFIGURATIONS 233

• For any u, v ∈ V1, u and v are connected by an edge in E.
• For each i ≥ 2, vertices u = uiui−1 . . . u1 and v = vivi−1 . . . v1 in Vi such
that ū < v̄ are connected by an edge in E if and only if |ū − v̄| ≤ Ki or
|ū+ 3i − v̄| ≤ Ki, where Ki = � (3i − 1)/4 �.

• For any u = uiui−1 . . . u1 ∈ Vi and v = vjvj−1 . . . v1 ∈ Vj , where j > i,
vertices u and v are connected by an edge in E if and only if u1 �= vj−i.

We now compare D1(G) and D2(G) by establishing upper and lower bounds on
them, respectively. To show D1(G) ≤

∑p
i=1�3i/2, we first show that every dominat-

ing set V ′ (⊆ V) for G contains two vertices from the same set Vi for some 1 ≤ i ≤ p,
where p ≥ 2. Suppose that there is a dominating set V ′ for G such that |V ′ ∩ Vi| ≤ 1
for all 1 ≤ i ≤ p. Without loss of generality, we assume that |V ′ ∩ Vi| = 1 for all i.
For i = 1, 2, . . . , p, let w(i) = w

(i)
i w

(i)
i−1 · · ·w(i)

1 ∈ V ′ ∩ Vi.

Construct a ternary string x of length p as follows: x = xpw
(1)
1 w

(2)
1 . . . w

(p−1)
1 ,

where xp �= w
(p)
p . We claim that vertex x ∈ Vp is not dominated by any vertex in

{w(i) | i = 1, 2, . . . , p}. By definition w(i) does not dominate x for i = 1, 2, . . . , p− 1.
Vertex w(p) does not dominate x either, since both |x̄ − w̄(p)| ≥ 3p−1 and |x̄ + 3p −
w̄(p)| ≥ 3p−1 hold (because x and w(p) differ in the most significant digit) and 3p−1 >
Kp for all integers p ≥ 2.
Hence, every dominating set for G contains at least two vertices from some subset

Vi. Since there are at most �3i/2 disjoint pairs of elements in subset Vi for all i,

D1(G) ≤
p∑

i=1

�3i/2.(2.1)

Next, we show D2(G) ≥
∑p

i=1 3
i. Fix any integer i (1 ≤ i ≤ p) and let u =

uiui−1 . . . u1 and v = vivi−1 . . . v1 be two vertices in Vi such that

ū− v̄ = (3i − 1)/2.
Then the set {u, v} is a dominating set as observed below. Every vertex in Vi is
dominated by either u or v, since (1) (3i − 1)/2 ≤ 2Ki and (2) every w ∈ Vi−{u, v}
satisfies |w̄ − ū| ≤ Ki, |w̄ + 3i − ū| ≤ Ki, |w̄ − v̄| ≤ Ki, or |w̄ + 3i − v̄| ≤ Ki.

Also, every vertex in Vi′(i
′ �= i) is dominated by either u or v, since

∑i
j=1 3

j−1uj =∑i
j=1 3

j−1(vj + 1). Thus there are |Vi| such dominating sets {u, v}, and every vertex
in Vi belongs to exactly two of them.
Then as observed in the proof of Theorem 2.5, we can label the vertices in V

using the labels corresponding to the dominating sets {u, v} in a 2-configuration; we
label a vertex using the two labels corresponding to the dominating sets to which it
belongs. It is certainly a 2-configuration of G, and hence,

D2(G) ≥
p∑

i=1

|Vi| =
p∑

i=1

3i.(2.2)

For all integers, i ≥ 1, since 3i is odd, we have �3i/2 = (3i − 1)/2. Thus, from
(2.1) and (2.2) we obtain

2D1(G) ≤ D2(G)− p.

Also, from D2(G) ≥
∑p

i=1 3
i ≥ m we get D2(G) ≥ m. It follows that

2D1(G) ≤ D2(G)− p ≤ D2(G)− log3(2m/3 + 1).

234 S. FUJITA, M. YAMASHITA, AND T. KAMEDA

Corollary 2.7. For any fixed λ, there is a graph G such that D2(G) ≥ 2D1(G)+
λ.
The following theorem states that there is a class of graphs for which the difference

between Dr(G) and rD1(G) becomes arbitrarily large.
Theorem 2.8. For any λ > 0 and r ≥ 2, there is a graph G such that Dr(G)−

rD1(G) ≥ rλ.
Proof. By Proposition 2.4, for any graph G and integer k ≥ 1, we have D2k(G) ≥

kD2(G) and D2k+1(G) ≥ kD2(G) + D1(G). Together with Corollary 2.7, we can
derive

D2k(G)− 2kD1(G) ≥ kD2(G)− 2kD1(G)

≥ k(2D1(G) + λ)− 2kD1(G)

≥ kλ

and

D2k+1(G)− (2k + 1)D1(G) ≥ kD2(G) +D1(G)− (2k + 1)D1(G)

≥ k(2D1(G) + λ)− 2kD1(G)

≥ kλ.

It thus follows that

Dr(G)− rD1(G) ≥ �(r − 1)/2�λ ≥ rλ/3.

The proof is complete if we rename λ/3 as λ.
In the rest of this subsection, we establish an upper bound on D2(G) in terms of

D1(G).
Theorem 2.9. For any graph G = (V,E), D2(G) ≤ 2αD1(G), where α =

�√2|V |/D1(G) �.
Proof. Let S be a collection of D2(G) dominating sets corresponding to a 2-

configuration for G so that |S| = D2(G). First, we partition S into subsets of disjoint
dominating sets by using the following procedure.

Step 1. Let j = 1 and S̃ = S. Repeat Steps 2–5 until S̃ = ∅.
Step 2. Let Sj = ∅.
Step 3. If there is an element Y ∈ S̃ which does not intersect with ⋃X∈Sj

X, then

remove Y from S̃, and add it to Sj . If there is no such element Y , then go to Step 5.
Step 4. Go to Step 3.
Step 5. Increment j by 1.
Let {S1,S2, . . . ,Sq} be the resulting partition of S, and for 1 ≤ j ≤ q, let Uj =⋃

X∈Sj
X (⊆ V). Note that |Sj | ≤ D1(G) for all 1 ≤ j ≤ q, since the dominating sets

in Sj are mutually disjoint. Note also that
∑q

i=1 |Ui| ≤ 2|V | since, in a 2-configuration,
each vertex in V can contribute to at most two dominating sets in S. Moreover, we
claim that, for any j (1 ≤ j ≤ q − 1), each element in Sj+1 ∪ Sj+2 ∪ · · · ∪ Sq share at
least one vertex with Uj that is not shared with any other element in

⋃q
i=j+1 Si. To

prove this claim, consider any dominating set d ∈ ⋃q
i=j+1 Si, and let v ∈ Uj ∩ d. If

there were a dominating set d′ ∈ ⋃q
i=j+1 Si such that d′ �= d and v ∈ d′, then v would

belong to at least three dominating sets in S. It follows that, for any 1 ≤ j ≤ q − 1,
we have

q∑

i=j+1

|Si| ≤ |Uj |.

A STUDY ON r-CONFIGURATIONS 235

Adding
∑j

i=1 |Si| to both sides of the above inequality, we obtain
q∑

i=1

|Si| ≤ |Uj |+
j∑

i=1

|Si| for all j.

It follows from this inequality that

D2(G) ≤ min
1≤j≤q

{
|Uj |+

j∑

i=1

|Si|
}
.(2.3)

Let α = �√2|V |/D1(G) �. If q ≤ α, then, since |Si| ≤ D1(G) for all 1 ≤ i ≤ q,

we have

D2(G) =

q∑

i=1

|Si| ≤ αD1(G).

Conversely, if q ≥ α, then we derive from (2.3)

D2(G) ≤ min
1≤j≤α

{
|Uj |+

j∑

i=1

|Si|
}
≤ min

1≤j≤α
{|Uj |}+ αD1(G).

Since the minimum size, min1≤j≤α{|Uj |}, cannot be larger than the average size of
the sets in {Uj | 1 ≤ j ≤ q}, we finally obtain

D2(G) ≤ 2|V |
α
+ αD1(G) ≤ 2αD1(G).

Note that |V |/D1(G) represents the average size of the D1(G) dominating sets in
a 1-configuration with D1(G) labels. Hence, for example, if D1(G) = Ω(|V |) (i.e., if
the average size is a constant), then D2(G)/D1(G) is bounded from above by some
constant.

3. d-Regular graphs with Dr(G) = r(d + 1). Proposition 1.2 states that
Dr(G) ≤ r(δ(G) + 1) holds in general. In this section, we restrict our attention to
regular graphs and investigate the problem of deciding if a given d-regular G has this
extremal value r(δ(G) + 1) as Dr(G), i.e., if Dr(G) = r(d + 1). By Proposition 1.1,
we have the following.

Proposition 3.1. For any d-regular graphs G, Dr(G) = r(d+1) for some r ≥ 2
if and only if D1(G) = d+ 1.
Let Rd denote the set of all d-regular graphs G with D1(G) = d + 1. By the

above proposition, Rd is exactly the set of d-regular graphs G with Dr(G) = r(d+1)
for some r. Our objective in this section is to test the membership in Rd. If G ∈ Rd,
then |V (G)| = a(d + 1) for some integer a, since (1) any 1-configuration f with
|Cf | = d + 1 assigns exactly one label to each vertex and (2) for each label c in Cf ,
the set of vertices having c corresponds to a perfect dominating set. It is clear that
any d-regular graph with d+ 1 vertices (i.e., when a = 1) is a complete graph Kd+1,
which obviously belongs to Rd. We therefore assume that |V (G)| = a(d+1) for some
integer a ≥ 2. This section is devoted to proving that the membership problem for
Rd is solvable in polynomial time if a = 2, but is NP-complete if a = 3.

236 S. FUJITA, M. YAMASHITA, AND T. KAMEDA

3.1. The case |V | = 2(d + 1). When a = 2, given a d-regular graph G,
construct a graph H(G) = (V (H), E(H)) from G so that G ∈ Rd if and only if H(G)
has a maximum matching of size d + 1. We then solve the membership problem for
Rd by solving the maximum matching problem for H(G). Let dG(u, v) denote the
distance between the vertices u and v in G. The following algorithm, TEST, tests
if G ∈ Rd and finds a configuration f with d + 1 labels if the answer is positive by
constructing a maximum matching for H = H(G).

Algorithm TEST.
Input: G {a d-regular graph with 2(d+ 1) vertices.}
Step 1: Construct a graph H: Let V (H) = V (G) be its vertex set. For each pair

u, v ∈ V (H), let {u, v} ∈ E(H) if dG(u, v) = 3.
Step 2: Find a maximum matching M for graph H.
Step 3: If the size of M is d + 1, then return a 1-configuration implied by M ;2

otherwise return NO.

To show the correctness of TEST, first let f be a 1-configuration with D1(G) =
d+1 labels. For any v ∈ V (G), letNG[v] be the set of vertices u satisfying dG(u, v) ≤ 1.
By definition |NG[v]| = d + 1. Since |V | = 2(d + 1), for any vertex v, each vertex
u ∈ NG[v] has a distinct label, and for any label c ∈ Cf , there are exactly two vertices
u and v having c. Moreover, the distance (in G) between them is always 3. To see
this, note that, if dG(u, v) ≤ 2, there is a w such that NG[w] contains both u and v,
which contradicts the uniqueness of labels assigned to vertices in NG[w], and that, if
dG(u, v) ≥ 4, there is a vertex w such that NG[w] contains neither u nor v. Hence,
the collection of edges {u, v} in H(G) connecting the vertices having the same label
forms a matching of size d+ 1, which is in fact maximum since |V (H)| = 2(d+ 1).
Next, given a maximummatchingM ⊆ E(H) ofH(G), construct a 1-configuration

f with D1(G) = d + 1 labels as follows: For each edge e ∈ M , we prepare label ce.
Then for each e = {u, v} ∈ M , we label u and v by label ce. Since the set {u, v}
is a dominating set for G (because |NG[u] ∪ NG[v]| = 2(d + 1)), this labeling is a
1-configuration with d + 1 labels. Therefore, we conclude that TEST returns M if
and only if D1(G) = d + 1 and we can construct such a 1-configuration from M as
described above.

Finally, since each step of the above algorithm can be carried out in polynomial
time, TEST runs in polynomial time.

Lemma 3.2. If G = (V,E) is a d-regular graph with 2(d + 1) vertices, then we
can test if G ∈ Rd in polynomial time.

3.2. The case |V | = 3(d + 1). Unfortunately, it turns out that we cannot
test the membership in Rd efficiently when |V | = 3(d + 1). This subsection is de-
voted to showing the NP-hardness of the problem. To this end, we transform 3SAT
to our problem via a restricted version of the three-dimensional matching problem
(3DM). That is, we first transform 3SAT to a variation of 3DM and then transform
it to our problem. The first transformation (stated in Lemma 3.3) is similar to the
transformation from 3SAT to 3DM in Garey and Johnson [8, pp. 50–53].

Let U = {u1, u2, . . . , un} and C = {c1, c2, . . . , cm} be the sets of variables and
clauses, respectively, in a given instance of 3SAT.

Lemma 3.3. For any given C, we can construct a set M of 3-sets in S1×S2×S3,
where S1, S2, and S3 are disjoint sets of elements (drawn from some set) of the same

2M partitions V (H) into pairs of vertices. Assign the same label to each pair of vertices and
distinct labels to different pairs.

A STUDY ON r-CONFIGURATIONS 237

size, in polynomial time, that satisfies the following two conditions: (1) there is a
subset M ′ of M that exactly covers S1 ∪S2 ∪S3 if and only if C is satisfiable and (2)
for any {a, b, c}, {a, b, d} ∈M , if {x, y, c} ∈M for some x, y, then {x, y, d} ∈M .

Proof. For the proof see Appendix A.
Next, we proceed to the second transformation. Let M be a set of 3-sets that

satisfies the following property in Lemma 3.3: For any {a, b, c}, {a, b, d} ∈ M , if
{x, y, c} ∈ M for some x, y, then {x, y, d} ∈ M . We construct a d-regular graph
G = (V,E) with 3(d + 1) vertices from M , such that D1(G) = d + 1 if and only if
there is an exact cover M ′ (⊆M) of

⋃
{a,b,c}∈M{a, b, c}.

Lemma 3.4. Let M be a set of 3-sets in X × Y × Z, where X,Y , and Z are
disjoint sets of elements of an equal size, to satisfy the following condition: For any
{a, b, c}, {a, b, d} ∈ M , if {x, y, c} ∈ M for some x, y, then {x, y, d} ∈ M . Then, we
can construct a d-regular graph G with 3(d+ 1) vertices, such that D1(G) = d+ 1 if
and only if there is an exact cover M ′ (⊆M) of X ∪ Y ∪ Z, in polynomial time.

Proof. For the proof see Appendix B.
By combining the previous two lemmas, we conclude that the problem of testing

if D1(G) = d+1 for any given d-regular graph G with order 3(d+1) is NP-hard. The
problem is obviously in the class NP.

Theorem 3.5. The problem of deciding if a given d-regular graph with 3(d+ 1)
vertices is in Rd is NP-complete.

4. 1-configuration of cubic graphs. In the previous section, we discussed d-
regular graphs and showed that testing Dr(G) = r(d + 1) (or equivalently, testing
D1(G) = d + 1) is NP-complete, in general. In this section, we further restrict our
attention to the case d = 3, i.e., to the cubic graphs, and investigate the problem of
testing D1(G) = K. Since 2 ≤ D1(G) ≤ 4 for cubic graphs, we first examine the case
K = 4 and then proceed to the case K = 2 (or equivalently the case K ≥ 3).

4.1. Testing if D1(G) = 4. In this subsection, we prove that the problem of
testing if D1(G) = 4 is NP-complete even for cubic graphs. The problem is clearly in
NP, so we concentrate on showing the NP-hardness of the problem. The proof is by
a transformation from the 3-edge-coloring problem for cubic graphs, which is known
to be NP-hard [11]. The transformation uses a graph A, illustrated in Figure 4.1 as
an “adaptor” graph. The figure shows an example of four-labeling of the degree-3
vertices. Although the labels of degree-1 vertices are not shown, it is easy to observe
that the degree-1 vertices labeled Amust be white, those labeled C must be black, and
so on, to complete a 1-configuration with four labels. In general, A has the following
property.

Property 1. Consider any 1-configuration of A with four labels. Then
1. the two degree-1 vertices having the same label A,B,C, or D, have the same

label, and
2. the two vertices adjacent to the degree-1 vertices having the same label have

the same label.
The transformation proceeds as follows: Let G be any given cubic graph. Without

loss of generality, we assume thatG is connected. We prepare four copies, GA, GB , GC ,
and GD, of G and |E(G)| copies of A, each corresponding to an edge e ∈ E(G). For
each edge e = {u, v} ∈ E(G), we have four copies eI = {uI , vI}(I ∈ {A,B,C,D}) of
e and a copy Ae of A. Then we remove the four edges eI and place Ae, by identifying
uI and vI with the two degree-1 vertices labeled I in Ae, as illustrated in Figure 4.2,
where each rectangle represents a copy of the adaptor A. The resulting graph G′ is
clearly connected and cubic.

238 S. FUJITA, M. YAMASHITA, AND T. KAMEDA

A B C D

C D A B
Fig. 4.1. An “adaptor” A used in the transformation from the 3-edge-coloring problem for

cubic graphs.

Lemma 4.1. A cubic graph G is 3-edge-colorable if and only if D1(G
′) = 4, where

G′ is the graph constructed from G as described above.
Proof. Suppose that G′ has a 1-configuration with four labels. Since G′ is con-

nected, all vertices uA of copy GA of G have the same label by Property 1. We label
each edge e = {u, v} by the label assigned to the vertex of Ae adjacent to uA. (This
labeling is well defined, since the two vertices of Ae adjacent to uA and vA have the
same label by Property 1.) By definition, the resulting edge labeling uses three labels,
and the three edges incident to u have distinct labels.
Suppose that G is 3-edge-colorable. We prepare four labels A,B,C, and D, and

label G′ as follows: All vertices uI in copy GI of G are labeled with I, for each
I ∈ {A,B,C,D}. Consider any edge e = {u, v} ∈ E(G), and let cI be the label
assigned to the copy eI = {uI , uv} of e in GI . The two vertices of Ae adjacent to uI
and vI are labeled with cI . The other degree-3 vertices of Ae are labeled as illustrated
in Figure 4.1. Since cI are distinct, the last part of labeling is actually possible. It
is easy to check that the defined labeling is in fact a 1-configuration with four labels.
Since D1(G

′) ≤ 4, we have D1(G) = 4.
Hence, we have the following theorem.
Theorem 4.2. The problem of testing if D1(G) = 4 for cubic graphs is NP-

complete.

4.2. Testing if D1(G) ≥ 3. In this subsection, we prove that the problem of
testing if D1(G) ≥ 3 for cubic graphs is NP-complete. Again, the problem is obviously
in NP. We concentrate on proving the NP-hardness of the problem.

Lemma 4.3. The problem of testing if D1(G) ≥ 3 for cubic graphs is NP-hard.
Proof. We transform 3SAT to the problem at hand. To this end, we first transform

3SAT to the problem of testing if D1(G) ≥ 3 for graphs with minimum degree 2, and
then transform the latter problem to our problem. The second transformation consists
of two subtransformations. First we transform the testing problem for graphs with
degree ≥ 2 to that for graphs with degrees either 2 or 3, and then the latter problem
is further transformed to the testing problem for cubic graphs. We start with the

A STUDY ON r-CONFIGURATIONS 239

B

C

D

A

B

C

D

A

Fig. 4.2. A transformation used in the proof of the NP-hardness of testing D1(G) = 4 for cubic
graphs.

transformation of 3SAT to the testing problem for general graphs with degree ≥ 2.
Let U = {u1, u2, . . . , un} and C = {c1, c2, . . . , cm} be sets of variables and clauses,

respectively, arbitrarily given as an instance of 3SAT. Let G = (V,E) be a graph
defined from the instance as follows: V = V0 ∪ V1 ∪ V2, where

V0 = {s, t1, t2, t3},
V1 = {a1

i , a
2
i | 1 ≤ i ≤ m},

V2 = {b1j , b2j , b3j | 1 ≤ j ≤ n},

and connect vertices in V as follows:
• {t1, t2}, {t2, t3}, {t3, t1} ∈ E.
• For all 1 ≤ i ≤ m, let {s, a1

i }, {a1
i , a

2
i } ∈ E.

• For all 1 ≤ j ≤ n and all 1 ≤ k ≤ 3, let {tk, b1j}, {b1j , b2j}, {b2j , b3j}, {b3j , tk} ∈ E.
• For all 1 ≤ i ≤ m, if clause ci contains a positive (respectively, negative)
literal of variable uj , then let {a2

i , b
1
j} ∈ E (respectively, {a2

i , b
3
j} ∈ E).

For example, Figure 4.3 shows the graph G to which an instance (u1 + u2 + u3)(u1 +
u2 + u3)(u1 + u2 + u3) of 3SAT has been transformed. Note that in G, only vertices
a1
i (1 ≤ i ≤ m) and b2j (1 ≤ j ≤ n) have degree 2.
Since the minimum degree of G is 2, we have D1(G) ≤ 3. We first prove that if

the given formula is satisfiable, then the resulting graph G has a 1-configuration with
three labels, and hence D1(G) = 3. Fix an assignment that satisfies the formula. Let
U1 (⊆ U) be the set of variables to which value 1 is assigned. For clause cm, there is
at least one variable u� which contributes to satisfying it, i.e., u� ∈ U1 if and only if
cm contains u� as a positive literal.

240 S. FUJITA, M. YAMASHITA, AND T. KAMEDA

a21 a22 a31 a32

s

t3t2t1

a12a11

Fig. 4.3. The graph G to which the instance (u1 + u2 + u3)(u1 + u2 + u3)(u1 + u2 + u3) of
3SAT is transformed.

Construct a labeling function f which maps vertices in V to three labels {1, 2, 3}
as follows:

• f(s) = 1, f(t1) = 1, f(t2) = 2, and f(t3) = 3.
Thus, for any pair of a vertex u ∈ {b1j , b3j | 1 ≤ j ≤ n} ∪ {tk | 1 ≤ k ≤ 3} and
a label c ∈ {1, 2, 3}, there is a vertex v with label c that dominates u, i.e.,
that satisfies dG(u, v) ≤ 1.

• – For 1 ≤ i ≤ m− 1, we have f(a1
i) = 2 and f(a2

i) = 3.
– f(a1

m) = 3 and f(a2
m) = 2.

Thus, for any pair of a vertex u ∈ {a1
i | 1 ≤ i ≤ m} and a label c ∈ {1, 2, 3},

there is a vertex v with label c that dominates u.
• – For each uj ∈ U1 \ {u�}, we have f(b1j) = 1, f(b2j) = 2, and f(b3j) = 3.

– For each uj ∈ U \ (U1 ∪ {u�}), we have f(b1j) = 3, f(b
2
j) = 2, and

f(b3j) = 1.

– If u� ∈ U1, then f(b1�) = 1, f(b
2
�) = 3, and f(b3�) = 2. If u� /∈ U1, then

f(b1�) = 2, f(b
2
�) = 3, and f(b3�) = 1.

Thus, for any pair of a vertex u ∈ {b2j | 1 ≤ j ≤ n} and a label c ∈ {1, 2, 3},
there is a vertex v with label c that dominates u.

Vertex a2
m (with label 2) is dominated both by a

1
m with label 3 and by a vertex

(either b1m or b
3
m) with label 1, since if u� ∈ U1, then f(b1�) = 1, and otherwise

f(b3�) = 1. Similarly, vertex a2
j (with label 3) is dominated by both a1

j with label 2

and a vertex (b1j or b
3
j) with label 1, since for any clause cj (1 ≤ j ≤ m− 1), there is

at least one variable which contributes to satisfying cj . Thus, f is a 1-configuration

A STUDY ON r-CONFIGURATIONS 241

Fig. 4.4. The vertex split operation used in the transformation.

of G with three labels.

Next, we prove that if G has a 1-configuration with three labels, then the given
formula is satisfiable. Fix a 1-configuration f of G with three labels {1, 2, 3}. Without
loss of generality, we assume f(s) = 1. Since |Cf | = 3, we have f(a1

i) �= 1 and
f(a2

i) �= 1 for all i. Hence for all i, there must exist at least one vertex (�= a1
i)

with label 1 adjacent to vertex a2
i . Since f(b

1
j) �= f(b3j) must hold (otherwise, there

would be a label such that b2j had no neighbor with that label), by assigning value 1

(respectively, 0) to variables uj such that f(b
1
j) = 1 (respectively, f(b

3
j) = 1), we can

find an assignment satisfying the given formula. Thus, 3SAT has been transformed
to the problem of testing if D1(G) ≥ 3 for graphs with minimum degree ≥ 2.
Then we proceed to the second transformation: we transform the problem of

testing if D1(G) ≥ 3 for graphs with degree ≥ 2 to the one for cubic graphs. As
explained, the transformation consists of two subtransformations. We first transform
graphs with degree ≥ 2 to graphs with degrees either 2 or 3.
Let G be a given graph with degree ≥ 2. First, we (repeatedly) replace each

vertex of degree d (≥ 4) with a path with 3d− 8 vertices, as shown in Figure 4.4. Let
G′ be the resulting graph. It is easy to check that the degrees of V (G′) are either
2 or 3. As shown below, G′ has a 1-configuration with three labels if and only if G
has a 1-configuration with three labels. First, if G has a 1-configuration with three
labels, obviously, so does G′. Suppose now that G′ has a 1-configuration with three
labels. We fix such a 1-configuration f ′ of G′. Then the (3i+1)st (i = 0, 1, . . . , d− 3)
vertex on the path (i.e., the vertices enclosed in the rectangle in the right-hand side
of the figure) must have the same label since, otherwise, the two vertices between the
(3i+ 1)st and (3i+ 4)th vertices cannot be dominated by all three labels. Hence, we
can construct a 1-configuration f of G with three labels from f ′ as follows: If a vertex
v in G has degree d ≤ 3, then label it with the label assigned to the corresponding
vertex in G′; otherwise (i.e., if d ≥ 4), then label it with the label assigned to the
(3i+ 1)st (i = 0, 1, . . . , d− 3) vertex in the corresponding path.
Finally, we further transform graphs with degrees either 2 or 3 to cubic graphs.

Figure 4.5 illustrates the adaptor used in the transformation, and its three-labeling.
We use the following property, which can be proved by straightforward (but tedious),
exhaustive checking.

Property 2. In any 1-configuration of the adaptor in Figure 4.5 with three
labels,

1. the two vertices A′ and B′ have the same label, and
2. the two vertices A and B are not assigned the same label as A′ and B′.
Let G′ be a given graph with degrees either 2 or 3. To construct a cubic graph G′′

from G′, we replace each degree-2 vertex u with the adaptor by splitting u into two

242 S. FUJITA, M. YAMASHITA, AND T. KAMEDA

A A’ B’ B

Fig. 4.5. The adaptor used in the transformation from G′ to G′′ and its three-labeling.

adaptor

Fig. 4.6. Transformation from G′ to G′′.

vertices uA and uB and identifying uA with A′ and uB with B′. See Figure 4.6 for
an illustration. It is easy to show that G′′ is cubic.
By using Property 2, we can easily show that G′ has a 1-configuration with three

labels if and only if G′′ has a 1-configuration with three labels.
Now we conclude that 3SAT is polynomially transformable to the problem of

testing if D1(G) ≥ 3 for cubic graphs G.
Theorem 4.4. The problem of testing if D1(G) ≥ 3 for cubic graphs G is NP-

complete, or equivalently, the problem of testing if D1(G) = 2 for cubic graphs G, is
co-NP-complete.

5. 2-configurations for cubic graphs. In the previous section, we proved that
testing if D1(G) = 2 is co-NP-complete, which implies that there are infinitely many
cubic graphs with D1(G) = 2. The objective of this section is to show that D2(G) ≥ 5
holds for any cubic graph G. We start with the investigation of 2-configurations for
cycles and proceed to that for cubic graphs.

5.1. Labeling cycles. This subsection considers 2-configurations for cycles and
shows that every cycle Cn of n vertices, except for n = 4 or 7, has a 2-configuration
with five labels. In what follows, we assume that the vertices in cycle Cn are arranged

A STUDY ON r-CONFIGURATIONS 243

Table 1
Case n = 3m.

Vertex 0 1 2 3 4 5
1st label a d c a d c
2nd label b e b e

Table 2
Case n = 3m+ 1.

Vertex 0 1 2 3 4 5 6 7 8 9 10 11 12
1st label a d c a a c b a d b a d c
2nd label b e d b e d c e e c b e

Table 3
Case n = 3m+ 2.

Vertex 0 1 2 3 4 5 6 7
1st label a d a b c a d c
2nd label b e c d e b e

in the order 0, 1, . . . , n − 1, and vertices n − 1 and 0 are connected by an edge. The
five labels we use are represented by {a, b, c, d, e}.

Theorem 5.1. A cycle Cn of order n has a 2-configuration with five labels if and
only if n �= 4, 7.

Proof. We consider the following three cases separately.

Case 1 [n = 3m]. Since D1(C3m) = 3 is obvious, we have D2(C3m) ≥ 6 by
Proposition 1.1. Table 1 shows an example of a 2-configuration for a cycle of length 6
with five labels. For m ≥ 1, in general, the first three columns can be repeated m/3
times.

Case 2 [n = 3m + 1]. C4 (m = 1) has no 2-configuration with five labels. To
see this, observe that four vertices can accommodate eight labels altogether, but the
size of any dominating set for C4 is at least 2, which implies that every label must
appear in at least two vertices. Hence, C4 can have a 2-configuration with at most
�8/2 = 4 < 5 labels. Similarly, we can show that C7 (m = 2) has no 2-configuration
with five labels. To see this, note that seven vertices can accommodate 14 labels
altogether, but the size of any dominating set for C7 is at least 3, which implies that
every label must appear in at least three vertices. So, C7 can have a 2-configuration
with at most �14/3 = 4 < 5 labels.
For m ≥ 3, repeating the last three columns of Table 2 (m− 3)/3 times produces

a 2-configuration for C3m+1 with five labels.

Case 3 [n = 3m + 2]. For m ≥ 1, repeating the last three columns of Table 3
(m− 1)/3 times produces a 2-configuration for C3m+2 with five labels.

In view of the above theorem, we call C4 and C7 special cycles. Note that, for all
larger cycles, except for C10, we can use a repetitive labeling pattern, {a, b}, {d, e},
{c}, to realize a 2-configuration with five labels. This fact will be used in the proof
of Lemma 5.3 below.

5.2. Labeling cubic graphs. In this subsection, we show D2(G) ≥ 5 for any
cubic graph G. Without loss of generality, we may assume that the given cubic graph
G is connected and has more than four vertices, because the only cubic graph with
four vertices, K4, clearly has a 2-configuration with eight labels.

244 S. FUJITA, M. YAMASHITA, AND T. KAMEDA

e,c

a,b

d,e

c,d a,b

d,e

c

a,b
d,e

c,d a,b

a,b
c,e

Fig. 5.1. Five-labelings for C4 and C7 in graph G′.

First we consider the case where G has no bridges.3 It is well known that any
cubic graph has an even number of vertices, and any bridgeless cubic graph G is
decomposable into a 2-factor and a 1-factor [16]. Fix an arbitrary factorization (into
a 1-factor and a 2-factor) of G. If the 2-factor consists of a single Hamiltonian cycle
Cn, then G has a 2-configuration with five labels, since (1) n �= 7 (n is even), (2) K4

is the only cubic graph of order 4, and (3) each nonspecial cycle Cn is five-labelable
by Theorem 5.1.
If the 2-factor consists of more than one cycle, consider a minimal (in terms of

the number of edges) connected subgraph G′ of G constructed from G by repeatedly
removing a matching edge (i.e., an edge forming the 1-factor) as long as the resulting
graph does not become disconnected. We call each edge in the 1-factor (of G) remain-
ing in G′ a supporting edge. In the following, we construct a 2-configuration for G′

with five labels. Since G′ is a subgraph of G, the labeling is also a 2-configuration for
G with five labels.
A vertex u in a graph G with a five-labeling function f is said to be unsaturated,

if

| ∪w∈NG[u] f(w)| ≤ 4,
where NG[u] was defined in subsection 3.1. If w ∈ NG[u], we say that each label in
f(w) dominates the vertex u.
By Theorem 5.1, any nonspecial cycle Cm has a 2-configuration with five labels.

Further, for any given vertex v and two labels a, b, clearly, we can label Cm with five
labels in such a way that a and b are assigned to v. Unfortunately, special cycles, C4

and C7, have no 2-configuration with five labels. However, we can label them in such
a way that all but one vertex is unsaturated. For example, if we ignore the “handles”
of the two graphs in Figure 5.1, they represent five-labelings for the special cycles,
C4 and C7, respectively. Note that only the vertex labeled by “c,d” is unsaturated in
each cycle. Also, three (out of five) labels dominate these vertices (if the handles are
ignored).
Consider a graph consisting of two special cycles connected by a bridge. It is

easy to see that any such graph has a 2-configuration with five labels. See Figure 5.2
for an example. In Figure 5.2, the two end vertices of the bridge “borrow” missing
labels from each other. In general, consider a 2-configuration with five labels, C, for
a graph consisting of two components connected by a bridge, such that, if the bridge
is removed, at least one of the end vertices of the bridge becomes unsaturated within
the component to which it belongs. In this case, we say that the two components

3A bridge is an edge whose removal disconnects the graph.

A STUDY ON r-CONFIGURATIONS 245

a,b
d,e

c,d

c,e

a,bd,e

c

a,b

a,e

c,d

b,e

Fig. 5.2. Complementary labeling for two special cycles connected by a bridge.

have complementary labeling in C. We will make use of complementary labeling in
the following algorithm.

Algorithm LABEL.
Input: Bridgeless cubic graph G.
Output: A 2-configuration for G with five labels.

1. Factor G into a 2-factor and a 1-factor.
2. Remove an edge belonging to the 1-factor if it does not disconnect the graph.
Repeat this operation as long as it is possible, and name the resulting graph
G′.

3. Coalesce all vertices in each cycle of G′ into a single vertex, and call the
resulting tree T . Fix a vertex in T as its root.

4. Label the cycle Cm in G
′ corresponding to the root of T as follows: Let u be

any vertex in Cm incident to a supporting edge {u, v}. If Cm is not special,
label it using an arbitrary 2-configuration with five labels. If Cm is special,
label it in such a way that u becomes the only unsaturated vertex. In either
case, let a and b be the labels that are assigned to u and let the labels that
do not dominate u, if any, belong to {d, e}. We now consider that the root of
T has been “processed.”

5. While there is a vertex of T which has not been processed do
(a) Pick an unprocessed vertex of T whose parent has been processed, and
let Cm be the cycle in G

′ that corresponds to this vertex. Let {u, v} be
the supporting edge such that u and v belong to the cycle corresponding
to the parent and Cm, respectively.

(b) Let a and b be the labels that have been assigned to u and let the labels
that do not dominate u, if any, belong to {d, e}. If Cm is special, label
it in such a way that v becomes the unsaturated vertex labeled by d and
e and not dominated by a and b. Otherwise, use a 2-configuration for
Cm with five labels such that v is labeled by d and e. The vertex of T
representing Cm has now been processed.

Since each step of LABEL can be implemented in polynomial time, we have proved
the following lemma.

Lemma 5.2. Given any bridgeless cubic graph G, Algorithm LABEL finds a
2-configuration for G with five labels in polynomial time.

Next we consider the general case where the given cubic graph may contain

246 S. FUJITA, M. YAMASHITA, AND T. KAMEDA

x

y

x

u

B B*

u1 v

wu2y

Fig. 5.3. Construction of B∗ from B.

bridges. The proof of the following lemmas presented below.

Lemma 5.3. Let B be any maximal biconnected component of a cubic graph G.
We can five-label B in such a way that

(a) every unsaturated vertex u in it is incident to a bridge in G, and
(b) at most two (out of five) labels do not dominate u.

For the time being, we assume that the above lemma is correct and present an
algorithm for finding a 2-configuration with five labels, which is a modification of
LABEL. We use maximal biconnected components and bridges instead of cycles and
supporting edges, respectively. We construct a tree T from G by coalescing all vertices
in each maximal biconnected component into a single vertex. We pick an arbitrary
vertex of T as its root and label the corresponding biconnected component as stated
in Lemma 5.3.

Suppose now that we are labeling a maximal biconnected component B repre-
sented by a vertex vB in T , such that the biconnected component A represented by
vB ’s parent, vA, has already been labeled. Let {u, v} be the bridge connecting A
and B such that u and v belong to A and B, respectively. Let a and b be the labels
assigned to u, and, if u is unsaturated, the labels not dominating u belong to the set
{d, e}. (If u is saturated, we take two arbitrary labels as d and e.) We label B in such
a way that (1) c and d are assigned to v, (2) every unsaturated vertex is incident to
a bridge, and (3) if v is unsaturated, the labels not dominating v belong to the set
{a, b}. This is always possible according to Lemma 5.3. It is easy to see that, once
all vertices are labeled as above, the resulting labeling is a 2-configuration for G with
five labels.

Proof of Lemma 5.3. We modify B to create a cubic graph B∗. Let k be the
number of bridges to which B is incident. First consider the case where k ≥ 2.
We prepare two copies of B and connect them by introducing a set of edges, each
connecting two copies of the same degree-2 vertex in B. The resulting graph B∗ is
clearly cubic and bridgeless, so, by Lemma 5.2, it has a 2-configuration f with five
labels. It is not difficult to see that f restricted to a copy of B can be made to satisfy
the conditions of Lemma 5.3.

Next, consider the case k = 1. Let u be the unique degree-2 vertex of B, and x
and y be the two vertices adjacent to u. (See the graph on the left in Figure 5.3.)
From B, we construct a new cubic graph B∗ by splitting u into two vertices, u1 and
u2, and by introducing two vertices, v and w, (and a few edges) as illustrated in
Figure 5.3.

Graph B∗ is clearly cubic and bridgeless. Therefore, we can decompose B∗ into

A STUDY ON r-CONFIGURATIONS 247

Table 4
A five-labeling for B∗.

Vertex x u1 w u2 v
1st label c a b c a
2nd label d b e d e

Table 5
A five-labeling for B∗.

Vertex x u1 w v u2 y z
1st label a a c d a b d
2nd label c b e b c e

a 2-factor and a 1-factor and apply LABEL. We consider two cases.
Case 1. Edge e1 = {u1, x} belongs to the 1-factor. In this case e2 = {u2, y} and

{v, w} also belong to the 1-factor. In step 2 of LABEL, if we remove e2 and {v, w},
e1 becomes a supporting edge, and the two remaining edges incident to y belong to
the 2-factor. Based on the above decomposition, we can find a 2-configuration for B∗

with five labels. See Table 4 for an example, which was obtained after making the
cycle (u1, w, u2, v) the root of T in step 3 of LABEL.

x may be unsaturated, since e1 is a supporting edge, but y is saturated, since it
is not incident to a supporting edge. (Label assignment to y is not shown in Table 4.)
We can now find a labeling for B satisfying the conditions of Lemma 5.3 as follows:
Label every vertex in B, except u, with exactly the same labels as the corresponding
vertex in B∗, and label u with the same two labels as assigned to u1. In the resulting
labeling for B, u is unsaturated, being not dominated by e.

Case 2. Edge e1 belongs to the 2-factor. In this case the cycle, C, of the 2-factor
containing e1 also contains the edges (u1, w), (w, v), (v, u2), and e2. In the case where
C is the special cycle of length 7, Table 5 shows a possible 2-configuration for B∗ with
five labels that assigns the same two labels, a and b, to both u1 and u2.
Note that labels {d, e} do not dominate u1. We can now find a labeling for B

satisfying the conditions of Lemma 5.3 as follows: Label every vertex in B, except u,
with exactly the same labels as the corresponding vertex in B∗, and label u with the
same two labels as assigned to u1.
If C is a larger cycle, then we can always assign {a, b} to u1 and u2, {d, e} to

w, and {c} to v, since the pattern of {a, b},{d, e},{c} is repeated in Tables 1, 2,
and 3. If C is of length 10, then {a, b},{d, e},{c, d} can be assigned instead to u1

(and u2), w, and v, respectively (see columns 0–3 of Table 2). This completes the
proof.
Now, we can state the following theorem.
Theorem 5.4. Any cubic graph has a 2-configuration with five labels, and such

a labeling can be found in polynomial time.
Corollary 5.5. Any cubic graph has an r-configuration with �5r/2 labels, and

such a labeling can be found in polynomial time.
Proof. By Proposition 2.4, if r is odd,

Dr(G) ≥
(
r − 1
2

)
D2(G) +D1(G) = (5/2)(r − 1) + 2 = (5/2)r − 1/2,

and if r is even,

Dr(G) ≥ r

2
D2(G) = (5/2)r.

248 S. FUJITA, M. YAMASHITA, AND T. KAMEDA

Fig. 6.1. A cubic graph that has no 2-configuration with six labels.

6. Concluding remarks. A problem of interest still open is determining the
complexity of finding a 2-configuration for a given cubic graph with six or seven labels.
One promising approach to the six-labeling problem would be to extend the argument
in section 5 in such a way that we take into account labelings created from T whose
vertices correspond to cycles with chords. We conjecture that the approach will work
well for sufficiently large cubic graphs. More specifically, we conjecture that any
connected cubic graph, except for some small special graphs, has a 2-configuration
with six labels. Figure 6.1 illustrates an exception we have found so far. To see that
the graph has no 2-configuration with six labels, observe that there are at most 16
places to label, but the size of any dominating set for the graph is at least 3.

Another open problem is examining the effect of increasing r more generally, e.g.,
to give a nontrivial lower bound on the number of labels which is assignable within
the constraint of r-configuration for r ≥ 2.

Appendix A. Proof of Lemma 3.3. We construct a set M of 3-sets so as to
satisfy the conditions of the lemma. Set M is partitioned into three subsets M1,M2,
and M3 according to their intended functions. An element a in a 3-set in Mi (for
i = 1, 2, or 3) is said to be internal with respect to Mi if Mj (j �= i) contains no
3-set containing a; otherwise, it is said to be external. In our construction, we use the
following eight disjoint sets of external elements:

X =
⋃n
i=1

⋃m
j=1{xi[j]}, X̃ =

⋃n
i=1

⋃m
j=1{x̃i[j]},

Y =
⋃n
i=1

⋃m
j=1{yi[j]}, Ỹ =

⋃n
i=1

⋃m
j=1{ỹi[j]},

X ′ =
⋃n
i=1

⋃m
j=1{x′

i[j]}, X̃ ′ =
⋃n
i=1

⋃m
j=1{x̃′

i[j]},
Y ′ =

⋃n
i=1

⋃m
j=1{y′i[j]}, Ỹ ′ =

⋃n
i=1

⋃m
j=1{ỹ′i[j]}.

Note that each set is of size mn.

Each 3-set in M1 corresponds to a variable in U = {u1, . . . , un} and consists of
one external and two internal elements. For k = 1,2,3, and 4, let Ak = {aki [j] | 1 ≤ i ≤
n, 1 ≤ j ≤ m} be a set of internal elements with respect to M1. Note that |Ak| = mn
for each k. Set M1 is then defined as follows:

M1 = P t ∪ P f ∪Qt ∪Qf ,

A STUDY ON r-CONFIGURATIONS 249

where

P t =
⋃n
i=1

⋃m
j=1

{{x̃i[j], a1
i [j], a

2
i [j]}

}
,

P f =
⋃n
i=1

⋃m−1
j=1

{{xi[j], a1
i [j + 1], a

2
i [j]}

} ∪ {{xi[m], a1
i [1], a

2
i [m]}

}
,

Qt =
⋃n
i=1

⋃m
j=1

{{ỹi[j], a3
i [j], a

4
i [j]}

}
,

Qf =
⋃n
i=1

⋃m−1
j=1

{{yi[j], a3
i [j + 1], a

4
i [j]}

} ∪ {{yi[m], a3
i [1], a

4
i [m]}

}
.

Since A′ = A1 ∪ A2 is also a set of internal elements, A′ is exactly covered by a
matchingM ′ (⊆M) only if, for any 1 ≤ i ≤ n,M ′ contains all 3-sets intersecting with
{xi[j] | 1 ≤ j ≤ m} or M ′ contains all 3-sets intersecting with {x̃i[j] | 1 ≤ j ≤ m}. A
similar statement holds for A3 ∪A4. (It implies that an exact cover corresponds to a
consistent assignment to variables, i.e., all occurrences of a variable should take the
same value.)
Each 3-set inM2 corresponds to a single clause cj ∈ C. We associate the external

element ∗i[j] with variable ui and introduce new internal elements b1[j] and b2[j] for
1 ≤ j ≤ m. Let Bk = {bk[j] | 1 ≤ j ≤ m} for k = 1, 2. Note that |Bk| = m for each
k. Subset M2 is defined as follows:

M2 = Rt ∪Rf ,

where

Rt =
{{xi[j], b1[j], x′

i[j]}, {yi[j], b2[j], y′i[j]} | ui ∈ cj
}
,

Rf =
{{x̃i[j], b1[j], x̃′

i[j]}, {ỹi[j], b2[j], ỹ′i[j]} | ũi ∈ cj
}
.

Note that the set B1 ∪B2 is exactly covered by some M ′ (⊆M) only if all clauses in
C are satisfiable.
Set M3 is used to associate a satisfiable assignment of the given formula with an

exact cover of the underlying set
⋃

{a,b,c}∈M{a, b, c}. M3 is defined as

M3 = O1 ∪O2,

where

O1 =
⋃n
i=1

⋃m
j=1

⋃mn−m
�=1

{{xi[j], t1[�], yi[j]}, {x̃i[j], t1[�], ỹi[j]}
}
,

O2 =
⋃n
i=1

⋃m
j=1

⋃2mn−m
�=1

{{x′
i[j], t

2[�], y′i[j]}, {x̃′
i[j], t

2[�], ỹ′i[j]}
}
.

Let T 1 = {t1[�] | 1 ≤ � ≤ mn −m} and T 2 = {t2[�] | 1 ≤ � ≤ 2mn −m}. T1 ∪ T2

is a set of internal elements with respect to M3. Note that |T 1| = mn − m and
|T 2| = 2mn−m.
By the above construction, it is easy to see that M = M1 ∪M2 ∪M3 is a set of

3-sets such that (1) there is a subsetM ′ ofM which exactly covers
⋃

{a,b,c}∈M{a, b, c}
if and only if C is satisfiable and (2) for any {a, b, c}, {a, b, d} ∈ M , if {x, y, c} ∈ M
for some x, y, then {x, y, d} is also in M .
Finally, let us show that the underlying set

⋃
{a,b,c}∈M{a, b, c} is partitioned into

three subsets S1, S2, and S3 of equal size, such that M ⊆ S1 × S2 × S3. Let

S1 = X ∪ X̃ ∪ Y ′ ∪ Ỹ ′ ∪A4,

S2 = T 1 ∪ T 2 ∪A1 ∪A3 ∪B1 ∪B2,

S3 = X ′ ∪ X̃ ′ ∪ Y ∪ Ỹ ∪A2.

250 S. FUJITA, M. YAMASHITA, AND T. KAMEDA

Clearly,
⋃

{a,b,c}∈M{a, b, c} = S1 ∪ S2 ∪ S3 and M ⊆ S1 × S2 × S3. Since each set of

external elements has size mn and |Ak| = mn for each k, |S1| = |S2| = 4mn+mn =
5mn. Further, since |T 1| = mn −m, |T 2| = 2mn −m, and |Bk| = m for each k, we
have |S3| = (3mn− 2m) + 2mn+ 2m = 5mn. Hence the lemma follows.

Appendix B. Proof of Lemma 3.4. We construct a graph G = (V,E) so as
to satisfy the conditions of the lemma. Without loss of generality, let X = Y = Z =
{1, 2, . . . ,m}. Let U = X × Y × Z. In what follows, we denote an element of U as
(x, y, z), where x ∈ X, y ∈ Y , and z ∈ Z. Let UX , UY , and UZ be three copies of U ,
and X ′, Y ′, and Z ′ be copies of X,Y , and Z, respectively. Define the set of vertices
as follows:

V = X ∪ Y ∪ Z ∪X ′ ∪ Y ′ ∪ Z ′ ∪ UX ∪ UY ∪ UZ .

We connect vertices in V as follows:
• {Connections among vertices in X ∪ Y ∪ Z ∪X ′ ∪ Y ′ ∪ Z ′.}
Any two vertices in X ∪ X ′ (respectively, Y ∪ Y ′, Z ∪ Z ′) are connected by
an edge.
• {Connections among vertices in UX ∪ UY ∪ UZ .}

– Any (i, j, k) and (i′, j′, k) in UZ are “not” connected by an edge if and
only if both {i, j, k} and {i′, j′, k} are in M , and i′ = i or j′ = j.

– Any (i, j, k) and (i, j′, k′) in UX are “not” connected by an edge if and
only if both {i, j, k} and {i, j′, k′} are in M , and j′ = j or k′ = k.

– Any (i, j, k) and (i′, j, k′) in UY are “not” connected by an edge if and
only if both {i, j, k} and {i′, j, k′} are in M , and k′ = k or i′ = i.

– Any (i, j, k) ∈ UZ and (i, j
′, k) ∈ UX are connected by an edge if and

only if j′ �= j and both {i, j, k} and {i, j′, k} are in M .
– Any (i, j, k) ∈ UX and (i, j, k

′) ∈ UY are connected by an edge if and
only if k′ �= k and both {i, j, k} and {i, j, k′} are in M .

– Any (i, j, k) ∈ UY and (i
′, j, k) ∈ UZ are connected by an edge if and

only if i′ �= i and both {i, j, k} and {i′, j, k} are in M .
See Figure B.1 for illustration.
• {Other connections.} For any {i, j, k} ∈ M , let X̂∗,j,k denote the set of all
vertices i′ ∈ X such that {i′, j, k} ∈ M , and define Ŷi,∗,k, Ẑi,j,∗, X̂ ′

∗,j,k, Ŷ
′
i,∗,k,

and Ẑ ′
i,j,∗, in a similar way.

– Let (i, j, k) be a vertex in UZ . If {i, j, k} ∈ M , then connect it with all
vertices in

X̂∗,j,k ∪ (X ′ \ X̂ ′
∗,j,k) ∪ Ŷ ′

i,∗,k ∪ (Y \ Ŷi,∗,k).
If {i, j, k} /∈M , then connect it with all vertices in Y ∪ Z ′.

– Let (i, j, k) be a vertex in UX . If {i, j, k} ∈ M , then connect it with all
vertices in

Ŷi,∗,k ∪ (Y ′ \ Ŷ ′
i,∗,k) ∪ Ẑ ′

i,j,∗ ∪ (Z \ Ẑi,j,∗).
If {i, j, k} /∈M , then connect it with all vertices in Z ∪X ′.

– Let (i, j, k) be a vertex in UY . If {i, j, k} ∈ M , then connect it with all
vertices in

Ẑi,j,∗ ∪ (Z ′ \ Ẑ ′
i,j,∗) ∪ X̂ ′

∗,j,k ∪ (X \ X̂∗,j,k).

If {i, j, k} /∈M , then connect it with all vertices in X ∪ Y ′.

A STUDY ON r-CONFIGURATIONS 251

(i,j,k) (i,j,k)

UZ

(i,j’,k) (i,j,k’) (i’,j,k) (i,j,k’)

(i,j,k)

(i,j’,k) (i’,j,k)

UX

UY

Fig. B.1. The connections among vertices in UZ ∪ UX ∪ UY .

See Figures B.2 and B.3 for illustration.

First, we claim that graph G is regular.

Lemma B.1. Graph G is a (|V |/3− 1)-regular graph with |V | vertices.
Proof. Any vertex i in X connects with m − 1 vertices in X and m vertices in

X ′. Further, it connects with m3 −K vertices in UY and K vertices in UZ , where K
is the number of vertices (i′, j′, k′) ∈ UY such that i ∈ X̂∗,j′,k′ . Hence, each vertex in
X is connected with m3 + 2m− 1 = |V |/3− 1 vertices. A similar argument holds for
the vertices in Y ∪ Z ∪X ′ ∪ Y ′ ∪ Z ′.
Let (i, j, k) be a vertex in UZ . If {i, j, k} /∈ M , then it connects with m3 − 1

vertices in UZ and all (i.e., 2m) vertices in Y ∪ Z ′. Hence, in total, it connects
with m3 + 2m − 1 = |V |/3 − 1 vertices. If {i, j, k} ∈ M , then it connects with
m3 − |X̂∗,j,k| − |Ŷi,∗,k|+ 1 vertices in UZ , |Ŷi,∗,k| − 1 vertices in UX , and |X̂∗,j,k| − 1
vertices in UY ; i.e., it connects with m3 − 1 vertices in UX ∪ UY ∪ UZ . In addition,
it connects with |X̂∗,j,k| vertices in X, m − |X̂ ′

∗,j,k| = m − |X̂∗,j,k| vertices in X ′,
|Ŷ ′
i,∗,k| = |Ŷi,∗,k| vertices in Y ′, and m − |Ŷi,∗,k| vertices in Y . Hence, in total, it

connects with (m3 − 1) + 2m = |V |/3− 1 vertices. A similar argument holds for the
vertices in UX ∪ UY .

Lemma B.2. For any {i, j, k} /∈ M , the three copies of (i, j, k) in UX , UY , and
UZ form a dominating set for graph G.

Proof. The copy of (i, j, k) in UY dominates UY ∪X ∪ Y ′, the copy of (i, j, k) in
UZ dominates UZ ∪ Y ∪ Z ′, and the copy of (i, j, k) in UX dominates UX ∪ Z ∪X ′.
Hence the lemma follows.

Lemma B.3. For any {i, j, k} ∈ M , the three copies of (i, j, k) in UZ , UX , and
UY form a dominating set for graph G.

Proof. Recall that for any {a, b, c}, {a, b, d} ∈ M , if {x, y, c} ∈ M for some x, y,

252 S. FUJITA, M. YAMASHITA, AND T. KAMEDA

UZ

UX

Y X

Z

Y’ X’

Z’

(i,j,k)

UY

Fig. B.2. Other connections in the case where {i, j, k} ∈M .

then {x, y, d} ∈ M . Thus, for any i′′ ∈ X̂∗,j,k, j′′ ∈ Ŷi,∗,k, and k′′ ∈ Ẑi,j,∗, the 3-set
{i′′, j′′, k′′} is an element of M . Hence, the copy of (i, j, k) in UZ dominates

{X̂∗,j,k ∪ (Y \ Ŷi,∗,k)} ∪ {Ŷ ′
i,∗,k ∪ (X ′ \ X̂ ′

∗,j,k)},
the copy of (i, j, k) in UX dominates

{Ŷi,∗,k ∪ (Z \ Ẑi,j,∗)} ∪ {Ẑ ′
i,j,∗ ∪ (Y ′ \ Ŷ ′

i,∗,k)},
and the copy of (i, j, k) in UY dominates

{Ẑi,j,∗ ∪ (X \ X̂∗,j,k)} ∪ {X̂ ′
∗,j,k ∪ (Z ′ \ Ẑ ′

i,j,∗)};
i.e., the 3-set consisting of the three copies of (i, j, k) is a dominating set for X ∪ Y ∪
Z ∪ X ′ ∪ Y ′ ∪ Z ′. The 3-set is also a dominating set for UX ∪ UY ∪ UZ , since any
vertex (i′, j, k) (respectively, (i, j′, k)) in UZ which is not dominated by the copy of
(i, j, k) in UZ is dominated by the copy of (i, j, k) in UY (respectively, UX), and a
similar argument holds for vertices in UX ∪ UY .
By the above two lemmas, UX ∪ UY ∪ UZ can be partitioned into m

3 (= |UX |)
dominating 3-sets, regardless of the existence of an exact cover M ′ ⊂M of M .

Lemma B.4. Let {i, j, k} be a subset of X ∪Y ∪Z ∪X ′ ∪Y ′ ∪Z ′. If M ⊂ U and
{i, j, k} is a dominating set for G, then {i, j, k} ⊂ X∪Y ∪Z or {i, j, k} ⊂ X ′∪Y ′∪Z ′.

Proof. Let {i, j, k} be any dominating set for G. By Lemma B.1, any dominating
3-set for G is perfect. We therefore can assume, without loss of generality, that
i ∈ X ∪X ′, j ∈ Y ∪ Y ′, and k ∈ Z ∪ Z ′.
Suppose that {i, j, k} �⊆ X ∪ Y ∪ Z and {i, j, k} �⊆ X ′ ∪ Y ′ ∪ Z ′. If i ∈ X, then

j must be in Y , since any element (i, j, k) ∈ UY such that {i, j, k} /∈ M is connected

A STUDY ON r-CONFIGURATIONS 253

UZ

UX

Y X

Z

Y’ X’

Z’

(i,j,k)

UY

Fig. B.3. Other connections in the case where {i, j, k} �∈M .

with all vertices in X ∪ Y ′. If j ∈ Y , then since any element (i, j, k) ∈ UZ such that
{i, j, k} /∈ M is connected with all vertices in Y ∪ Z ′, z must be in Z, which is a
contradiction. Similarly, if i ∈ X ′, then k must be in Z ′, and if k ∈ Z ′, then j must
be in Y ′, again, which is a contradiction.

Lemma B.5. A 3-set {i, j, k} ⊂ X ∪ Y ∪Z is a dominating set for G if and only
if {i, j, k} ∈M .

Proof. If M = U (= X × Y × Z), then the lemma is obviously correct. So we
assume M ⊂ U .
Suppose that {i, j, k} ∈ M . Clearly, the 3-set {i, j, k} ⊂ X ∪ Y ∪ Z dominates

X∪Y ∪Z. Let Û = {(x, y, z) ∈ U | x ∈ X̂∗,j,k, y ∈ Ŷi,∗,k, z ∈ Ẑi,j,∗}. By definition, the
copy of Û in UY is dominated by vertex k ∈ Z and the copy of U\Û in UY is dominated
by vertex i ∈ X. Similarly, the copy of Û in UZ (respectively, UX) is dominated by
vertex i ∈ X (respectively, j ∈ Y) and the copy of U \ Û in UY (respectively, UX) is
dominated by vertex j ∈ Y (respectively, k ∈ Z). Hence, {i, j, k} ⊂ X ∪ Y ∪ Z is a
dominating set for G.
Suppose that there is a dominating set {i, j, k} for G such that {i, j, k} /∈M . By

Lemma B.4, without loss of generality, we may assume that {i, j, k} ⊂ X ∪ Y ∪ Z.
Let {i, j′, k′} be an element of M containing i. If {i, j′, k} is not an element of

M , then vertex (i, j′, k′) ∈ UY is not dominated by any vertex in {i, j, k}. Hence
{i, j′, k} must be an element of M . If {i, j, k′} is not an element of M , then vertex
(i, j′, k′) ∈ UX is not dominated by any vertex in {i, j, k}. Hence {i, j, k′} must
be an element of M . Since {i, j′, k′}, {i, j′, k}, and {i, j, k′} are elements in M , by
assumption, {i, j, k} must be an element of M , which is a contradiction.
By the above lemmas, we can conclude that D1(G) = m3+2m if and only if there

is an exact cover M ′ ⊂M . Hence the lemma follows.

254 S. FUJITA, M. YAMASHITA, AND T. KAMEDA

REFERENCES

[1] M. J. Atallah, G. K. Manacher, and J. Urrutia, Finding a minimum independent domi-
nating set in a permutation graph, Discrete Appl. Math., 21 (1988), pp. 177–183.

[2] D. W. Bange, A. E. Barkauskas, and P. J. Slater, Efficient dominating sets in graphs,
in Applications of Discrete Mathematics, Proceedings of the Third Conference on Discrete
Mathematics, Clemson, SC, May 14–16, 1986, R. D. Ringeisen and F. S. Roberts, eds.,
SIAM, Philadelphia, PA, 1988, pp. 189–199.

[3] A. A. Bertossi, On the domatic number of interval graphs, Inform. Process. Lett., 28 (1988),
pp. 275–280.

[4] N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B, 15 (1973), pp. 289–296.
[5] G. J. Chang, C. P. Rangan, and S. R. Coorg, Weighted Independent Perfect Domination

on Cocomparability Graphs, Tech. report 93-24, DIMACS, Rutgers University, Piscataway,
NJ, 1993.

[6] E. J. Cockayne and S. T. Hedetniemi, Optimal domination in graphs, IEEE Trans. Circuits
Systems, CAS-22 (1975), pp. 855–857.

[7] M. Farber, Domination, independent domination, and duality in strongly chordal graphs,
Discrete Appl. Math., 7 (1984), pp. 115–130.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman and Company, San Francisco, 1979.

[9] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs,
Marcel Dekker, New York, 1998.

[10] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Domination in Graphs: Advanced
Topics, Marcel Dekker, New York, 1998.

[11] I. Holyer, The NP-completeness of some edge-partition problems, SIAM J. Comput., 10
(1981), pp. 713–717.

[12] R. W. Irving, On approximating the minimum independent dominating set, Inform. Process.
Lett., 37 (1991), pp. 197–200.

[13] M. Livingston and Q. F. Stout, Perfect dominating sets, Congress. Numer., 79 (1990), pp.
187–203.

[14] T.-L. Lu, P.-H. Ho, and G. J. Chang, The domatic number problem in interval graphs, SIAM
J. Discrete Math., 3 (1990), pp. 531–536.

[15] L. R. Matheson and R. E. Tarjan, Dominating Sets in Planar Graphs, Tech. report TR-
461-94, Dept. of Computer Science, Princeton University, Princeton, NJ, 1994.

[16] J. Petersen, Die Theorie der regulären Graphen, Acta Math., 15 (1891), pp. 193–220.
[17] A. S. Rao and C. P. Rangan, Linear algorithm for domatic number problem on interval

graphs, Inform. Process. Lett., 33 (1989), pp. 29–33.
[18] C. C. Yen and R.C.T. Lee, The weighted perfect domination problem, Inform. Process. Lett.,

35 (1990), pp. 295–299.

APPROXIMATING MINIMUM SUBSET FEEDBACK SETS IN
UNDIRECTED GRAPHS WITH APPLICATIONS∗

GUY EVEN† , JOSEPH (SEFFI) NAOR‡ , BARUCH SCHIEBER§ , AND LEONID ZOSIN¶

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 2, pp. 255–267

Abstract. Let G = (V,E) be a weighted undirected graph where all weights are at least one.
We consider the following generalization of feedback set problems. Let S ⊂ V be a subset of the
vertices. A cycle is called interesting if it intersects the set S. A subset feedback edge (vertex) set
is a subset of the edges (vertices) that intersects all interesting cycles. In minimum subset feedback
problems the goal is to find such sets of minimum weight. This problem has a variety of applications,
among them genetic linkage analysis and circuit testing. The case in which S consists of a single
vertex is equivalent to the multiway cut problem, in which the goal is to separate a given set of
terminals. Hence, the subset feedback problem is NP-complete and also generalizes the multiway cut
problem. We provide a polynomial time algorithm for approximating the subset feedback edge set
problem that achieves an approximation factor of two. This implies a ∆-approximation algorithm
for the subset feedback vertex set problem, where ∆ is the maximum degree in G. We also consider
the multicut problem and show how to achieve an O(log τ∗) approximation factor for this problem,
where τ∗ is the value of the optimal fractional solution. To achieve the O(log τ∗) factor we employ
a bootstrapping technique.

Key words. approximation algorithms, feedback vertex set, feedback edge set, subset feedback
set, combinatorial optimization, multicut

AMS subject classifications. 68Q25, 68R10, 05C85, 68W25

PII. S0895480195291874

1. Introduction.

1.1. Problem definition. Let G = (V,E) be an undirected graph, and suppose
that there is a weight function w associated with either the vertices or edges of G. A
feedback vertex set (fvs) is defined to be a set of vertices that intersects all cycles in
the graph. A feedback edge set (fes) is similarly defined. The weight of a feedback
set is defined to be equal to the sum of the weights of the elements in the set.

We define a natural generalization of the fvs and fes problems by restricting the
set of cycles that the feedback set should intersect. These cycles are called interesting
cycles. Let S ⊆ V be a set of special vertices. In this paper, a cycle is considered
to be interesting if it contains a special vertex. A feedback set in this case is called
a subset-fvs or subset-fes, depending on the version to be considered. We are
interested in computing a minimum weight subset feedback set.

∗Received by the editors September 13, 1995; accepted for publication (in revised form) November
22, 1999; published electronically April 6, 2000. A preliminary version of this paper appeared in
the Proceedings of the Fourth Israeli Symposium on Theory of Computing and Systems (ISTCS),
Jerusalem, Israel, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 78–88.

http://www.siam.org/journals/sidma/13-2/29187.html
†Department of Electrical Engineering – Systems, Tel-Aviv University, Ramat-Aviv, Tel-Aviv

69978, Israel (guy@eng.tau.ac.il). Part of this work was done while the author was supported by
Graduiertenkolleg “Effizienz und Komplexität von Algorithmen und Rechenanlagen,” Universität
des Saarlandes, Saarbrücken, Germany.

‡Computer Science Department, Technion, Haifa 32000, Israel (naor@cs.technion.ac.il). The re-
search of this author was supported in part by grant 92-00225 from the United States–Israel Bina-
tional Science Foundation (BSF), Jerusalem, Israel and by Technion V.P.R. Fund 120-905–promotion
of sponsored research.

§IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (sbar@watson.
ibm.com).

¶Computer Science Department, Technion, Haifa 32000, Israel (leon@cs.technion.ac.il). Current
address: NEC Research Institute, 4 Independence Way, Princeton, NJ 08540.

255

256 G. EVEN, J. NAOR, B. SCHIEBER, AND L. ZOSIN

1.2. Motivation. The problem of finding feedback sets in undirected graphs
arises in a variety of applications in genetics, circuit testing, artificial intelligence,
deadlock resolution, and analysis of manufacturing processes.

The motivation for our generalization to subset-fes and subset-fvs problems
is twofold. First, in some of the applications we may be interested only in cycles that
intersect a subset of the vertices and edges. Second, from the theoretical standpoint,
the subset feedback problem defines a full spectrum of feedback problems which are
categorized according to the cardinality of the set S. The two extreme points of this
spectrum are the feedback set problem, i.e., where S = V , and the case where |S| = 1
which turns out to be equivalent to the multiway cut problem, as demonstrated in
section 1.3. This paper provides a 2-approximation for the subset-fes problem, and
thus, we show that the approximation factor does not depend on the number of special
vertices.

We now describe the applicability of the subset feedback set problem to genetic
linkage.

Genetic linkage analysis. Genetic linkage is the phenomenon where alleles of dif-
ferent genes appear to be genetically coupled. The goal of genetic linkage is to quantify
this linkage by estimating the recombination fraction which denotes the probability
of a crossover occurring in a region of a specific chromosome of interest. The essence
of linkage analysis, which is routinely performed by geneticists, is to use family pedi-
grees in order to estimate parameters that determine whether a set of genes resides
on the same chromosome, what is the relative order of them on the chromosome, and
what is the approximate distance between them. This is important for, e.g., genetic
counseling and estimating changes in population genetics. An excellent treatment of
this subject can be found in [20].

Analysis of genetic linkage is an area where Bayesian networks can be naturally
applied [20]. Bayesian networks are useful knowledge representation schemes which
allow a wide spectrum of independence assumptions to be considered by a model
builder so that a practical balance can be established between computational needs
and adequacy of conclusions. For a complete exploration of this subject see [21].

Suppose that a pedigree (of one or more persons) is given. A pedigree can be
represented by a Bayesian network where each vertex is a random variable repre-
senting the genes under study. The problem of estimating the recombination fraction
translates to an updating problem in the Bayesian network representation of the pedi-
gree [21] which is essentially the computation of certain conditional probabilities. In
general, such computations are inefficient both in time and space, and therefore one
must resort to heuristics for the updating problem.

The connection between algorithms for the updating problem in Bayesian net-
works having specific topologies (e.g., when the number of cycles is small) and feedback
sets in undirected graphs was established by Bar-Yehuda et al. [1]. They show that
the running time of the conditioning algorithm [21] for the updating problem depends
exponentially on the weight of the feedback set computed in an undirected graph that
is derived from the Bayesian network. (See also Becker, Geiger, and Schäffer [4] who
discuss the usage of feedback vertex sets for efficient genetic linkage analysis.)

When considering Bayesian networks that are derived from pedigrees, the influ-
ence of distant ancestors on the genotype of a newborn is negligible. This means
that Pearl’s conditioning algorithm [21] can deal with cycles induced by vertices cor-
responding to distant ancestors by arbitrarily assigning them a genotype, until all
such cycles are eliminated. Thus, the cost of eliminating such cycles is very cheap

SUBSET FEEDBACK SETS IN UNDIRECTED GRAPHS 257

since there is no longer a need to perform an exhaustive search. We note that the
arbitrariness of the selected genotype has little effect on the likelihood computations.
Thus, the complexity of estimating the recombination fraction is dominated by the
weight of the subset feedback set of the cycles that contain a vertex corresponding
to one of the recent generations. Such cycles are defined to be the interesting cycles
in the undirected graph derived from the Bayesian network. An example of a genetic
linkage analysis where only a subset of the cycles could be covered (but not a subset
feedback vertex set) appears in [5].

1.3. Hardness. Computing a minimum weight fvs is a classical NP-complete
problem, as shown by Karp in his seminal paper [17]. (See also [12].) This moti-
vated the search for polynomial time approximation algorithms. Bar-Yehuda et al. [1]
showed how to approximate the fvs problem by a factor of four in the unweighted
case; this bound was later extended to the weighted case and improved to two in [3, 2];
see also [7, 16]. In contrast, the fes problem can easily be solved in polynomial time
by observing that a minimum weight fes is the complement of a maximum weight
spanning tree in the graph.

The subset feedback set problem generalizes the multiway cut problem, defined
as follows. Let T be a set of terminals in a (weighted) graph. A multiway cut is
a set of edges (or vertices) whose removal disconnects every pair of terminals in T .
Finding a minimum weight multiway cut problem is known to be NP-complete [8].
The multiway cut problem is equivalent to the subset feedback set problem with a
single special vertex. This equivalence is obtained by connecting all terminals in T
to a special vertex s. (In the vertex version s has infinite weight, and in the edge
version the edges adjacent to s have infinite weight.) Any cycle passing through s
corresponds to a path connecting two terminals in T , and thus, a subset feedback set
with respect to s is also a multiway cut of T (and vice versa). This establishes that
the subset feedback set problem, in both edge and vertex versions, is NP-complete,
even for the case where |S| = 1.

1.4. Our results. Having established that the subset feedback set problem is
NP-complete, even for the case of a single special vertex, we consider approximation
algorithms.

In section 2, we present our main result: For any weight function on the edges,
the subset-fes problem can be approximated in polynomial time by a factor of
two. The algorithm itself is very simple and consists of successive computations of
minimum cuts. On the other hand, the proof that this algorithm indeed achieves
a 2-approximation factor requires a delicate analysis. In the analysis, capacities of
minimum cuts are represented by flow paths. When new minimum cuts are computed,
previous flow paths are updated according to the decomposition of the graph induced
by an optimal solution. Finally, a charging scheme relates the flow along the updated
flow paths to the capacity of an optimal solution.

In section 2.3, we show that applying the subset-fes algorithm to the subset-fvs
problem yields an approximation factor of ∆, where ∆ denotes the maximum de-
gree in the graph. Subsequent to our paper, Even, Naor, and Zosin [11] gave an
8-approximation algorithm for the subset-fvs problem. Thus, the ∆-approximation
factor is of interest only for graphs for which ∆ ≤ 8. However, we note that the algo-
rithm of [11] is computationally expensive, and therefore our result for the subset-fvs
problem might be of use to low degree graphs in general.

In section 3, we present a new technique called bootstrapping for enhancing the
approximation factor of the undirected multicut problem. Given k pairs of sources

258 G. EVEN, J. NAOR, B. SCHIEBER, AND L. ZOSIN

and sinks in an edge (vertex) weighted graph, a multicut is defined to be a set of
edges (vertices) that separates all source-sink pairs. The best approximation fac-
tor known for multicuts is O(log k) [13]. Assuming that all weights are at least
one, the bootstrapping technique improves the approximation factor for multicuts
to O(min{log k, log τ}), where τ∗ denotes the value of an optimal fractional multicut.
This technique is also applicable to the directed subset feedback set problem.

Feedback set problems fall into the category of covering problems and can be cast
in a “natural” way as an integer program, where there is an indicator variable for
each vertex or edge, and the requirement is that all interesting cycles are covered.
In section 4 we provide a simple example that shows that the integrality gap of this
integer program, i.e., the ratio between the integral and fractional optima for the
subset-fes and subset-fvs problems, can be as high as Ω(log |S|). This implies
that any technique that is based on rounding an optimal fractional solution for this
“natural” formulation of the problem to an integral one is doomed to yield a non-
constant approximation factor.

Note that the example presented in section 4 shows that the integrality gap for the
fvs and fes problems is Ω(log |V |). (Recall that the approximation factor achievable
for this problem is 2 [3, 2].) Interestingly, for the fvs problem, Chudak et al. [7] (see
also [16]) presented an alternative formulation of an integer program, for which the
integrality gap is at most two. The problem of finding an alternative integer program
for the subset-fes and subset-fvs problems for which the integrality gap is constant
is very challenging.

1.5. Prior work. Minimum weight feedback sets in directed graphs were con-
sidered in several papers [19, 23, 18, 9, 10]. Note that in the directed case, the vertex
and edge versions are equivalent. Seymour [23] showed that the integrality gap be-
tween the optimal fractional fvs and the integral optimal fvs in directed graphs
is O(log τ∗ log log τ∗) and can be Ω(log τ∗). In [9, 10] algorithms for approximat-
ing subset feedback sets in directed graphs that are based on Seymour’s techniques
were presented, achieving an O(min{log τ∗ log log τ∗, log |S| log log |S|}) approxima-
tion factor. Recently, Goemans and Williamson [15] considered a generalization of
the subset-fvs problem in undirected planar graphs. In particular, they presented a
9/4-approximation algorithm for the subset-fvs problem in undirected planar graphs
and for the fvs problem in directed planar graphs.

The multiway cut problem (in both edge and vertex versions) can be approximated
in polynomial time by a factor of 2− 1/|T | [8, 14]. The approximation algorithms for
the multiway cut problem do not translate into good approximation algorithms for the
subset feedback problems. The only vertex-multiway cut algorithm [14] is based on
the half-integrality of an optimal solution to a linear program that formulates the mul-
tiway cut problem as a covering problem. However, as discussed above, the integrality
gap of this linear programs for subset-fes and subset-fvs is Ω(log |S|). Hence, a
linear programming “rounding” scheme cannot yield a constant approximation factor.

The edge-multiway cut approximation algorithm presented by Dahlhaus et al. [8]
finds a multiway cut by computing a minimum cut from every terminal to the rest
of the terminals. The solution consists of all the cuts except for the “heaviest” cut.
An analogous algorithm for the subset-fes problem in which an (almost) optimal
feedback edge set is found independently for each special vertex yields an |S| − o(1)
approximation. For example, consider the “flower” graph depicted in Figure 1. Sup-
pose that the weight of each (vi, vi+1) edge is ε and that the weight of each (si, vj)
edge is one. A minimum weight feedback edge set with respect to si contains a single

SUBSET FEEDBACK SETS IN UNDIRECTED GRAPHS 259

v1

v2

v3

v4

v5

v6

v7

v8

s1

s4s5

s7

s6 s3

s2

s8

Fig. 1. A flower graph.

edge, either (vi, si) or (si, vi+1), and hence, the total weight of such feedback edge sets
equals eight (note that this is a minimal solution). On the other hand, a minimum
weight subset feedback edge set contains only one edge of weight one and seven edges
of weight ε.

2. Approximating the subset feedback set problem. In this section we
present an approximation algorithm for the subset-fes problem. In section 2.3 we
apply this algorithm to the subset-fvs problem and obtain improved results for some
special cases.

Let G = (V,E) be an undirected graph with a weight function w : E → R. For a
set of edges E′, let w(E′) denote the total weight of the edges in E′. Let the set of

special vertices be S = {s1, . . . , sk}. Define Vi
�
= V − {si, . . . , sk}. (Note that V1 is

the set of nonspecial vertices, Vi ⊂ Vi+1, and that Vk+1 = V .)
We start with some simplifying assumptions. Without loss of generality, assume

that G is connected and that for each special vertex, the following holds: (i) It has
degree two; (ii) its two neighbors are not special vertices; (iii) its two adjacent edges
have infinite weight. We justify these assumptions by the following reduction applied
whenever a special vertex s does not satisfy these requirements. For each edge e
adjacent to s, split e into three new edges e1, e2, and e3 and insert two new vertices
of degree two each: vertex s′ between e1 and e2 and vertex s′′ between e2 and e3.
Let e1 denote the edge that is adjacent to s. Edges e1 and e2 are assigned infinite
weight whereas edge e3 is assigned the same weight as e. Add the new vertex s′

to the set of special vertices S and delete s from S. It is not difficult to see that
when this reduction terminates, the assumptions hold. Clearly, there is a one-to-
one weight preserving correspondence between feedback sets before and after the
reduction, and hence, approximating the optimal solution before the reduction is
equivalent to approximating the optimal solution after reduction.

2.1. The algorithm. The algorithm consists of k iterations. In the ith iteration,
the algorithm finds a feedback set that covers all the interesting cycles that were not
covered in previous iterations and in which the highest index of a special vertex is i.
Let the two neighbors of special vertex si be denoted by xi and yi. In the first iteration,
the algorithm finds a minimum cut, M1, between vertices x1 and y1 in the graph

260 G. EVEN, J. NAOR, B. SCHIEBER, AND L. ZOSIN

induced by V1. In the ith iteration, (1 < i ≤ k), it finds a minimum cut, Mi, between
xi and yi in the graph Gi induced by Vi, and the edge set E −M1 ∪ · · · ∪Mi−1. The
algorithm returns as a subset-fes the edges of M1 ∪ · · · ∪Mk. A formal description
of the algorithm follows.

Algorithm subset-fes.

Input: Graph G = (V,E) with special vertices s1, . . . , sk;

Output: subset-fes M of G;

Notation: Vi
�
= V − {si, . . . , sk};

for i = 1 to k do

Mi ← minimum cut between xi and yi in the graph Gi = (Vi, E −∪i−1
j=1Mj).

M ←M1 ∪ · · · ∪Mk.

It is easy to see that the algorithm finds a feasible solution to the subset-fes
problem. We now show that the weight of its solution approximates the optimal
solution by a factor of two.

2.2. The analysis. Let OPT denote a minimum weight solution to the subset-
fes problem. Define the graph H = (V,E − OPT) to be the graph induced by the
vertex set V and the edge set E −OPT. Clearly, H does not contain any interesting
cycles. We can assume without loss of generality that G is connected, and therefore
H is also connected. For i = 1, . . . , k + 1, let Hi be the subgraph of H induced by
Vi. In particular, H1 is the subgraph of H induced by the set of nonspecial vertices.
Note that H1 consists of several connected components, since for each special vertex
si, its neighbors xi and yi cannot belong to the same connected component of H1, as
this would imply the existence of an interesting cycle in H.

First, we claim that the number of components in H1 is k+1. To see this, consider
the auxiliary graph obtained from H by contracting each connected component of H1

into a vertex. Namely, the vertex set of the auxiliary graph is the set of special vertices
together with one vertex for each connected component of H1. The degree of each
special vertex si in the auxiliary graph is two: one edge connects si to the vertex
corresponding to the component containing xi, and the other edge connects si to the
vertex corresponding to the component containing yi. Since H does not contain any
interesting cycles, the auxiliary graph must be acyclic. Since H is connected, the
auxiliary graph is a tree. The number of edges in the auxiliary graph is precisely
2k, yielding that the number of vertices must be 2k + 1. Since the auxiliary graph
contains k special vertices, the number of connected components in H1 is k + 1.

Denote the connected components of H1 by C1, . . . , Ck+1. Let OPTi denote
the edges in OPT with one endpoint in Ci. Since each edge in OPT touches two
connected components we get that

∑k+1
i=1 w(OPTi) = 2w(OPT). To show that the

approximation factor of our algorithm is two, we present an injective mapping from
the set of k minimum cuts computed by the algorithm, M1, . . . ,Mk, to the set of k+1
components of H1. This mapping has the property that if minimum cut Mi is mapped
to component Cj , then w(Mi) ≤ w(OPTj). Since the mapping is injective (i.e., each

component may be the image of at most one cut), we have
∑k
i=1 w(Mi) ≤ 2w(OPT).

We present the injective mapping in two stages. First, for each minimum cut Mi

we identify two components C�(i) and Cr(i) such that

w(Mi) ≤ min{w(OPT�(i)), w(OPTr(i))}.

SUBSET FEEDBACK SETS IN UNDIRECTED GRAPHS 261

Then, we show how to map each Mi to one of these two components so that the
mapping is injective.

Identifying the two components. Consider a simple path p from xi to yi in Gi.
Discard from p all nonspecial vertices except for xi and yi. The remaining vertices,
in the order of their occurrence in p, are called the backbone of p.

Follow the backbone of p, starting from xi until the first vertex that is not con-
nected in Hi to its subsequent vertex in the backbone. Such a vertex always exists
since the path p is disconnected by OPT. If this vertex is xi, then we set C�(i) to be
the component of H1 containing xi. Otherwise, this vertex is a special vertex sj for
some j < i. In this case C�(i) is set to be the component of H1 containing the vertex
following sj in the path p.

The component Cr(i) is defined similarly by considering p in reverse order (from
yi to xi).

First, we prove that the backbones of all simple paths from xi to yi in Gi are
identical. This implies that the selection of C�(i) and Cr(i) is independent of the
choice of the path p. Then, we show that the weight of the minimum cut Mi is indeed
bounded by both w(OPT�(i)) and w(OPTr(i)).

Claim 2.1. All simple paths connecting xi with yi in Gi have the same backbone.

Proof. The claim is based on the fact that for every simple path p from xi to yi
the sequence of special vertices along p is identical. Moreover, if a special vertex sj is
on such a path p, then every such path must traverse sj in the same direction (i.e.,
either from xj to sj and then to yj or from yj to sj and then to xj).

Consider two such paths p and q and suppose that they have different sequences of
special vertices. In this case, the union of p and q must contain a nontrivial interesting
cycle. Let j < i be the maximum index of a special vertex in this cycle. Note that
the path connecting xj and yj , obtained by removing sj from the cycle, is in Gj .
However, this implies that Mj must intersect this path, and thus it cannot belong to
Gi, yielding a contradiction. A similar argument shows that the special vertices must
be traversed in the same direction as well.

Claim 2.2. For i = 1, . . . k, w(Mi) ≤ min{w(OPT�(i)), w(OPTr(i))}.
Proof. We prove that w(Mi) ≤ w(OPT�(i)). The proof that w(Mi) ≤ w(OPTr(i))

is analogous. By Claim 2.1, all the paths from xi to yi in Gi traverse a vertex in
C�(i). Moreover, by the definition of C�(i) all these paths emanate from C�(i) using
an edge from OPT�(i). Hence, OPT�(i) cuts all these paths. Since Mi is such a cut of
minimum weight, the inequality follows.

The mapping. We show how to map each Mi to either C�(i) or Cr(i), guaranteeing
that the mapping is injective. For this, consider yet another auxiliary graph. The
vertex set of this auxiliary graph consists of the set of special vertices and one vertex
for each connected component of H1. For each special vertex si, the graph has two
edges, one connecting si to the vertex corresponding to C�(i) and the other to the
vertex corresponding to Cr(i). Note that each edge in the auxiliary graph corresponds
to a path in H. Hence, every path in the auxiliary graph corresponds to a path in H.
Moreover, a cycle in the auxiliary graph would correspond to an interesting cycle in
H. Since H does not contain any interesting cycle, the auxiliary graph is acyclic. The
auxiliary graph has 2k edges and 2k + 1 vertices and therefore must be a tree. Now,
root this tree at an arbitrary vertex that corresponds to a connected component. In
this rooted tree, each special vertex si has exactly one child which corresponds to
either C�(i) or Cr(i). The cut Mi is mapped to this component. Clearly, this mapping
is injective.

262 G. EVEN, J. NAOR, B. SCHIEBER, AND L. ZOSIN

Our discussion proves that the algorithm finds a feasible solution to the subset-fes
problem whose weight is at most twice the weight of an optimal solution and thus
proves the following theorem.

Theorem 2.3. Algorithm subset-fes computes a feasible solution whose weight
is at most twice the weight of an optimal solution.

We can easily construct an example that shows that Theorem 2.3 is tight. Con-
sider a clique on n vertices where each edge has unit weight. Connect a new special
vertex s to all the vertices of the clique, where each edge adjacent to s has weight
n − ε, for some fixed ε > 1. The optimal solution contains all the clique edges, and
hence its weight is n · (n−1)/2. Algorithm subset-fes chooses all the edges adjacent
to s, except for one edge. Hence, the approximation factor in this graph is 2− 2ε/n.

2.3. The SUBSET-FVS problem. In this section we note that the 2-approximation
algorithm for the subset-fes problem yields a ∆-approximation algorithm for the
subset-fvs problem, where ∆ denotes the maximum vertex degree in the given graph.

We first note that, similarly to the edge case, we can assume without loss of
generality that for each special vertex the following hold: (i) it has infinite weight; (ii)
it has precisely two neighbors which are not special vertices; (iii) its two neighbors
have infinite weight.

The algorithm for the subset-fvs problem is the same as the subset-fes al-
gorithm except that at each step i, 1 ≤ i ≤ k, Mi is a minimum weight vertex cut
between xi and yi. The subset feedback vertex set produced by the algorithm is the
union of the minimum cuts {Mi}ki=1. The graph Gi is defined to be the graph induced
by Vi − ∪i−1

j=1Mj .

Let OPT denote a minimum weight solution to the subset-fvs problem. Similar
to the edge case define the graph H = (V −OPT, E) to be the graph induced by the
vertex set V −OPT. Clearly, H does not contain any interesting cycles. Let H1 be the
subgraph of H induced by V1. Again, H1 consists of several connected components,
and in this case it can be shown that the number of these components is at least k+1.
(However, here H1 may be a forest rather than a tree.)

Denote the connected components of H1 by C1, . . . , Ck+1, Let OPTi denote
the vertices in OPT that are the neighbors of Ci. Since every vertex of OPT may
be the neighbor of at most ∆ components we get that

∑k+1
i=1 w(OPTi) ≤ ∆w(OPT).

To show that the approximation factor of our algorithm is ∆, we show an injective
mapping from the set of k minimum cuts computed by the algorithm to the set of
components of H1. This mapping has the property that for each minimum cut Mi

mapped to component Cj , w(Mi) ≤ w(OPTj). Since the mapping is injective, we

have
∑k
i=1 w(Mi) ≤ ∆w(OPT).

Similar to the edge case we show the injective mapping in two stages. First,
for each minimum cut Mi we identify two components C�(i) and Cr(i) such that
w(Mi) ≤ w(OPT�(i)) and w(Mi) ≤ w(OPTr(i)). Then, we show how to map each Mi

to one of these two components so that the mapping is injective.

The component C�(i) (Cr(i)) is given by following a path p connecting xi and yi
in Gi, starting at xi (yi), until the first vertex that belongs to both p and OPT. The
component C�(i) (Cr(i)) is the component containing the vertex preceding this first
vertex. Again, it can be shown that these two components are independent of the
choice of p. The injective mapping is computed using an auxiliary forest similar to
the auxiliary tree used in the edge case.

SUBSET FEEDBACK SETS IN UNDIRECTED GRAPHS 263

3. Bootstrapping for approximating multicuts. Suppose that we have a
subset-fvs approximation algorithm where the approximation factor depends on
the number of special vertices. Consider the following bootstrapping technique ap-
plied to such a subset-fvs approximation algorithm. Given a subset feedback vertex
set F , redefine the set of special vertices to be F , and now apply the subset-fvs
approximation algorithm to obtain a new subset feedback vertex set F ′ with respect
to F . Observe that F ′ intersects all the interesting cycles with respect to the original
set of special vertices. We can continue this process and generate new subset feed-
back vertex sets by using the current subset feedback vertex set as the set of special
vertices for the next iteration. Does this process provide improved approximation
factors? Not for the subset-fvs problem, since this problem can be approximated
within a constant factor [11]. However, this technique can be used to enhance the
approximation factor for the undirected multicut problem and for the directed feed-
back set problem. Below, we describe the application of the bootstrapping technique
to the multicut problem.

The undirected multicut problem is defined as follows. The input for the “vertex”
version consists of a graph G = (V,E) with vertex weights w : V → R

+ ∪ {∞} and
k terminal pairs {si, ti}i=1,...,k. A (vertex) multicut is a subset of the vertices that
separates all terminal pairs. The goal is to find a vertex multicut of minimum weight.
In the “edge” version weights are assigned to edges, and the goal is to find a subset of
the edges of minimum weight that separates all terminal pairs. The edge version can
be reduced to a vertex by splitting each edge e into two edges with a new vertex ve
in between, giving each new vertex ve the weight of the original edge e and assigning
infinite weight to the original vertices. Thus, from now on we consider only the vertex
version.

Garg, Vazirani, and Yannakakis [13] presented an O(log k) approximation algo-
rithm for undirected multicuts. For their algorithm they defined fractional multicuts.

Definition 3.1. A fractional multicut is an assignment of (nonnegative) length
d(v) to each vertex v ∈ V such that under this assignment the distance between any
terminal pair is at least one. In other words, a fractional multicut is a function
d : V → R

+ such that
∑
v∈p d(v) ≥ 1 for every path p connecting a terminal pair

{si, ti}i=1,...,k.

Note that if we restrict d(v) to be either 0 or 1, the vertices assigned length one
constitute a multicut.

Definition 3.2. An optimal fractional multicut is a multicut that minimizes∑
v∈V w(v)d(v). Define τ to be the weight of an optimal fractional multicut.

The algorithm of Garg, Vazirani, and Yannakakis [13] proceeds as follows. First,
an optimal fractional multicut is computed by solving the corresponding linear pro-
gram. This fractional multicut is then rounded to an integral multicut using a region
growing procedure. Garg, Vazirani, and Yannakakis [13] prove that the sum of the
weights of the vertices in the multicut is bounded by 4τ · ln(k + 1). The algorithm
of [13] has the property that, after computing the fractional multicut, it no longer
considers the ti-s. We reformulate the region growing procedure of [13] as a proce-
dure that finds a subset of the vertices that intersects every path of length at least
one that contains a vertex of the set R0 = {si}ki=1. Note that such a subset of vertices
constitutes a multicut since the distance between every pair of terminals is at least
one. The total weight of these vertices is bounded by 4τ · ln(k + 1).

We can now describe the bootstrapping technique. We start with the set R0

containing all the terminals si, for 1 ≤ i ≤ k, and find a subset of vertices that

264 G. EVEN, J. NAOR, B. SCHIEBER, AND L. ZOSIN

intersects every path of length at least one that contains a vertex of R0. Denote
this subset of vertices by R1. Now, we find a subset of vertices that intersects every
path of length at least one that goes through R1. Denote this subset of vertices by
R2. We continue in this manner, i.e., at step i we find a subset Ri+1 of the vertices
that intersects every path of length at least one that goes through Ri. From Garg,
Vazirani, and Yannakakis [13] it follows that the total weight of the vertices in Ri+1

is bounded by 4τ · ln(|Ri|+ 1).
First, we show that each of the subsets Ri, for i ≥ 1, is indeed a multicut.
Claim 3.3. Each of the subsets Ri, for i ≥ 1, is a multicut.
Proof. The proof is by induction on i. From the discussion above it follows that

R1 is a multicut. Suppose that Ri is a multicut. This implies that Ri intersects every
path between sj and tj , 1 ≤ j ≤ k. Since Ri+1 intersects every path of length at least
one that goes through a vertex in Ri, and since the length of every path from sj to
tj is at least one, we get that Ri+1 intersects every path connecting sj to tj , 1 ≤ j
≤ k.

We now prove that the bootstrapping technique enhances the approximation fac-
tor from O(log k) to O(log τ). Since τ is a lower bound on the weight of an optimal
multicut, bootstrapping improves the approximation factor in cases where the optimal
multicut is significantly lighter than k.

Theorem 3.4. Suppose that w(v) ≥ 1 for all v ∈ V . If we apply the bootstrapping
technique for O(log∗ k) iterations, then we find a multicut whose weight is O(τ ·log τ).

Proof. Define

f(i)
�
=

ln(k + 1) if i = 1,
ln(2 · f(i− 1)) if i > 1 and f(i− 1) > 0,
0 if i > 1 and f(i− 1) ≤ 0,

and

t0
�
= min {i : f(i) ≤ 1 + ln 4 + ln τ} .1

The following lemma bounds the cardinality of Ri as a function of i.
Lemma 3.5. If 1 ≤ i ≤ t0, then 1 + |Ri| ≤ 4 · τ · (1 + ln 4 + ln τ + f(i)).
Proof. The proof is by induction on i. Since all vertex weights are at least one,

then |Ri| ≤ w(Ri). The algorithm of Garg, Vazirani, and Yannakakis guarantees that
w(Ri+1) ≤ 4 · τ · ln(|Ri|+ 1). Hence, |R1| ≤ 4 · τ · ln(k + 1), and the induction basis
follows.

The induction step is proven as follows:

1 + |Ri+1| ≤ 1 + w(Ri+1)

≤ 1 + 4 · τ · ln (1 + |Ri|)
≤ 1 + 4 · τ · ln [4 · τ · (1 + ln 4 + ln τ + f(i))] ,

where the last inequality follows from the induction hypothesis. Since i < t0, it follows
that 1 + ln 4 + ln τ < f(i); hence,

1 + |Ri+1| ≤ 1 + 4 · τ · (ln 4 + ln τ + ln(2 · f(i)))
≤ 4 · τ · (1 + ln 4 + ln τ + f(i+ 1)) .

1We use the notation “ln” to denote the natural basis logarithm and “log” to denote the base 2
logarithm.

SUBSET FEEDBACK SETS IN UNDIRECTED GRAPHS 265

It is not difficult to verify the following claim.

Claim 3.6. If i ≥ 2 · log∗ k + 3, then f(i) ≤ 2.

By the definition of t0 and from Claim 3.6 it follows that t0 ≤ 2 · log∗ k+3. From
Lemma 3.5 it follows that

1 + |Rt0 | ≤ 4 · τ · 2(1 + ln 4 + ln τ) = O(τ · log τ).

Since w(Rt0+1) ≤ 4 · τ · ln(|Rt0 |+ 1), it follows that w(Rt0+1) = O(τ · log τ), and the
theorem follows.

4. Linear programming formulation and integrality gap. In this section
we cast the fvs, fes, subset-fvs, and subset-fes problems as integer programs.
The formulation chosen is the “natural” one, i.e., as covering problems. The integrality
gap of an integer program is defined to be the ratio between the integer and fractional
optima. We show that the integrality gap in the fvs and fes problems can be as big
as Ω(log |V |). This is used to further show that the integrality gap in the subset-fvs
and subset-fes problems can be as big as Ω(log |S|).

We note that in spite of this gap, for the fes problem in undirected graphs we can
find an exact solution in polynomial time (by computing a maximum weight spanning
tree), and for the fvs problem in undirected graphs, we can find a constant factor
approximation in polynomial time [1, 2, 3]. Interestingly, Chudak et al. [7] recently
gave an alternative integer programming formulation for the fvs problem for which
the gap is two; see also [16].

Let G = (V,E) be an undirected graph. In this section we assume that all
weights in G are unit weights. Let |V | = n, and let the set of special vertices be
S = {s1, . . . , sk}. We denote by C the set of cycles in G and by Cv the set of cycles
passing through a particular vertex v.

4.1. Integer programming formulation. Let t : V → [0, 1] be an indicator
variable for membership in a feedback set of G. The following is a linear programming
formulation of the fvs problem. (The formulation of the fes problem is the same
except that t is an indicator variable for the edge set.)

minimize
∑
v∈V w(v) · t(v)

such that
∑

v∈C
t(v) ≥ 1 for every C ∈ C .

The formulation of the subset-fes and subset-fvs problems remains the same,
except that the constraints are only with respect to cycles C belonging to ∪s∈S Cs.

Note that the above linear program may contain, in general, an exponential num-
ber of constraints. However, since a violated constraint of a given nonfeasible solution
can be found in polynomial time, an optimal solution can be either computed by the
ellipsoid algorithm or approximated (very closely) by the techniques presented in [22].

4.2. Integrality gap. We use the following construction for showing the inte-
grality gap. Let Hn = (V,E) be a connected, 3-regular graph, where |V (Hn)| = n,
and the girth of Hn is �log n�. Such graphs exist and can be constructed explicitly.
(See, e.g., Bollobás [6, pp. 108–110].)

Claim 4.1. The value of the optimal fractional fvs solution in Hn is at most
n/�log n�. The value of the optimal fractional fes solution in Hn is at most 1.5n/�log n�.

266 G. EVEN, J. NAOR, B. SCHIEBER, AND L. ZOSIN

Proof. The girth of Hn is �log n�. Thus, to get a feasible fractional solution for
the fvs problem, assign each vertex the value 1/�log n�. To get a feasible solution for
the fractional fes problem, assign each of the 1.5n edges the value 1/�log n�.

Clearly, an optimal integral solution for the fes problem is the complement of
any spanning tree of Hn whose cost is 1.5n − (n − 1) = n/2 − 1. This establishes
the gap for the fes problem. To establish the gap for the fvs problem we need the
following claim.

Claim 4.2. The value of an optimal integral solution for the fvs problem in Hn

is Ω(n).
Proof. We construct an instance of the fes problem on Hn by assigning each

edge unit weight. Clearly, an optimal solution to the fes problem costs at most
∆ = 3 times the cost of an optimal solution to the fvs problem. Since the cost of
this fes problem is n/2 − 1, this yields that the cost of the fvs problem is at least
n/6− 1/3 = Ω(n).

We show an Ω(log k) integrality gap for the subset-fvs and subset-fes problems
in the following graph Fn, which is the union of two graphs: Hk = (S,E) on k special
vertices, as defined above, and a clique on the remaining n− k vertices. To make Fn
connected we connect Hk to the clique by a single edge. Note that no cycle that goes
through a vertex in S intersects the clique. This fact, together with the integrality gap
shown above, implies the Ω(log k) integrality gap for the subset-fvs and subset-fes
problems.

Acknowledgments. We are very grateful to Dan Geiger and Alejandro Schäffer
for explaining to us the application of the subset feedback set problem to genetic
linkage analysis. The bootstrapping technique was developed jointly with Madhu
Sudan. We thank Madhu Sudan for his permission to include it here. We would like
to thank Naveen Garg for useful discussions and Satish Rao for pointing out a missing
explanation in section 3. We thank the referees for helpful comments and especially
for simplifying the analysis of the algorithm.

REFERENCES

[1] R. Bar-Yehuda, D. Geiger, J.S. Naor, and R.M. Roth, Approximation algorithms for
the feedback vertex set problem with applications to constraint satisfaction and Bayesian
inference, SIAM J. Comput., 27 (1998), pp. 942–959.

[2] V. Bafna, P. Berman, and T. Fujito, A 2-approximation algorithm for the undirected feed-
back vertex set problem, SIAM J. Discrete Math., 12 (1999), pp. 289–297.

[3] A. Becker and D. Geiger, Optimization of Pearl’s method of conditioning and greedy-like
approximation algorithms for the vertex feedback set problem, Artificial Intelligence, 83
(1996), pp. 167–188.

[4] A. Becker, D. Geiger, and A.A. Schäffer, Automatic selection of loop breakers for genetic
linkage analysis, Human Heredity, 48 (1998), pp. 49–60.

[5] A. Bolino, V. Brancolini, F. Bono, A. Bruni, A. Gambardella, G. Romeo, A. Quat-
trone, and M. Devoto, Localization of a gene responsible for autosomal recessive de-
myelinating neuropathy with focally folded myelin sheaths to chromosome 11q 23 by ho-
mozygosity mapping and haplotype sharing, Human Molecular Genetics, 5 (1996), pp.
1051–1054.

[6] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1978.
[7] F.A. Chudak, M. X. Goemans, D. S. Hochbaum, and D. P. Williamson, A primal-dual

interpretation of two 2-approximation algorithms for the feedback vertex set problem in
undirected graphs, Oper. Res. Lett., (22) 1998, pp. 111–118.

[8] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yannakakis, The
complexity of multiterminal cuts, SIAM J. Comput., 23 (1994), pp. 864–894.

[9] G. Even, J. Naor, B. Schieber, and M. Sudan, Approximating minimum feedback sets and
multi-cuts in directed graphs, Algorithmica, 20 (1998), pp. 151–174.

SUBSET FEEDBACK SETS IN UNDIRECTED GRAPHS 267

[10] G. Even, J. Naor, S. Rao, and B. Schieber, Divide-and-conquer approximation algorithms
via spreading metrics, in Proceedings of the 36th Symposium on Foundations of Computer
Science (FOCS), IEEE Computer Society, Los Alamitos, CA, 1995, pp. 62–71; J. ACM, to
appear.

[11] G. Even, J. Naor, and L. Zosin, An 8-approximation algorithm for the subset feedback vertex
set problem, in Proceedings of the 36th Symposium on Foundations of Computer Science
(FOCS), IEEE Computer Society, Los Alamitos, CA, 1996, pp. 310–319; SIAM J. Comput.,
to appear.

[12] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, CA, 1979.

[13] N. Garg, V.V. Vazirani, and M. Yannakakis, Approximate max-flow min-(multi)cut theo-
rems and their applications, SIAM J. Comput., 25 (1996), pp. 235–251.

[14] N. Garg, V.V. Vazirani, and M. Yannakakis, Multiway cuts in directed and node weighted
graphs, in Proceedings of the 21st International Colloquium on Automata, Languages and
Programming (ICALP), Lecture Notes in Comput. Sci. 820, Springer-Verlag, New York,
1994, pp. 487–498.

[15] M.X. Goemans and D.P. Williamson, Primal-dual approximation algorithms for feedback
problems in planar graphs, Combinatorica, 18 (1998), pp. 37–59.

[16] D.S. Hochbaum, Chapter 9: Good, better, best, and better than best approximation algorithms,
in Approximation Algorithms for NP-Hard Problems, D.S. Hochbaum, ed., PWS Publish-
ing Company, Boston, MA, 1996.

[17] R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations, R.E. Miller and J.W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–104.

[18] P.N. Klein, S.A. Plotkin, S. Rao, and É. Tardos, Approximation algorithms for Steiner
and directed multicuts, J. Algorithms, 22 (1997), pp. 241–269.

[19] T. Leighton and S. Rao, An approximate max-flow min-cut theorem for uniform multi-
commodity flow problems with applications to approximation algorithms, in Proceedings
of the 29th Symposium on Foundations of Computer Science (FOCS), IEEE Computer
Society Press, Los Alamitos, CA, 1988, pp. 422–431; J. ACM, to appear.

[20] J. Ott, Analysis of Human Genetic Linkage, revised ed., The John Hopkins University Press,
Baltimore and London, 1991.

[21] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
Morgan Kaufmann, San Mateo, CA, 1988.

[22] S. Plotkin, É. Tardos, and D. Shmoys, Fast approximation algorithms for fractional packing
and covering problems, Math. Oper. Res., 20 (1995), pp. 257–301.

[23] P.D. Seymour, Packing directed circuits fractionally, Combinatorica, 15 (1995), pp. 281–288.

DIRECTIONAL ROUTING VIA GENERALIZED st-NUMBERINGS∗

FRED S. ANNEXSTEIN† AND KENNETH A. BERMAN†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 2, pp. 268–279

Abstract. We present a mathematical model for network routing based on generating paths
in a consistent direction. Our development is based on an algebraic and geometric framework for
defining a directional coordinate system for real vector spaces. Our model, which generalizes graph
st-numberings, is based on mapping the nodes of a network to points in multidimensional space and
ensures that the paths generated in different directions from the same source are node-disjoint. Such
directional embeddings encode the global disjoint path structure with very simple local information.
We prove that all 3-connected graphs have 3-directional embeddings in the plane so that each node
outside a set of extreme nodes has a neighbor in each of the three directional regions defined in
the plane. We conjecture that the result generalizes to k-connected graphs. We also show that a
directed acyclic graph (dag) that is k-connected to a set of sinks has a k-directional embedding in
(k − 1)-space with the sink set as the extreme nodes.

Key words. graph connectivity, network routing, st-numbering, matchings

AMS subject classifications. 68R10, 05C40, 68R10

PII. S0895480198333290

1. Introduction. A fundamental problem in network routing is the generation
of communication paths from a set of source nodes Y to a set of sink nodesX. Routing
schemes for communication networks are often implemented using local tables that
logically associate each destination address x with a parent link on which to forward
messages to x (see [3, 6]). The set of parent links forms a directed sink tree to the
sink node x. More generally, given a set of sink nodes X, we define a sink tree to X
as a set of parent links, with one parent for each u �∈ X, forming a union of directed
in-trees, where each in-tree has a single sink node from X. When used in routing
applications, the tables associated with such sink trees suffer from the fact that they
do not provide a full representation of the entire network and therefore are vulnerable
to faults and other dynamic network changes. One approach to the problem of fault-
tolerant routing is the study of collections of independent sink trees and closely related
graph st-numberings [10, 2]. A pair of sink trees to X is independent if it has the
property that for each node u �∈ X, the pair of tree-paths from u to X is internally
node-disjoint. A standard way to obtain a pair of independent sink trees is via an
st-numbering of a biconnected graph. Let G = (V,E) be a graph with distinguished
vertices s, t. An st-numbering of G is a mapping f of the vertices into the real line,
f : V → R, such that for all v ∈ V − {s, t}, there are neighbors u,w ∈ N(v) such
that f(u) < f(v) < f(w). A 2-connected graph has an st-numbering for any vertex
pair s, t [11, 8]. In general, collections of k > 2 sink trees are independent if they are
pairwise independent. There is a long-standing open conjecture of Frank (see [13])
that states that all k-connected graphs have, for each vertex v, k-independent sink
trees to v. One goal of this work is to provide a generalized graph st-numbering in
an attempt to characterize graphs having k-independent sink trees.

∗Received by the editors January 29, 1998; accepted for publication (in revised form) September
22, 1999; published electronically April 6, 2000.

http://www.siam.org/journals/sidma/13-2/33329.html
†Department of ECE & Computer Science, University of Cincinnati, Cincinnati, OH 45221

(fred.annexstein@uc.edu, ken.berman@uc.edu). This research was supported in part by NSF grant
CCR-9877139 and by an OBR investment grant.

268

DIRECTIONAL ROUTING VIA GENERALIZED st-NUMBERINGS 269

An st-numbering provides a stronger model for routing applications than that
which is provided by the (induced) independent sink trees in the following sense: For
each pair of vertices u, v �∈ X = {s, t}, there exists a pair of tree-paths from distinct
sink trees, one from u to X and the other from v to X, that is internally node-
disjoint. We say that a pair of sink trees with this property is strongly independent.
A collection of k > 2 sink trees is strongly independent if for each set Y of k vertices
{y1, . . . , yk : yi �∈ X} there exists a matching M of Y to the k trees such that the
collection of induced tree-paths (each routing a distinct yi to X) is internally node-
disjoint. We strengthen Frank’s conjecture by conjecturing that every k-connected
graph has k strongly independent sink trees, and we prove our conjecture for k = 3
using a generalized st-numbering that yields the matching M of Y to the three sink
trees.

Our generalization of graph st-numbering is based on an algebraic and geometric
framework for defining directions in real vector spaces. Using this framework we pro-
pose a mathematical model for network routing based on directional graph embeddings
with compass. We show that such embeddings naturally induce collections of strongly
independent sink trees and thus encode the global disjoint path structure with very
simple local information. A k-directional embedding of a graph G involves map-
ping the vertices V (G) to (k − 1)-space so that each vertex, outside a set of extreme
vertices, has a neighbor in each of k distinct directions. Routing in the directional
embedding model is based on generating routing paths that are monodirectional, i.e.,
the paths follow a consistent direction. The mechanisms of the model ensure that
the monodirectional paths generated in different directions from the same source are
node-disjoint.

The compass associated with our embeddings yields directions (or equivalently,
directional regions relative to any fixed location) that possess a fundamental matching
property of combinatorial interest. Namely, any set of k distinct points in (k − 1)-
dimensional space can be matched to the set of k directions defined by the compass.
The k points are matched in the sense that there exists a fixed location point s such
that each of the original k points lies in a distinct directional region with respect to
s. Furthermore, we characterize the set of all such points that satisfy this property,
and we provide the conditions under which the associated matching is unique.

In this paper we apply these developments to prove that all 3-connected graphs
have 3-directional embeddings in the plane. We conjecture that the result generalizes
to the case of k-connected graphs, for each k > 3. Supporting this conjecture, we
prove that a directed acyclic graph (dag) that is k-connected to a set of sinks has a
k-directional embedding in (k − 1)-space. A proof of our conjecture would affirm the
conjecture of Frank.

Comparisons with previous work. The concept of graph st-numberings has
been generalized to geometric embedding of graphs in Euclidean space in Linial,
Lovász, and Widgerson [12]. Cheriyan and Reif [5] later extended the results to
digraphs. This generalization of st-numberings originated by appealing to potential
functions in physics (e.g., rubber bands or electricity), leading to the notion of a con-
vex embedding in general position. A graph has a convex X-embedding f if f is a
mapping of the vertices to points in real space f : V → R|X|−1 such that, for each
v ∈ V − X, f(v) is in the convex hull of f(N(v)). A convex embedding is in gen-
eral position if f(V) is in general position. Convex embeddings in general position
characterize k-connected graphs, analogous to the st-numbering characterization of
2-connected graphs. Unfortunately, from the point of view of path generation, convex

270 FRED S. ANNEXSTEIN AND KENNETH A. BERMAN

X-embeddings for |X| ≥ 3 neither seem to provide a model from which to extract
structural information concerning disjoint paths to X nor seem to provide a means
to generate independent sink trees.

Our conjecture that k-connected graphs have k-directional embeddings in Rk−1

is equivalent to showing that convex embeddings in general position can be trans-
formed to nondegenerate directional embeddings (see section 4). Our result that 3-
connected graphs have 3-directional embeddings implies that 3-connected graphs have
3-independent spanning trees, which was previously shown by Zehavi and Itai [15] and
Cheriyan and Maheshwari [4].

2. A directional compass. The basic framework for defining directions associ-
ated with a directional embedding is a natural one, obtained by defining a k-directional
compass on the geometry of real vector spaces. A compass is given by a direction func-
tion d : Rk−1 × Rk−1 → D, where D = {1, 2, . . . , k} is a set of k directions, and has
the following two properties: (1) A compass is translatable from the origin 0̄, i.e.,
the direction of vector y relative to a reference vector x is d(x, y) = d(0̄, y − x),
for every pair of points x, y; and (2) a compass has directional transitivity, i.e., if
d(x, y) = d(y, z), then d(x, y) = d(x, z), for every set of points x, y, z. From these
two properties it follows immediately that for graphs embedded in k-space, mono-
directional paths, i.e., paths that consistently follow the same direction, originating
from the same vertex and following different directions, are internally node-disjoint.
As a simple illustrative example, consider a graph embedded on the real line along
with a 2-directional compass (on the real line) given by the positive and negative
directions. It is clear that positive directed paths are disjoint from negative directed
paths, when originating from the same node. It is this notion of directions in graphs
that we wish to generalize to higher dimensions.

The generalized compass that we will apply enjoys a useful directional splitting
property that is also enjoyed by the 2-directional compass on the real line. This
splitting property of a compass is particularly useful for algorithmic constructions of
directional embeddings.

Definition. A compass with k directions has the k-directional splitting property
if, given any set of k distinct points Y = {y1, y2, . . . , yk}, there exists a reference point
s = sY , called a k-directional splitter point, and an associated directional permutation
πY , so that the point yπY (i) is in the ith direction relative to s, i.e., d(s, yπY (i)) = i.
A splitter point s is called a strict-splitter if each of the k points lies strictly in the
interior of a directional region with reference to s, i.e., no point lies on a boundary
shared by more than one region.

The compass for the plane R2 using the four natural directions N,S,E,W does not
satisfy the 4-directional splitting property, as seen in Figure 1. We solve the problem
of directional splitting by using a compass with three directions in R2 and show that
this extends to Rk using a compass with k + 1 directions.

We define a compass so that directional regions are associated with the space
spanned by a given fixed set of vectors. To begin, let L be a fixed set of lines in
Rk through the origin. Divide each line li ∈ L at the origin into two half-lines and
arbitrarily label one half-line as ray-i and the other half-line as antiray-i. We say
that a particular labeling is a convex bipartition labeling of L if the set of chosen
rays are convex-spanning, i.e., the entire space Rk is generated by positive (convex)
linear combinations of vectors that lie on the rays. It follows that if the set of rays are
convex-spanning, then the set of antirays are convex-spanning too. Clearly, in k-space,
at least k+1 lines are required for there to exist a set of rays that is convex-spanning.

DIRECTIONAL ROUTING VIA GENERALIZED st-NUMBERINGS 271

Fig. 1. Four points that have no 4-directional splitter point. With respect to the reference point
p shown, only three of four directional regions are covered. The dashed lines depict the boundaries
of the directional regions. Further, no matter where p is positioned, the four fixed points cannot be
located in four distinct directional regions relative to p.

A set of points X in k-space is in general position if no d-element subset of X
lies on a hyperplane of dimension d− 2, for any d ≤ k + 1. We say that a set of lines
L in k-space is in general position if the lines intersect at the origin and any set X
of nonorigin points, chosen one per line, is in general position. The following shows
that a set of k+1 lines in k-space that is in general position has a convex bipartition
labeling, and this partition labeling is unique up to the naming of rays.

Proposition 1. Let L be a set of k lines in general position in (k − 1)-space
with one half-line from L marked as ray-1. Then there is a unique convex bipartition
labeling of L.

Proof. Arbitrarily order L, say, {l1, l2, . . . , lk}, where l1 has the marked half-line.
Label the marked half-line as ray-1, and label the other half-line as antiray-1. We
now show that the remaining lines are uniquely labeled in a convex bipartitioning.
Consider l2 and the (k − 2)-dimensional hyperplane H spanned by the remaining
lines {l3, l4, . . . , lk}. Since H divides the original (k− 1)-space into two half-spaces, it
follows that a unique half-line of l2 lies on the opposite side of H as the ray-1. Label
this particular half-line as ray-2. Continuing in this way, each line li ∈ L uniquely
partitions into ray-i and antiray-i. The collection of rays must be convex-spanning
since the lines are in general position. Any other labeling (in which ray-1 was fixed)
could not be convex-spanning; thus the partition labeling is unique.

Definition. Let L be a set of k lines in general position equipped with a convex
bipartition labeling which marks half-lines as k rays and k antirays. The compass
Ck(L) defined by L demarcates the k-directional regions relative to any fixed reference
point. Each region is defined by the convex combinations of k − 1 antirays chosen
from the set of k antirays originating at the fixed reference point.

The antirays thus mark the “boundary corners” of each region. Each of the k-
directional regions is named by the index of the unique ray it contains (or equivalently,
by the antiray it omits). The direction of a point that lies on the boundary (hyper-
plane) dividing more than one region is ambiguous, but by convention we consider it
to have multiple directions, one for each region associated with the boundary.

There is, of course, a natural dual-compass demarcating directional antiregions de-
fined by convex combinations of k−1 rays chosen from the set of k rays. Here the rays
mark the boundary corners of directional antiregions, and each of the k-directional
antiregions is named by the index of the unique antiray it contains. Antiregions are
useful for identifying those points that have a fixed direction to a fixed reference point

272 FRED S. ANNEXSTEIN AND KENNETH A. BERMAN

Fig. 2. Compass with three regions in the plane from reference point p, obtained by a convex
bipartitioning of three lines.

and for helping to locate splitter points.

For example, in Figure 2 we have a compass C3(L) in the plane, yielding directional
regions that are symmetric. In this figure we see that region 1 is the set of convex
combinations of points on antiray-2 and antiray-3. Dually, antiregion-1 (not labeled)
is the set of convex combinations of points on ray-2 and ray-3 and defines precisely
those points x for which point P lies in region 1, i.e., d(x, P) = 1. We can find a
splitter point of a set of three points {A,B,C}, as shown in Figure 3, by considering
the antiregions defined at each point. The splitter points are found in an intersection
of three differently named antiregions. This intersection region associates each of the
points {A,B,C} to a different region. Note that in Figure 3 the set of all splitter
points forms a convex region, and any interior splitter point divides {A,B,C} into
directional regions in the same way.

In the next section we show how to formalize this notion of matching points to
directional regions, and we show how this extends to higher dimensions. We show
that the set of splitter points always forms a convex region C and the set of strict-
splitters is associated with the interior of C. Further, we show that there is a function
that gives a weight to each point-direction pair such that maximum weight matchings
correspond to the region C. The weighting is obtained by a special set of directional
coordinates discussed in the next section.

3. A directional coordinate system and splitting lemma. For a given
compass Ck(L) in (k−1)-space, we now show that there exists a transformation from
Euclidean coordinates to a directional coordinate system. This new system uses k-
tuples in a manner where each fixed directional region (from the origin) is precisely
those points whose ith component is maximum (dominant). The directional coordi-
natization is defined as follows. First, fix a collection {v1, v2, . . . , vk} of k nontrivial
vectors on the k rays defined by Ck(L), precisely one per ray, such that

∑
vi = 0̄,

the origin. Note that this can always be done since the rays are assumed to be
convex-spanning.

To obtain directional coordinates, consider the linear transformation T : Rk →
Rk−1 that maps each vector z in k-space with Euclidean coordinates z = (z1, z2, . . . , zk)
to the vector −(z1v1+ z2v2+ · · ·+ zkvk) in (k− 1)-space. The nullspace of this linear
mapping is the line through the “all-1s” vector (1, 1, . . . , 1). Thus for any two points

DIRECTIONAL ROUTING VIA GENERALIZED st-NUMBERINGS 273

Fig. 3. Two examples, each showing a set of three points {A,B,C}, the antiregions from each
point, and the set of all splitter points shown as a shaded polytope. The directional (anti-)regions
are defined by the compass in Figure 2. From each splitter point in the interior of the polytope,
the points {A,B,C} are matched to (lie in) distinct regions. In the top figure, each interior point
matches A to region 2, B to region 3, and C to region 1. In the bottom figure, each interior point
matches A to region 2, B to region 1, and C to region 3.

x1, x2 ∈ T −1(y) in the inverse transformation T −1(y) of a point y ∈ Rk−1, we have
that the differences between components are identical, and thus the minimum or max-
imum component of T −1(y) is well defined. We will use angled brackets 〈〉 to represent
the equivalence class and thereby denote the directional coordinates. So for example,
we say that T −1(y) = 〈y1, y2, . . . , yk〉 is the set of directional coordinates associated
with a point y ∈ Rk−1. As the following proposition shows, the maximum directional
component of T −1(y) identifies the directional region in (k − 1)-space within which
the point y ∈ Rk−1 lies, with respect to the origin.

First, we illustrate the concept of directional coordinates using the example of
the compass from Figure 2. As noted, we first choose three vectors {v1, v2, v3} on
these rays so that they sum to zero. We give the Euclidean coordinates of these
vectors as follows: v1 = (0,−2) on ray-1, v2 = (−

√
3, 1) on ray-2, and v3 = (

√
3, 1) on

ray-3. Now, say we are given a point q in the plane with Euclidean coordinates q =
(q1, q2). Under the inverse transformation T −1(q) we obtain directional coordinates
for q given by q = 〈z1, z2, z3〉. By setting q = −(z1v1 + z2v2 + z3v3) and using the
Euclidean coordinates for each vi, we can solve for directional coordinates as follows:
z1 = 0, z2 = q2/2 − q1/2

√
3, and z3 = z2 + q2. So, for example, the point q0 = (0, 1)

274 FRED S. ANNEXSTEIN AND KENNETH A. BERMAN

in Euclidean space has directional coordinates q0 = 〈0,−√3/6,√3/6〉. Since the
maximum directional coordinate is the third, we have that q0 lies in region 3.

Proposition 2. The linear transformation T : Rk → Rk−1 is an onto mapping
with the property that the point x ∈ Rk−1 lies in the ith directional region (1 ≤ i ≤ k)
relative to the origin iff the maximum directional-component of T −1(x) is the ith
component.

Proof. The transformation T is an onto mapping since the collection of vectors
{v1, v2, . . . , vk} spans (k−1)-space. By definition, a point x ∈ Rk−1 is in the ith direc-
tional region iff it is a convex combination of the antirays different from antiray-i, i.e.,
x =

∑
j �=i λj(−vj), where each λj ≥ 0 and each −vj is a vector on antiray-j. Hence,

the directional coordinatization yields T −1(x) = 〈−λ1,−λ2, . . . ,−λi−1, 0,−λi+1, . . . ,
−λk〉, and thus the ith component is maximum.

The following proposition is easily verified by applying Proposition 2.
Proposition 3. The directional compass is translatable and has directional tran-

sitivity, as defined in section 2.
Within this directional coordinate system for (k − 1)-space we can identify the

problem of finding a directional permutation with the problem of finding a maximum
perfect matching in an associated weighted bipartite graph or, equivalently, finding a
maximum weight permutation. To wit, let Y = {y1, y2, . . . , yk} be a set of k points
in Euclidean space Rk−1, and for each 1 ≤ i ≤ k, let 〈yi,1, yi,2, . . . , yi,k〉 denote (a
representative of) T −1(yi). For π a permutation on A, we define wt(π), the weight of
π, as the sum

∑
yπ(i),i.

We now prove the main theorem of this section.
Theorem 1 (the k-direction splitting lemma). Let A be a set of k points in

Rk−1. The set of all k-directional splitter points of A forms a nonempty convex
region. Further, a permutation π on A is a directional permutation associated with a
splitter point iff π is a maximum weight permutation. Moreover, π is unique iff there
exists a strict-splitter point of A.

Proof. First, assume that π is a maximum weight permutation. We now show that
we can find a splitter point x such that yπ(i) is in the ith directional region relative to x.
From Proposition 2 we know that such a point x must satisfy the following property:
The vector yπ(i)−x when coordinatized as T −1(yπ(i)−x) must have its ith component
as the maximum. Hence, choosing representatives 〈x1, x2, . . . , xk〉 ∈ T −1(x) and
〈yπ(i),1, yπ(i),2, . . . , yπ(i),k〉 ∈ T −1(yπ(i)), we have that the following inequalities must
be satisfied (independent of the representative choices): for each j �= i,

yπ(i),i − xi ≥ yπ(i),j − xj .
These inequalities are simply a set of difference constraints of the form

xi − xj ≤ yπ(i),i − yπ(i),j .

We know from the theory of difference constraints (see [7]) that such a set of
constraints has a solution iff the associated constraint graphGπ has no negative cycles.
The constraint graph Gπ is a complete weighted directed graph on k vertices V (Gπ) =
{1, 2, . . . , k} with each edge (i, j) assigned the weight w(i, j) = yπ(i),i − yπ(i),j . By
definition, the weight of a cycle (i1, i2, . . . , ip, i1) is given by

(yπ(i1),i1 − yπ(i1),i2) + (yπ(i2),i2 − yπ(i2),i3) + · · ·+ (yπ(ip),ip − yπ(ip),i1).

Collecting terms, this sum is equal to

(yπ(i1),i1 + yπ(i2),i2 + · · ·+ yπ(ip),ip)− (yπ(i1),i2 + yπ(i2),i3 + · · ·+ yπ(ip),i1) ≥ 0.

DIRECTIONAL ROUTING VIA GENERALIZED st-NUMBERINGS 275

It follows that this value is nonnegative, since π is a maximum permutation (match-
ing). Hence, we have proved that if π is a maximum weight permutation, then we
can find a vector x that is a splitter point of A with π as the associated directional
permutation. Note that a solution vector x can be found by applying an algorithm
for shortest paths [7].

For the converse, suppose that π is a directional permutation for A, and x is
the associated splitter point. Let σ �= π be some other permutation. We have the
following inequalities that show that the weight of π is at least as large as the weight
of σ:

0 =
∑

xi −
∑

xi =
∑

i

(xi − x(πσ−1)(i)) ≤
∑

yπ(i),i − yπ(i),(πσ−1)(i)

=
∑

yπ(i),i −
∑

yσ(i),i.

Finally, it follows from the argument above that a permutation π is a unique
maximum weight permutation iff there is a strict-splitter point. This can be deduced
by replacing the inequalities in the difference constraints with strict inequalities.

4. Applications to graph connectivity and routing. We now show the con-
nection between the k-directional compass as defined in section 2 and the generation
of disjoint paths in graphs using only local information. This connection is established
by embedding the vertices of the graph to points of a real vector space. We define a
directional embedding of a graph as follows.

Definition. A graph G = (V,E) has a directional X-embedding if there is a
mapping f of the vertices to points in real space f : V → Rk−1, where |X| = k,
and there is a k-directional compass Ck, such that for each v ∈ V − X, f(v) is a
k-directional splitter point of a subset of f(N(v)), the embedded neighbor set of v. A
directional X-embedding is nondegenerate if, for each v ∈ V − X, f(v) is a strict-
splitter point of a subset of f(N(v)).

Proposition 4. Let G = (V,E) be a graph and let X ⊂ V . If G has a nonde-
generate directional X-embedding, then G contains |X| = k independent sink trees to
X. Furthermore, these sink trees are strongly independent.

Proof. As noted earlier, the directional transitivity of the compass implies that
paths generated in a consistent direction must be (internally) vertex-disjoint from
paths generated consistently in a different direction, when the paths originate from
the same vertex. Hence, each of the |X| = k directions can be used to define a
distinct parent for each vertex u ∈ V −X−{v}. Thus, each of the k directions can be
associated with a distinct sink tree, and the collection of k sink trees is independent.
It is easily verified that these trees are strongly independent, since we can match any
set Y of k points to the k sink trees via the directional splitting permutation
πY .

We remark that by viewing a graph as a symmetric digraph we can strengthen
Proposition 4 so as to produce k pairwise independent dags; each direction determines
a dag with a single sink vertex v. A pair of dags on the same vertex set is independent
if, given any vertex u, all paths in one dag are internally node-disjoint from all paths
in the other dag originating at the same vertex.

A long-standing, open conjecture of Frank (see [13]) states that all k-connected
graphs have, for each vertex v, k-independent spanning trees rooted at v. Our results
lead us to conjecture a stronger result.

Conjecture 1. A graph G is k-connected iff for every X ⊂ V , with |X| = k, G
has a nondegenerate directional X-embedding.

276 FRED S. ANNEXSTEIN AND KENNETH A. BERMAN

A closely related conjecture builds on the characterization of [12].
Conjecture 2. A graph G has a convex X-embedding in general position iff G

has a nondegenerate directional X-embedding.
From the results in [12] it follows that the if-part of Conjecture 2 holds. Further,

from st-numbering we have that the conjecture is true for |X| = 2. We prove in
section 5 that both conjectures are true for |X| = 3. We remark that Conjectures
1 and 2 are not true for directed graphs, since there are k-connected digraphs that
do not have k-independent sink trees, for each k ≥ 3 [9]. However, we now show the
conjecture is true for dags k-connected to a sink set. As a corollary of this result we
have that dags k-connected to a sink vertex v can be decomposed into k-independent
dags (independently proven by [1] and [9]).

Theorem 2. A dag k-connected to a set X of k sink vertices has a nondegenerate
directional X-embedding.

Proof. Embed the sink vertices X anywhere in general position in Rk−1. It follows
from k-connectivity that all nonsink vertices have outdegree at least k. Now topo-
logically sort the remaining vertices. Each vertex, considered in (reverse) topological
order, can be positioned as a splitter point of any size k subset of its out-neighborhood.
By employing slight adjustments, each point can be made a strict-splitter. Hence, the
theorem follows.

5. Directional embeddings of 3-connected graphs. In this section we show
that 3-connected graphs have 3-directional embeddings in the plane. To prove this we
need a result that is stronger than Theorem 1 (the splitting theorem). Let us assume
we are given a 3-directional compass C3(L) in the plane equipped with a fixed set of
three rays (and the complementary antirays). We now show that it is still possible to
“split” a set of three points in the plane into three directions even with the addition
of many new directional constraints of a certain type.

Lemma 1. Given a pair of points {a, c} in the plane, let p be the intersection
point of ray-i (of C3(L)) originating at a with an antiray-j originating at c. Then all
the points on the line segment [a, p] are in the same region as a with respect to the
reference point c.

Proof. Clearly, ray-i intersects no other antiray originating at c except for antiray-
j. If any point on the segment [a, p] lies in a region different from that of a with respect
to the reference point c, then this segment must cross a boundary of directional
regions, i.e., it must cross a different antiray from c; this is a contradiction.

Lemma 2 (the 3-direction constrained splitting lemma). Let C be any nonempty
set of points in the plane. Given a pair of points {a, b} in the plane, there is a
point c0 ∈ C and a point s such that s is a 3-directional splitter point of {a, b, c0}
satisfying the following constraints: d(a, s) = d(a, b), d(b, s) = d(b, a), and for each
c ∈ C, d(c, s) = d(c, a).

Proof. Without loss of generality, we can assume that d(a, b) = 1 and d(b, a) = 2.
Consider the pair of rays {r, r′}, where r is ray-1 originating from a and r′ is ray-2
originating at b. Let p denote their point of intersection. Note that the point p is
a 3-directional splitter (nonstrict) for {a, b, c} (for any c ∈ C) that satisfies the first
two directional constraints given in the statement of the lemma, i.e., d(a, p) = d(a, b),
d(b, p) = d(b, a). Hence, if no antiray originating at a point of C intersects the ray r,
then setting s = p satisfies all the constraints of the lemma. Otherwise, consider all
the points of intersection of the ray r with the three antirays originating at points of
C. Let p0 denote the intersection point (of ray r with the antiray originating from
a point c0 ∈ C) that is nearest a. Then by Lemma 1, it follows that s = p0 is a 3-

DIRECTIONAL ROUTING VIA GENERALIZED st-NUMBERINGS 277

directional splitter (nonstrict) that satisfies all the constraints and the lemma holds.
We remark that by perturbing the points the splitter can be made strict.

Graphs that are 3-connected have the following characterization well known as
Tutte’s wheel theorem. A wheel is a graph consisting of a cycle (of at least three
vertices) and a distinct hub vertex that is connected to every vertex on the cycle.

Theorem 3 (Tutte’s wheel theorem [14]). If a graph G is 3-connected, then either
G is a wheel or there is an edge of G that can be deleted or contracted while preserving
3-connectivity. Furthermore, no contractible edge is part of a triangle.

It follows immediately from Tutte’s theorem that every 3-connected graph can,
through a series of edge contractions and removals of multiedges, be reduced to K3

while preserving 3-connectivity at each intermediate step. We now extend this result
to show that these contractions can be chosen to avoid the edges of any given triangle
S ⊂ G.

Theorem 4 (the reduction theorem). Let G = (V,E) be a 3-connected graph
that contains a triangle S with vertices {s1, s2, s3}. The graph G can be reduced,
via edge contraction and removal of multiedges, to the triangle S, while preserving
3-connectivity at each intermediate stage, and without contracting an edge of S.

Proof. The proof will follow by induction on the number of edge contractions.

First, suppose that a vertex si of the triangle S has only a single neighbor x
outside S. The edge e = six can be contracted without affecting 3-connectivity. The
3-connectivity is preserved since the three disjoint paths that all vertices in V − S
have to S before the contraction of e remain unaffected after the contraction.

Hence, we can assume all vertices of the triangle S have at least two neighbors in
the set V −S. Starting with the graph G, consider the sequence of Tutte contractions
{e1, e2, . . .}, and let ek denote the first edge in the sequence that is not part of the
triangle S.

If the graphGek obtained by contracting the edge ek in the graphG is 3-connected,
then the theorem follows by induction.

Suppose, on the other hand, that Gek has a 2-vertex cut C. The 2-cut C must con-
tain a vertex of S, since otherwise C would be a 2-cut in the graph G′ = G{e1,e2,...,ek}
obtained by contracting the sequence of edges {e1, e2, . . . , ek}; however, this graph G′

is 3-connected by Tutte’s theorem. The 2-cut C must also contain a vertex of S, since
otherwise C would be a 2-cut in the graph G, which is assumed to be 3-connected.
Hence, the 2-cut C in the graph Gek contains precisely one vertex of S, say, s3, and
one vertex of V − S, say, x. No connected component of Gek(V − C) can contain
vertices in both S and V − S, since otherwise this would imply that the graph G′

has a 2-cut. It follows that the remaining vertices {s1, s2} in S − C must have the
vertex x as their only neighbor in the graph Gek . Hence, the (original, uncontracted)
graph G contains two vertices x1, x2 in V −S that are neighbors with each of the two
vertices s1, s2 of S − C, forming a K2,2 subgraph.

We claim that we can contract any edge e′ of this K2,2 subgraph of G without
affecting 3-connectivity. This claim follows from the fact that the three disjoint paths
to S that each vertex possesses in the graph G can be chosen so that one path uses
edge s1x1 and another uses s2x2. Hence, contracting the edge s1x1 (or edge s2x2)
will not change the number of disjoint paths to S, i.e., the graph Ge′ is 3-connected.
The proof thus follows by induction.

Corollary 1. Let G = (V,E) be a graph 3-connected to three vertices S =
{s1, s2, s3} ⊂ V . The graph G can be reduced, via edge contraction and removal of
multiedges, to the subgraph induced by S, while preserving 3-connectivity to S at each

278 FRED S. ANNEXSTEIN AND KENNETH A. BERMAN

intermediate stage, and without contracting an induced edge of S.
Proof. The proof is an immediate consequence of Theorem 4, since if we complete

S to a triangle, the graph becomes 3-connected.
We apply the reduction theorem to show that we can inductively obtain a 3-

directional embedding when a graph is 3-connected to a set of vertices S.
Theorem 5. Let G be a graph, and suppose S is any set of three vertices. Then

G is 3-connected to S iff G has a nondegenerate directional S-embedding.
Proof. The proof of the if-part is immediate from Proposition 4. The proof of

the converse follows by induction on the number of reduction operations defined by
Corollary 1 above.

For the inductive hypothesis we assume we have a nondegenerate directional S-
embedding of a reduced graph G′. For the base of the induction embed the three
vertices of S anywhere in general position in R2. Clearly, for an edge addition opera-
tion the induction is trivially extended. Edge expansions involving a single vertex of
S are also trivial. We need only consider the case of an edge expansion not involving
S (i.e., a vertex 3-split operation).

We may assume the vertex a �∈ S involved in the edge expansion is a 3-directional
splitter of its neighbors represented by B ∪ C, where |B| ≥ 2 ≤ |C|. Further, we can
assume w.l.o.g. that a is a 2-directional splitter of B, i.e., there are two points in B
that lie in two distinct directions relative to the reference point a. The proof of the
theorem follows from the following claim.

Claim. There exists in the plane a pair of points sb, sc such that sb is a 3-
directional splitter of B ∪{sc}, and sc is a 3-directional splitter of C ∪{sb}. Further-
more, all previously defined directional constraints towards a are preserved by the new
points, i.e., for each b ∈ B, d(b, a) = d(b, sb) and for each c ∈ C, d(c, a) = d(c, sc).

Proof of claim. Set sb = a. A solution for sc can be found by applying Lemma 2
(the 3-direction constrained splitting lemma), where the point sc plays the role of s in
the statement of Lemma 2. The satisfaction of the first constraint of Lemma 2 ensures
that sb (playing the role of a in the lemma) is a 3-directional splitter of B∪{sc}. The
claim follows by the satisfaction of the remaining constraints of Lemma 2.

6. Conclusion. In this paper we proposed a mathematical model for network
routing based on generating paths in a consistent direction. Our directional model
was developed out of an algebraic and geometric framework. We gave a natural
model for defining directions in real spaces and showed that such directions possess
a fundamental matching property of combinatorial interest. We defined a generaliza-
tion of st-numberings that was based on embedding the vertices in multidimensional
space and applying the defined directions for disjoint path generation. Directional
embeddings are motivated by the fact that they encode the disjoint path structure
and induce strongly independent sink trees with simple local information. We showed
that a dag that is k-connected to a set of sinks has a k-directional embedding in
(k − 1)-space with the sink set as the extreme vertices. Finally, we proved that all 3-
connected graphs have 3-directional embeddings in the plane. The problem of whether
directional embedding exist for k-connected graphs, for k > 3, remains open.

REFERENCES

[1] F.S. Annexstein, K.A. Berman, and R. Swaminathan, A multi-tree generating routing
scheme using acyclic orientations, in Computing and Combinatorics, Proceedings of the
Third Annual International Conference, Lecture Notes in Comput. Sci. 1279, Springer-
Verlag, New York, 1997, pp. 18–22.

DIRECTIONAL ROUTING VIA GENERALIZED st-NUMBERINGS 279

[2] F. Bao, Y. Igarashi, and S.R. Ohring, Reliable broadcasting in product networks, Discrete
Appl. Math., 83 (1998), pp. 3–20.

[3] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, New York, 1992.
[4] J. Cheriyan and S.N. Maheshwari, Finding non-separating induced cycles and independent

spanning trees in 3-connected graphs, J. Algorithms, 9 (1988), pp. 507–537.
[5] J. Cheriyan and J. Reif, Directed s-t numberings, rubber bands, and testing digraph k-vertex

connectivity, Combinatorica, 14 (1994), pp. 435–451.
[6] R. Cohen, B.V. Patel, F. Schaffa, and M. Willebeek-LeMair, The sink tree paradigm:

Connectionless traffic support on ATM LAN’s, IEEE/ACM Trans. on Networking, 4
(1996), pp. 363–374.

[7] T. Corman, C. Leiserson, and R. Rivest, Introduction to Algorithms, McGraw-Hill, New
York, 1994.

[8] S. Even and R.E. Tarjan, Computing an st-numbering, Theoret. Comput. Sci., 2 (1976),
pp. 339–344.

[9] A. Huck, Disproof of a conjecture about independent branchings in k-connected directed
graphs, J. Graph Theory, 20 (1995), pp. 235–239.

[10] A. Itai and M. Rodeh, The multi-tree approach to reliability in distributed networks, Inform.
and Comput., 79 (1988), pp. 43–59.

[11] A. Lempel, S. Even, and I. Cederbaum, An algorithm for planarity testing graphs, in Theory
of Graphs, P. Rosentiehl, ed., Gordon and Breach, New York, 1966, pp. 215–232.

[12] N. Linial, L. Lovász, and A. Wigderson, Rubber bands, convex embeddings, and graph
connectivity, Combinatorica, 8 (1988), pp. 91–102.

[13] A. Schrijver, Fractional packing and covering, in Packing and Covering in Combinatorics,
A. Schrijver, ed., Mathematical Centre Tracts 106, Mathematisch Centrum, Amsterdam,
1979, pp. 201–274.

[14] W.T. Tutte, A theory of 3-connected graphs, Indag. Math. (N.S.), 23 (1961), pp. 441–455.
[15] A. Zehavi and A. Itai, Three tree-paths, J. Graph Theory, 13 (1989), pp. 175–188.

TWO-DIMENSIONAL GANTT CHARTS AND
A SCHEDULING ALGORITHM OF LAWLER∗

MICHEL X. GOEMANS† AND DAVID P. WILLIAMSON‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 3, pp. 281–294

Abstract. In this note we give an alternate proof that a scheduling algorithm of Lawler [E.L.
Lawler, Ann. Discrete Math., 2 (1978), pp. 75–90, E.L. Lawler and J.K. Lenstra, in Ordered Sets,
I. Rival, ed., D. Reidel, 1982, pp. 655–675] finds the optimal solution for the scheduling problem
1|prec|

∑
j
wjCj when the precedence constraints are series-parallel. We do this by using a linear

programming formulation of 1|prec|
∑

j
wjCj introduced by Queyranne and Wang [Math. Oper.

Res., 16 (1991), pp. 1–20]. Queyranne and Wang proved that their formulation completely describes
the scheduling polyhedron in the case of series-parallel constraints; a by-product of our proof of
correctness of Lawler’s algorithm is an alternate proof of this fact. In the course of our proof it
is helpful to use what might be called two-dimensional (2D) Gantt charts. We think these may
find independent use, and to illustrate this we show that some recent work in the area becomes
transparent using 2D Gantt charts.

Key words. scheduling, series-parallel, linear programming

AMS subject classifications. 90B35, 90C27, 68Q25, 90C05

PII. S0895480197330254

1. Introduction. We consider the problem of scheduling n jobs on a single
machine. Each job j must be scheduled for pj units of time, and only one job can be
scheduled at any point in time. We only consider nonpreemptive schedules, in which
all pj units of job j must be scheduled consecutively. Furthermore, the schedule must
obey specified precedence constraints. Precedence constraints are given by a partial
order on the jobs; if i precedes j in the partial order (denoted i→ j), then i must be
completely processed before j can begin its processing. A (possibly negative) weight
wj is associated with job j, and our goal is to find a schedule which minimizes the
sum

∑
j wjCj , where Cj is the time at which job j completes in the given schedule

(the completion time of j). This scheduling problem is denoted 1|prec|∑j wjCj in
the notation of Lawler et al. [6].

The general problem 1|prec|∑j wjCj was shown to be NP-complete by Lenstra
and Rinnooy Kan [7] and Lawler [4]. Nevertheless, special cases are known to be
polynomial-time solvable. In 1978, Lawler [4] gave an O(n log n) time algorithm for
solving 1|prec|∑j wjCj when the given precedence constraints are series-parallel.
Series-parallel precedence constraints can be defined inductively; the base elements are
individual jobs. Given series-parallel constraints on sets of jobs S1 and S2, S1∩S2 = ∅,
the parallel composition of S1 and S2 gives a partial order on S1 ∪ S2 that maintains
the orders on S1 and S2, and if i ∈ S1 and j ∈ S2, then i and j are unordered. The
series composition of S1 and S2 gives a partial order on S1 ∪ S2 that maintains the

∗Received by the editors November 19, 1997; accepted for publication (in revised form) November
18, 1999; published electronically May 15, 2000.

http://www.siam.org/journals/sidma/13-3/33025.html
†Department of Mathematics, MIT, Room 2-351, 77 Massachusetts Avenue, Cambridge, MA

02139 (goemans@math.mit.edu). Part of this work was done while the author was at CORE, Louvain-
La-Neuve, Belgium. Research supported in part by NSF contract 9623859-CCR, ARPA Contract
N00014-95-1-1246, and a Sloan fellowship.

‡IBM T.J. Watson Research Center, Room 33-219, P.O. Box 218, Yorktown Heights, NY 10598
(dpw@watson.ibm.com).

281

282 MICHEL X. GOEMANS AND DAVID P. WILLIAMSON

orders on S1 and S2, and if i ∈ S1 and j ∈ S2, then i precedes j in the partial order.
Often series-parallel constraints are given in terms of a binary structure tree, with
the leaves denoting jobs and the internal nodes denoting either a parallel or series
composition of the two corresponding subtrees.

In this note we give an alternate proof of the correctness of Lawler’s algorithm.
We do this by using a linear programming (LP) formulation of 1|prec|∑j wjCj in-
troduced by Queyranne and Wang [11]. Queyranne and Wang proved that their for-
mulation completely describes the scheduling polyhedron in the case of series-parallel
constraints; a by-product of our proof of correctness of Lawler’s algorithm is an al-
ternate proof of this fact. Other proofs of the correctness of Lawler’s algorithm have
been given (see [4, 10, 9], for example), but to the best of our knowledge, ours is the
first duality-based proof.

In the course of our proof it is helpful to use what might be called two-dimensional
(2D) Gantt charts. Although 2D Gantt charts were introduced in a 1964 paper by
Eastman, Even, and Isaacs [2], they seem to have become buried in the literature. We
use these 2D Gantt charts to obtain geometric intuition into the dual of Queyranne
and Wang’s linear programming formulation. We think 2D Gantt charts may find
further uses, and to illustrate this we show that a recent observation of Hall and
Chudak [3] and a recent theorem of Margot, Queyranne, and Wang [8] (discovered
independently by Chekuri and Motwani [1]) are transparent using 2D Gantt charts.

The remainder of the note is structured as follows. In section 2 we introduce 2D
Gantt charts and illustrate their usefulness. In section 3 we review the LP formulation
for 1|prec|∑j wjCj . Finally, in section 4 we turn to the proof of correctness of Lawler’s
algorithm.

2. 2D Gantt charts. We first need the following notation. Let N = {1, . . . , n}
denote the set of all jobs. For any set S of jobs, let w(S) =

∑
j∈S wj and p(S) =∑

j∈S pj .
A traditional Gantt chart has a single dimension of processing time, in which jobs

are represented as blocks of length pj (see Figure 1).

Processing time

Job 1 Job 2 Job 3 Job 4

Fig. 1. A Gantt chart.

In a 2D Gantt chart, we introduce a second axis of weight. The chart starts at the
point (0, w(N)) and ends at (p(N), 0). Each job, say j, is represented by a rectangle
of length pj and height wj whose position is defined by a startpoint and an endpoint.
The startpoint (t, w) of a job is the endpoint of the previous job (or (0, w(N)) for
the first job) while its endpoint is (t + pj , w − wj). See Figure 2 for an illustration
in which job 3 has a negative weight. The total amount of weight that has not been
completed yet at any point in time—the uncompleted work—can be easily read off
from the 2D Gantt chart: this corresponds to the bold line in the figure, and it is
composed of the upper side of each rectangle for the jobs of positive weight and of the
lower side of each rectangle for the jobs of nonpositive weight. The value

∑
j wjCj of

a schedule can then be easily inferred from the 2D Gantt chart; it is simply the area
below the uncompleted work line, as shaded in Figure 3. This is true even if there are

A SCHEDULING ALGORITHM OF LAWLER 283

Processing time

Weight

Job 4
Job 3

Job 2

Job 1

Fig. 2. A 2D Gantt chart. Job 3 has a negative weight.

Processing time

Weight
Job 1

Job 2

Job 3 Job 4

Fig. 3. The area of a schedule.

negative weight jobs since w1p1 +w2(p1 + p2) + · · ·+wn(p1 + p2 + · · ·+ pn) can also
be written as p1(w1 +w2 + · · ·+wn) + p2(w2 +w3 + · · ·+wn) + · · ·+ pnwn. We will
refer to this shaded area as the area of the schedule. Thus minimizing

∑
j wjCj over

nonpreemptive schedules is equivalent to arranging the jobs as shown in the 2D Gantt
chart so as to minimize its area. If we have negative weights and the chart of a given
schedule goes below the x axis, then this means that, by postponing the processing of
the jobs following that point, we can decrease the weighted sum of completion times
arbitrarily and the problem is unbounded. We will see that this is the only possible
situation to make the objective function unbounded; in particular, if the problem is
bounded, then there will not be any idle time in an optimum schedule. As a result,
we will only consider schedules without idle time.

For convenience, we will often draw a line from the startpoint to the endpoint of
the rectangle representing a job. We will denote minus the slope of this line segment
as ρ(j) = wj/pj , and we will sometimes refer to this line segment as the slope of
job j. See Figure 4. We will let ρ(S) denote the slope of a set S of jobs, so that
ρ(S) = w(S)/p(S), where w(S) =

∑
j∈S wj and p(S) =

∑
j∈S pj . The dotted line in

the figure represents ρ(S) for S = {1, 2, 3}. Observe that the area of a schedule is
equal to the area below its slopes plus

∑
j∈N

1
2wjpj . The area below the slopes thus

represents
∑
j∈N wj(Cj− 1

2pj) =
∑
j∈N wjMj , where Mj denotes the mean busy time

of job j, that is, the midpoint between its start and its completion.

To show the usefulness of this concept, we illustrate two recently discovered facts
about 1|prec|∑j wjCj using 2D Gantt charts. First, Hall and Chudak [3] made the
following observation (see Von Arnim, Faigle, and Schrader [14] for the case pj = 1).
Given an instance (p, w,→) of 1|prec|∑j wjCj , where → is the precedence relation,
if one creates a new instance (p′, w′,→′) by setting p′j = wj and w′

j = pj for all j, and
j →′ i iff i → j, then an optimal schedule for (p′, w′,→′) is in the opposite order of

284 MICHEL X. GOEMANS AND DAVID P. WILLIAMSON

Processing time

Weight
Job 1

Job 2

Job 3 Job 4

Fig. 4. The slope of jobs and of a set of jobs.

an optimal schedule for (p, w,→) and has the same value. This follows quite simply
by displaying any solution for (p, w,→) on a 2D Gantt chart and flipping the axes to
obtain a solution of the same value for (p′, w′,→′). See Figure 5 for an illustration.

Job 1

Processing time

Weight

Processing time

Weight

Job 2

Job 1

Job 3

Job 3

Job 2

Fig. 5. Illustration of the Hall–Chudak observation.

Also, Margot, Queyranne, and Wang [8] recently showed the following (also dis-
covered independently by Chekuri and Motwani [1]): suppose we have an instance of
1|prec|∑j wjCj such that all weights are nonnegative and for any initial set of jobs
S (i.e., there exists a valid schedule in which all the jobs in S are scheduled before
all jobs in N − S), ρ(S) ≤ ρ(N). Then any valid schedule comes within a factor of 2
of optimal. Given the condition ρ(S) ≤ ρ(N) for any initial set S, using a 2D Gantt
chart it is easy to see that the slopes of the jobs will always remain above the slope of
the entire set of jobs. Thus for any schedule

∑
j wjCj ≥ 1

2w(N)p(N), since its area

will always be at least 1
2w(N)p(N). See Figure 6 for an illustration. But certainly∑

j wjCj ≤ w(N)p(N), so that any schedule is no more than twice the optimal value.

This observation, together with a result of Sidney [12], leads to a 2-approximation
algorithm for general instances of 1|prec|∑j wjCj as observed by Chekuri and Mot-
wani [1]. Sidney [12] shows that if we let S be an initial set of jobs of maximum ρ
value, then there exists an optimum solution to 1|prec|∑j wjCj for which the jobs in
S are processed before any job in N \ S. This result can be shown using 2D Gantt
charts, and this is left as a (nontrivial) exercise to the reader. Chekuri and Motwani
[1] propose to find such a set S (which can be done using parametric maximum flow
techniques), process these jobs first in any valid ordering, and repeat the procedure

A SCHEDULING ALGORITHM OF LAWLER 285

Weight

p(N)

w(N)

Processing time

Fig. 6. Illustration of the Margot, Queyranne, and Wang result.

with the remaining jobs in N \S. Their previous observation together with the result
of Sidney guarantees that the solution they construct is within a factor of 2 of the
optimum.

3. A linear program for 1|prec|∑j wjCj and some preliminaries. We
now turn to proving that a scheduling algorithm of Lawler for 1|prec|∑j wjCj is op-
timal when the precedence constraints are series-parallel. The proof uses the following
linear programming formulation of the problem

Min
∑

j

wj(Mj + pj/2)

subject to

(1)
∑

j∈S
pjMj ≥ 1

2
p(S)2, S ⊆ N,

(2)
1

p(B)

∑

j∈B
pjMj − 1

p(A)

∑

j∈A
pjMj ≥ 1

2
(p(A) + p(B)),

A ⊆ N, B ⊆ N −A, A→ B,

where A→ B means that the precedence constraints enforce that each job in A must
be scheduled before each job in B. In this formulation, Mj represents the mean busy
time of job j. By adopting the convention that ∅ → S for any S, we could simply
get rid of constraint (1). Queyranne and Wang [11] have shown that the completion
time reformulations of constraints (1) and (2) completely describe the scheduling
polyhedron when the precedence constraints are series-parallel (also shown by Von
Arnim, Faigle, and Schrader [14] in the case pj = 1 for all jobs). A by-product of our
proof of correctness of Lawler’s algorithm is an alternate proof of this fact.

To see that constraint (1) is valid, choose any S ⊆ N ; suppose S = {1, . . . , k}.
If the jobs 1, . . . , k are the first jobs scheduled, then simple algebra shows that∑
j∈S pjMj = 1

2p(S)2 (notice that this does not depend on the ordering of the jobs).
In any valid schedule the sum is at least as large, and hence inequality (1) is valid.
More generally, if the jobs in S are continuously scheduled between s and t = s+p(S)
then

∑
j∈S pjMj =

(
s+ 1

2p(S)
)
p(S) =

(
t− 1

2p(S)
)
p(S). Hence in any valid schedule

286 MICHEL X. GOEMANS AND DAVID P. WILLIAMSON

in which the jobs in S are scheduled (not necessarily continuously) between s and t,
we have

(
s+

1

2
p(S)

)
p(S) ≤

∑

j∈S
pjMj ≤

(
t− 1

2
p(S)

)
p(S).(3)

To see that constraint (2) is valid, choose any A and B obeying the conditions. From
(3), we derive that 1

p(B)

∑
j∈B pjMj ≥ τ + 1

2p(B) and 1
p(A)

∑
j∈A pjMj ≤ τ − 1

2p(A),

where τ is any time between the completion of A and B. Subtracting these two
inequalities gives (2). Note that an inequality of the form (2) is tight exactly when
all jobs in A are processed from time τ − p(A) to τ (for some τ), followed by jobs in
B processed from time τ to time τ + p(B).

To prove the optimality of Lawler’s algorithm, we will construct a feasible solution
to the dual of the linear program above:

Max
1

2

∑

S

p(S)2yS +
1

2

∑

A,B

(p(A) + p(B))zA,B +
1

2

∑

j

wjpj

subject to
∑

S:j∈S
yS +

∑

A,B:j∈B

1

p(B)
zA,B −

∑

A,B:j∈A

1

p(A)
zA,B = ρ(j) ∀j,

yS ≥ 0 ∀S ⊆ N,

zA,B ≥ 0 ∀A ⊆ N,B ⊆ N −A,A→ B.

We will show that our dual solution obeys the complementary slackness conditions
with respect to the Mj constructed by Lawler’s algorithm. Assuming that all pj > 0,
notice that if we have a solution M and (y, z) that obey the complementary slackness
relations, then by the observations above, if yS > 0, then the jobs in S must all appear
at the beginning of the schedule, and if zA,B > 0, then the jobs in A and B are all
scheduled together, with the jobs in A appearing immediately before those in B.

As a warm-up exercise, suppose that ρ(1) ≥ ρ(2) ≥ · · · ≥ ρ(n) ≥ 0, and the
schedule 1, . . . , n is compatible with the precedence constraints. Notice that we require
that the minimum slope ρ(n) be nonnegative; otherwise the problem is unbounded
since we can postpone the processing of this last job arbitrarily. Then the dual solution

y{1} = ρ(1)− ρ(2)

y{1,2} = ρ(2)− ρ(3)

...

y{1,...,n−1} = ρ(n− 1)− ρ(n)

y{1,...,n} = ρ(n)

and all other variables set to zero are feasible and obey the complementary slackness
conditions by the discussion above. Hence the schedule 1, . . . , n is optimal. Notice
that this gives an alternate proof of Smith’s rule [13], which states that scheduling
jobs in order of nonincreasing ρ value gives the optimal schedule for problem instances
without precedence constraints.

We now consider this simple case from the perspective of 2D Gantt charts. We
observe that in this case, the diagonals of the jobs in a 2D Gantt chart representation

A SCHEDULING ALGORITHM OF LAWLER 287

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����

����
����
����
����
����
����

������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������

Weight

Processing time

Fig. 7. Illustration of Smith’s rule. Shaded areas indicate the n triangles that account for the
area of the schedule (after 1

2

∑
j
wjpj is included).

of the sequence 1, 2, . . . , n form a piecewise-linear convex function (see Figure 7).
Note also that the area of the schedule can be expressed as

∑
j∈N

1
2wjpj plus the area

below the slopes of the jobs. This area can be decomposed into n triangles, shown
as shaded regions in Figure 7. These triangles are formed by extending the slope
of each job to the y axis. We associate with job j the triangle formed between the
line from the slope of job j and that of the slope of job j + 1 (where we use the y
axis of slope ρ(n + 1) = 0 for job n + 1). Then the “base” of the jth triangle on
the y axis is p({1, . . . , j})(ρ(j) − ρ(j + 1)), and its height is p({1, . . . , j}), so that
its area is exactly 1

2p({1, . . . , j})2(ρ(j) − ρ(j + 1)) = 1
2p({1, . . . , j})2y{1,...,j}, using

the dual solution of the preceding paragraph. Then the total area of the schedule is
1
2

∑
S p(S)2yS + 1

2

∑
j wjpj , or exactly the value of the dual objective function.

4. Lawler’s algorithm. We now turn to Lawler’s algorithm. Lawler’s algorithm
works bottom-up on the series-parallel structure tree of the precedence constraints.
We give the algorithm below, but first we will try to give some intuition on how
the algorithm and our dual construction works. One perspective is that as much as
possible it tries to follow Smith’s rule and makes sure that the jobs in the current
subtree can be maintained in order of nonincreasing ρ, so that the dual solution given
above proves the optimality of the schedule. This may not always be possible, so in
some cases two or more jobs are replaced by a composite job. The composite jobs may
be composed themselves of composite jobs. The weight of a composite job of a set S
of jobs is w(S), and its processing time is p(S), so that ρ(S) = w(S)/p(S). A sequence
of the jobs forming the composite job is given, so that the effect of scheduling the
p(S) time units of the composite job is that the jobs in S are scheduled together in
the given sequence.

To be more specific, suppose we have a parallel composition of two sets of jobs
S1 and S2, such that the ρ values of the jobs in Si can be scheduled in nonincreasing
order. Then the jobs in S = S1 ∪ S2 can be scheduled in nonincreasing ρ order. (We
should stress that, when scheduling in nonincreasing order of ρ values, the slopes of
the jobs form a convex function which starts to increase once we start processing the

288 MICHEL X. GOEMANS AND DAVID P. WILLIAMSON

Weight

Processing time

Fig. 8. Slopes in each Si are nonincreasing before performing a series or parallel composition.

Weight

Processing time

a
a

b1 1
2a

3

2b

Fig. 9. An illustration of a composite job c resulting from a series composition of two sets of
jobs. The slope ρ(c) is shown as the bold dashed line.

jobs with negative ρ value; see Figure 8 for an illustration.) However, if we have a
series composition of two sets of jobs S1 and S2, then it is possible that some job
in S2 has ρ value greater than some job in S1. In this case, we create a composite
job c formed of a certain number of jobs of S1 with lowest ρ values and a certain
number of jobs of S2 with greatest ρ value. The crucial property to achieve is that
the slope of the composite job c is no greater than the ρ value of any remaining
job in S1 and no less than the ρ value of any remaining job in S2. The scheduling
of job c is then understood to mean that the jobs taken from S1 are scheduled in
order of nonincreasing ρ, followed immediately by the jobs taken from S2 in order of
nonincreasing ρ.

There is a unique way of performing this aggregation of jobs, as one can easily
see from the 2D Gantt chart. Consider, for example, the situation in Figure 9. In
this case, there is the series composition of four jobs in S1 (the four jobs to the left
of the vertical line, which we will call the dividing line) and three jobs in S2. Note
that both S1 and S2 can be scheduled according to Smith’s rule, so that the slopes of
the jobs in each form a piecewise-linear convex function. A composite job c is formed
from a3, a2, a1, b1, and b2. In general, the composite job is formed by the jobs whose
slopes do not participate in the lower envelope of the slopes in S1 and in S2.

A SCHEDULING ALGORITHM OF LAWLER 289

In Lawler’s algorithm, for a series composition of S1 and S2, the composite job
was obtained by repeatedly combining two jobs at a time. More precisely, let j1 be
the job in S1 that minimizes ρ(j), and let j2 be the job in S2 that maximizes ρ(j).
If ρ(j1) ≥ ρ(j2), then S = S1 ∪ S2 can be scheduled in nonincreasing ρ order, and
we stop. Otherwise, we remove j1 from S1 and j2 from S2 and form a composite job
c = (j1, j2). As long as there is a job j in S1 whose ρ value is lower than ρ(c) or a job
j in S2 whose ρ value is greater than ρ(c), we remove j from S1 or S2 and add it to
the composite job c. When this terminates, ρ(j) ≥ ρ(c) for all jobs remaining in S1

(if any), and ρ(c) ≥ ρ(j) for any job j remaining in S2 (if any).

When performing a series composition of S1 and S2 which concatenates jobs
ak, ak−1, . . . , a1 ∈ S1 (where ρ(ai) ≥ ρ(ai−1)) and jobs b1, b2, . . . , b� ∈ S2 (where
ρ(bi) ≥ ρ(bi+1)) into a single job c, we define the z variables in such a way that the
ρ value of ai effectively increases to ρ(c) and the ρ value of bj effectively decreases to
ρ(c). More formally, we construct dual variables zA,B ≥ 0 such that zA,B > 0 only
if A ⊆ S1, B ⊆ S2, the jobs in A appear immediately before B in the schedule, and
such that for all ai,

ρ(c) = ρ(ai) +
∑

A,B:ai∈A

1

p(A)
zA,B ,

and for all jobs bj ,

ρ(c) = ρ(bj)−
∑

A,B:bj∈B

1

p(B)
zA,B .

All the jobs composing c now look identical in terms of ρ values. Later on, if we set a
variable zA,B , or even yS , involving the composite job c, we simply need to replace c
by the set of jobs (or by the set of composite jobs and proceed recursively) to get the
appropriate dual solution. In particular, if an ai or bj is itself a composite job formed
in a previous series composition, applying the argument recursively ensures that all
the (original) jobs that compose c look identical in terms of ρ values. In the process of
defining zA,B , we need to ensure that the contribution of these newly defined variables
to the dual objective function corresponds exactly to the area between the slope of
the composite job c and the slopes of the jobs composing c (the area shaded on Figure
12); this is the area of the schedule which is lost by replacing the jobs composing c into
a single composite job. If we can show that these newly defined variables account for
this lost area, then by induction it suffices to show that, at the end, after processing
the root of the series-parallel structure tree, we can account for the area below the
resulting schedule, and this will follow from our discussion of Smith’s rule from section
3.

The z variables are defined as follows. Let Ai = {a1, . . . , ai} for i ≤ k and
Bj = {b1, . . . , bj} for j ≤ �. We set z = 0 and give the procedure shown in Figure 10
for computing zi,j ≡ zAi,Bj , where we use the convention that Ak+1 ≡ Ak, B�+1 ≡ B�,
ρ(ak+1) ≡ ρ(b�+1) ≡ ρ(Ak ∪ B�). As stated above, we need to show that z ≥ 0, that
for job ai

ρ(Ak ∪B�)−
∑

r,s:ai∈Ar

1

p(Ar)
zr,s = ρ(ai),

290 MICHEL X. GOEMANS AND DAVID P. WILLIAMSON

1. for i← 1 to k
2. αi ← ρ(ai+1)p(Ai+1)− w(Ai+1)
3. for j ← 1 to �
4. βj ← w(Bj+1)− ρ(bj+1)p(Bj+1)
5. i← 1
6. j ← 1
7. x← 0
8. while i ≤ k and j ≤ �
9. if αi < βj
10. zi,j ← αi − x
11. x← αi
12. i← i+ 1
13. else
14. zi,j ← βj − x
15. x← βj
16. j ← j + 1

Fig. 10. Procedure for computing zi,j .

and that for job bj

ρ(Ak ∪B�) +
∑

r,s:bj∈Bs

1

p(Bs)
zr,s = ρ(bj).

Before we formally prove the correctness of these values for zi,j , we use 2D Gantt
charts to give some intuition of where these values come from. In the situation
depicted in Figure 9, we extend the slopes of a3, a2, and b2 to intersect the dividing
line: these extensions are shown as dashed lines. If we think of the origin of the
dividing line as the point at which a1 and b1 touch, then αi is the point on the
dividing line at which the slope extended from job ai+1 touches the dividing line.
Similarly, βi is the point on the dividing line at which the slope extended from job
bi+1 touches the dividing line. See Figure 11 for a blowup of the dividing line. Then
the zi,j are computed by walking down the dividing line from the origin to the next
point on the line: zi,j is the difference between the current point and the last one,
and i gets incremented if an α is encountered, whereas j gets incremented if a β is
encountered. Now observe that 1

2

∑
i,j(p(Ai) + p(Bj))zi,j expresses exactly the area

above the slope of composite job c but underneath the slopes of the jobs ai and bi,
as needed. To see this, observe that the shaded area in Figure 11 is the area of two
triangles, each with base z2,1 = β1−α1, one of height p(A2) and one of height p(B1),
for a total area of 1

2z2,1(p(A2) + p(B1)). The area between the lower envelope and
the slopes of the jobs can be expressed as the sum of pairs of triangles like this pair,
as shown in Figure 12.

We now turn to the formal proof of the correctness of the dual variables. To show
that z ≥ 0, note that by construction zi,j is either αi−αi−1, βj − βj−1, αi− βj−1, or
βj − αi−1. In the last two cases, it follows immediately that zi,j ≥ 0: in the previous
iteration of the program (when x was set to βj−1 (resp., αi−1)), it was the case that
αi ≥ βj−1 (resp., βj > αi−1). In the first case,

A SCHEDULING ALGORITHM OF LAWLER 291

3a
a2

a

b1

1

b2

α

α

α = β

1

1

3 2

2

β

0

Fig. 11. A blowup of the dividing line, and intersections of it with extensions of slopes of the
ai and bi, resulting in the αi+1 and βi+1. By construction z2,1 = β1 −α1 and the gray shaded area
is the sum of two triangles of base z2,1 and heights p(A2) and p(B1), resp.

a1

b1

2b

a2

3a

Fig. 12. An illustration showing that the area between the slope of a composite job and its
constituent jobs can be expressed as the sum of the area of pairs of triangles.

αi − αi−1 = ρ(ai+1)p(Ai+1)− ρ(ai)p(Ai) + w(Ai)− w(Ai+1)

= p(Ai)(ρ(ai+1)− ρ(ai)) + ρ(ai+1)p(ai+1)− w(ai+1)

= p(Ai)(ρ(ai+1)− ρ(ai))

≥ 0.

292 MICHEL X. GOEMANS AND DAVID P. WILLIAMSON

In the second case,

βj − βj−1 = w(Bj+1)− w(Bj) + ρ(bj)p(Bj)− ρ(bj+1)p(Bj+1)

= p(Bj)(ρ(bj)− ρ(bj+1))− ρ(bj+1)p(bj+1) + w(bj+1)

= p(Bj)(ρ(bj)− ρ(bj+1))

≥ 0.

To see that

ρ(Ak ∪B�)−
∑

r,s:ai∈Ar

1

p(Ar)
zr,s = ρ(ai)

for job ai, first observe that by construction

∑

r,s:ai∈Ar

1

p(Ar)
zr,s =

∑

r:ai∈Ar

1

p(Ar)

∑

s

zr,s =

k∑

r=i

1

p(Ar)
(αr − αr−1).

Thus we have

ρ(Ak ∪B�)−
∑

r,s:ai∈Ap

1

p(Ar)
zr,s = ρ(Ak ∪B�)−

k∑

r=i

1

p(Ar)
(αr − αr−1)

= ρ(Ak ∪B�)−
k∑

r=i

1

p(Ar)
(p(Ar)(ρ(ar+1)− ρ(ar)))

= ρ(Ak ∪B�)− (ρ(Ak ∪B�)− ρ(ai))

= ρ(ai).

Showing that

ρ(Ak ∪B�) +
∑

r,s:bj∈Bs

1

p(Bs)
zr,s = ρ(bj)

for job bj is similar. First we observe that

∑

r,s:bj∈Bs

1

p(Bs)
zr,s =

�∑

s=j

1

p(Bs)
(βs − βs−1),

so that

ρ(Ak ∪B�) +
∑

r,s:bj∈Bs

1

p(Bs)
zr,s = ρ(Ak ∪B�) +

�∑

s=j

1

p(Bs)
(βs − βs−1)

= ρ(Ak ∪B�) +

�∑

s=j

1

p(Bs)
(p(Bs)(ρ(bs)− ρ(bs+1)))

= ρ(Ak ∪B�) + (ρ(bj)− ρ(Ak ∪B�))
= ρ(bj).

After processing the root of the series-parallel structure tree, we are left with
the final set of jobs c1, c2, . . . , ck returned by the algorithm (some of them possibly

A SCHEDULING ALGORITHM OF LAWLER 293

composite jobs), with ρ(c1) ≥ ρ(c2) ≥ · · · ≥ ρ(ck), and the jobs scheduled as ordered.
Let J(ci) denote the set of all the actual jobs contained in the job ci. There are two
possibilities. Either ρ(ck) ≥ 0 or ρ(ck) < 0. In the first case, we can set

yJ(c1) = ρ(c1)− ρ(c2)

yJ(c1)∪J(c2) = ρ(c2)− ρ(c3)

...

y∪k−1
i=1

J(ci)
= ρ(ck−1)− ρ(ck)

y∪k
i=1

J(ci) = ρ(ck),

so that complementary slackness is obeyed for the y variables with respect to the
schedule, and so that for any given actual job j ∈ J(ci),

∑
S:j∈S yS = ρ(ci). We have

therefore derived that the schedule is optimum both for the problem and for the linear
programming formulation of Queyranne and Wang [11].

In the second case, i.e., when ρ(ck) < 0, we can postpone the processing of the
jobs J(ck) and make the schedule of arbitrarily negative objective function value.
Since any feasible schedule leads to a feasible primal solution for the LP formulation
we are considering, this LP is also unbounded.

In summary, we have just shown that if there is an optimum schedule, then
this schedule provides an optimum solution to the LP formulation, and if there is
none (and the problem is unbounded), the LP is also unbounded. We have therefore
simultaneously given a proof of correctness of Lawler’s algorithm and an alternate
proof of the polyhedral result of Queyranne and Wang [11].

Acknowledgments. We thank David Shmoys for mentioning this problem to
us and pointing out reference [2]. We also thank Jan Karel Lenstra for publicizing
the problem in his talk at the 1997 International Symposium on Mathematical Pro-
gramming, and Gideon Weiss for convincing us to modify slightly our definition of
2D Gantt charts. Finally, we thank an anonymous referee for several very useful
comments.

REFERENCES

[1] C. Chekuri and R. Motwani, Precedence Constrained Scheduling to Minimize Weighted Com-
pletion Time on a Single Machine, Technical Note STAN-CS-TN-97-58, Department of
Computer Science, Stanford University, Stanford, CA, 1997.

[2] W. L. Eastman, S. Even, and I. M. Isaacs, Bounds for the optimal scheduling of n jobs on
m processors, Management Sci., 11 (1964), pp. 268–279.

[3] L. Hall and F. Chudak, private communication, 1997.
[4] E. L. Lawler, Sequencing jobs to minimize total weighted completion time subject to precedence

constraints, Ann. Discrete Math., 2 (1978), pp. 75–90.
[5] E. L. Lawler and J. K. Lenstra, Machine scheduling with precedence constraints, in Ordered

Sets, I. Rival, ed., D. Reidel, Boston, MA, 1982, pp. 655–675.
[6] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, Sequencing and

scheduling: Algorithms and complexity, in Logistics of Production and Inventory, S. Graves,
A. Rinnooy Kan, and P. Zipkin, eds., Handbooks Oper. Res. Management Sci. 4, North
Holland, Amsterdam 1993, pp. 445–522.

[7] J. K. Lenstra and A. H. G. Rinnooy Kan, Complexity of scheduling under precedence con-
straints, Oper. Res., 26 (1978), pp. 22–35.

[8] F. Margot, M. Queyranne, and Y. Wang, private communication, 1997.
[9] C. L. Monma, Properties and Efficient Algorithms for Certain Classes of Sequencing Problems,

Ph.D. thesis, Cornell University, School of Operations Research and Industrial Engineering,
Ithaca, NY, 1978.

294 MICHEL X. GOEMANS AND DAVID P. WILLIAMSON

[10] C. L. Monma and J. B. Sidney, Sequencing with series-parallel precedence constraints, Math.
Oper. Res., 4 (1979), pp. 215–224.

[11] M. Queyranne and Y. Wang, Single-machine scheduling polyhedra with precedence con-
straints, Math. Oper. Res., 16 (1991), pp. 1–20.

[12] J. B. Sidney, Decomposition algorithms for single-machine sequencing with precedence rela-
tions and deferral costs, Oper. Res., 23 (1975), pp. 283–298.

[13] W. E. Smith, Various optimizers for single-stage production, Naval Res. Logist., 3 (1956),
pp. 59–66.

[14] A. Von Arnim, U. Faigle, and R. Schrader, The permutahedron of series-parallel posets,
Discrete Appl. Math., 28 (1990), pp. 3–9.

THE SIZE OF A GRAPH WITHOUT
TOPOLOGICAL COMPLETE SUBGRAPHS∗

M. CERA† , A. DIÁNEZ† , AND A. MÁRQUEZ‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 3, pp. 295–301

Abstract. In this note we show a new upperbound for the function ex(n;TKp), i.e., the
maximum number of edges of a graph of order n not containing a subgraph homeomorphic to the

complete graph of order p. Further, for
⌈
2n+5
3

⌉
≤ p < n we provide exact values for this function.

Key words. extremal graph theory, topological complete subgraphs

AMS subject classifications. 05C35, 05C70

PII. S0895480197315941

1. Introduction. As Bollobas says in [1], for many graph theorists one of the
most general extremal problems is to find exact values of the function ex(n;TKp),
i.e., the maximum number of edges of a graph of order n not containing a sub-
graph homeomorphic to Kp, where Kp is the complete graph with p vertices. But
exact results for that function are only known for small values of p, trivially
ex(n, TK3) = n− 1 (n ≥ 3), and Dirac [2] proved that ex(n, TK4) = 2n− 3 (n ≥ 3).
For the case p = 5, Dirac conjectured [3] that ex(n, TK5) = 3n − 6. But this value
remains a conjecture and only some upperbounds due to Thomassen [7] are known,
as ex(n, TK5) ≤ 4n − 11. For greater values of p, Mader [5] showed that for every
p there exists a constant cp such that ex(n, TKp) ≤ cpn (n ≥ p). Later Mader [6]
himself proved that

ex(n;TKp) ≤ t(p)n−
(
t(p) + 1

2

)
,

where n ≥ t(p) = 3·2p−3−p with p ≥ 4. And by considering the graphKp−2+Kn−p+2

it is easy to get that

ex(n;TKp) ≥ (p− 2)n−
(
p− 1

2

)
.

This inequality gives, actually, the exact results of the function for small values of
p, but Mader [5] noticed, considering the complete 5-partite graph with two vertices
in each class, that 7 is the greatest value of p for which equality can hold.

The aim of this note is to provide an upperbound for the function ex(n;TKp),
showing that it is optimal in some situations, in such a way that for sufficiently large
values of n and p the previous upperbound will be an equality. Actually, if

⌈
2n+5

3

⌉ ≤
p < n, we will show exact values for ex(n;TKp). Notations and terminologies not
explicitly given here can be found in [1].

∗Received by the editors January 31, 1997; accepted for publication (in revised form) February
1, 2000; published electronically May 15, 2000.

http://www.siam.org/journals/sidma/13-3/31594.html
†E.T.S. Arquitectura, Universidad de Sevilla, Reina Mercedes 2, 41012-Sevilla, Spain (mcera@

cica.es, ana@apolo.us.es).
‡Facultad de Informática, Universidad de Sevilla, Reina Mercedes s/n, 41012-Sevilla, Spain

(almar@cica.es).

295

296 M. CERA, A. DIÁNEZ, AND A. MÁRQUEZ

2. Definitions and notations. The study of ex(n, TKp) may be stated equiv-
alently as ex(n, TKn−q) for appropriate values of q. In general, the technique we will
apply to get our bounds is to choose q vertices of a graph G with n vertices in such a
way that the remaining n− q vertices of G will be the branch vertices of the subgraph
of G homeomorphic to Kn−q. (A vertex is called a branch vertex if its degree is not
2.)

In order to achieve the goal described above, we introduce some definitions and
notations. For a graph H and a set {v1, . . . , vq} of vertices of H, we denote by
H0 = H and by Hk for k = 1, . . . , q the induced subgraph in H by the set of vertices
V (H)− {v1, . . . , vk} (Hk = 〈V (H)− {v1, . . . , vk}〉H).

Most of the lemmas (as previous results) of this paper are devoted to obtaining
graphs with certain prescribed properties, and those graphs will be used to prove the
bounds given in the theorems. For the sake of simplicity (or in order to avoid excessive
repetitions), we can say that if r, t are two nonnegative integers, we define the family
of graphs Ctr as the set of graphs H such that there exists a set {v1, . . . , vr} of vertices
of H verifying

(1) δHj−1(vj) ≥ δHj (vj+1), for j = 1, . . . , r − 1.
(2) For each h positive integer, if there exists v ∈ Hk with k = 1, . . . , r such that

δHk
(v) ≥ h, then δHj

(vj+1) ≥ h for all j = 1, . . . , k.
(3) Hr has at most t edges (|E(Hr)| ≤ t).
First of all, we check that the families given above are nonempty.

Lemma 1. Let H be a graph with n vertices. Then, for any r ≤ n, there exists t
such that H is in Ctr.

Proof. Let δ0 be the maximum degree of H and ∆0 the set of vertices of H
with degree δ0. Let v1 be a vertex of ∆0. We consider H1 = 〈V (H) − {v1}〉H ,
δ1 = maxv∈V (H1){δH1

(v)}, and ∆1 the set of vertices of H1 with degree δ1. For each

v ∈ ∆1 we note by H1(v) = 〈v1, v〉H and δ̂1 = maxv∈∆1
{δH1(v)(v)}, we get v2 ∈ ∆1

such that δH1(v2)(v2) = δ̂1. Then we may construct the chain of subgraph {Hk}0≤k≤r,
noting by δk = maxv∈V (Hk){δHk

(v)} and by ∆k = {v ∈ V (Hk) / δHk
(v) = δk}. For

each v ∈ ∆k, letHk(v) be the subgraph 〈v1, . . . , vk, v〉H and δ̂k = maxv∈∆k
{δHk(v)(v)}.

We choose vk+1 ∈ ∆k in such a way that δHk(vk+1)(vk+1) = δ̂k. Hence, if v ∈
V (Hk) and δHk

(v) ≥ h, then δHj (vj+1) ≥ h for j ≤ k with k = 1, . . . , r. The result
follows.

In the previous lemma, the most important role is played by the vertices (r), and
we do not care about the number of edges (t); obviously, from now on we will try
to obtain tight values on the number of edges and from those values we will get our
bounds.

3. An upperbound of ex(n,TKp). In this section, we provide a new upper-
bound of ex(n, TKp); this upperbound will turn out to be the exact value of the
function in many cases, as we will see in the next section.

First, we will give a sufficient condition on the edges of a graph to belong to the
class Cqq .

Lemma 2. Let n, q be two positive integers, with q < n. If H is a graph with n
vertices and 2q edges, then

(1) H ∈ Cqq .
(2) δHq (v) ≤ 1 for v ∈ V (Hq).

Proof. Let Hq = {v1, . . . , vq} be a set obtained as in Lemma 1. If there exists
a vertex v ∈ Hq such that δHq (v) ≥ 1, then δHj (vj+1) ≥ 1 for j = 1, . . . , q. Thus

GRAPH WITHOUT TOPOLOGICAL COMPLETE SUBGRAPHS 297

|E(Hq)| ≤ q, and therefore H ∈ Cqq . Furthermore, if there exists v ∈ Hq such that
δHq (v) ≥ 2, then δHj (vj+1) ≥ 2 for every j = 1, . . . , q, and hence |E(H)| ≥ 2q+2 > q,
but this is not possible. Therefore, it follows that δHq (v) ≤ 1 for v ∈ V (Hq).

As we said before, once we have obtained in Lemma 2 an upperbound to the
number of edges (refining, in this way, Lemma 1), we can get an upperbound to
ex(n, TKp); thus, the first result related to this function is the following theorem.

Theorem 3. Let n, p be two positive integers, with n > p. Then

(p− 2)n−
(
p− 1

2

)
≤ ex(n, TKp) ≤

(
n
2

)
− (2n− 2p+ 1).

Proof. The upperbound is equivalent to

ex(n, TKn−q) ≤
(
n
2

)
− (2q + 1),

where q is a positive integer with q < n. Let G be a graph with (
n
2

)− 2q edges. We

will prove that G contains a subgraph homeomorphic to Kn−q.
Let H = G be the complement of G. (The complement G of a graph G also

has V (G) as its vertex set, but two vertices are adjacent in G if and only if they
are not adjacent in G.) By Lemma 2, there exists a subset {v1, . . . , vq} of vertices
of G such that s (s ≤ q) nonadjacent edges {e1, . . . , es} are missing in Gq to create
a complete graph of size n − q. We will show that the vertices of Gq are going to
be branch vertices of a subgraph of G homeomorphic to Kn−q. Let ai, bi be the
vertices of the edge ei (ei = (ai, bi)) for i = 1, . . . , s. There exists a path from ai
to bi crossing a vertex of the set {v1, . . . , vq} for i = 1, . . . , s and those paths are
nonadjacent for each i ∈ {1, . . . , s}. These assertions can be shown if we construct
the following bipartite graph: the two nonadjacent vertices sets X = {e1, . . . , es} and
Y = {v1, . . . , vq}, and a vertex ei of X, are joined with a vertex vj of Y if there exists
the path aivjbi in G. This bipartite graph has a complete matching because if there
exists ei ∈ X nonadjacent to vq−i+1 ∈ Y , then either ai or bi has degree at least 2 in
Hq−i. And by Lemma 2 we know that δHj−1

(vj) ≥ 2 for every j = 1, . . . , q − i+ 1,
thus |E(H)| ≥ 2(q − i+ 1)+ i−1+s > 2q, but this is not possible. Hence, G contains
a subgraph homeomorphic to Kn−q.

4. Exact values for the function ex(n,TKp). The upperbound provided in
Theorem 3 turns out to be the exact value of the function ex(n, TKp), for a wide
interval of p, as stated in the next theorem.

Theorem 4. Let n, p be two positive integers. If
⌈

3n+2
4

⌉ ≤ p < n, then

ex(n, TKp) =

(
n
2

)
− (2n− 2p+ 1).

Proof. Consider the graph obtained from Kn removing 2q + 1 nonadjacent edges
(obviously, we need that n ≥ 4q + 2). This graph does not contain a subgraph

homeomorphic to Kn−q. Hence ex(n;TKn−q) = (
n
2

)− (2q + 1).

Now, let G be a graph having 4q−k+1 vertices, with q ≥ 4 and 0 ≤ k ≤ q−1, in
such a way that G is the graph formed by k+1 nonadjacent triangles and 2(q−k)−1
nonadjacent edges, as in Figure 1. If we choose a set of q vertices of G, it is evident
that Gq has at least q + 1 edges; hence the graph G constructed does not contain a
subgraph homeomorphic to Kn−q.

298 M. CERA, A. DIÁNEZ, AND A. MÁRQUEZ

�

��

� �

��

� �

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

k + 1 triangles

2(q − k)− 1 nonadjacent edges

Fig. 1. Structure of G.

Lemma 5. Let q, k be two positive integers, with q ≥ 4 and 0 ≤ k ≤ q − 1. It is
verified that

ex(4q − k + 1, TK3q−k+1) ≥
(

4q − k + 1
2

)
− (2q + k + 2).

Our next aim is to prove that the previous inequality is, in fact, an equality. For
that goal we need some prior results. First, we will show that given a graph with
maximum degree 2 and at least m vertices of maximum degree, it is possible to get
at least �m+2

3 nonadjacent vertices of maximal degree. We recall that given a graph
H and v ∈ H, the set of adjacent vertices to v in H is denoted by Γ(v) (see [1]).

Lemma 6. Let k be a nonnegative integer and H a graph with maximum degree
2 and at least 3k + 1 vertices of maximum degree. Then there exist at least k + 1
nonadjacent vertices with degree 2.

Proof. We apply induction on k. For k = 1 the result is obvious. Suppose now
that k > 2 and the result holds for k − 1. Let w be a vertex of H of degree 2, we
denote by H∗ = 〈{v ∈ V (H)− {Γ(w) ∪ {w}}}〉H . Hence H∗ is a graph with at least
3k+ 1− 3 = 3(k− 1) + 1 vertices with degree 2 and, by the induction hypothesis, H∗

has at least (k − 1) + 1 = k nonadjacent vertices {w1, . . . , wk} of degree 2. Thus the
k + 1 vertices w,w1, . . . , wk are nonadjacent with degree 2.

The next result basically asserts that given a positive integer q and given H, a
graph with maximum degree 2 whose number of vertices and edges depends on q, it
is possible to get a set of vertices such that upon removing those vertices from H, the
resulting graph has at most q edges.

Lemma 7. Let q, k be two nonnegative integers, k ≤ q − 2. Let H be a graph
with 4q− k+ 1− i vertices and 2q+ k+ 1− 2i edges, i ∈ {1, . . . , q}. If the maximum
degree of H is at most 2, then H ∈ Cqq−i.

Proof. If nj denotes the number of vertices of degree j in H, it is verified that

2n2 + n1 = 2(2q + k + 1− 2i),

n2 + n1 + n0 = 4q − k + 1− i.
From those equalities it is deduced that n2 = 3(k − i) + 1 + n0. For i ≤ k, by

Lemma 6, the number of nonadjacent vertices with degree 2 is greater than or equal

GRAPH WITHOUT TOPOLOGICAL COMPLETE SUBGRAPHS 299

to k − i + 1. We choose {v1, . . . , vq−i} as in Lemma 1. So we guarantee that of the
previous vertices at least k − i + 1 have degree 2, and, therefore, if we remove the
vertices {v1, . . . , vq−i} from H, we would delete at least 2(k − i+ 1) + q − (k − i+ 1)
edges. Thus we have that

|E(Hq−i)| ≤ 2q + k + 1− 2i− (2(k − i+ 1) + q − (k − i+ 1)) ≤ q.

For i > k, if we take the subset {v1, . . . , vq−i} of vertices of H like in Lemma 1, it is
immediate that

|E(Hq−i)| ≤ 2q + k + 1− 2i− (q − i) = q + k − i+ 1 ≤ q.

Given a graph H we will show that it is possible to obtain a set of q vertices in
such a way that if we remove them from H, then the graph Hq has at most q edges.

Lemma 8. Let q, k be two positive integers with k ≤ q − 2. Let H be a graph
with 4q − k + 1 vertices and 2q + k + 1 edges. Then H ∈ Cqq .

Proof. First, suppose that the maximum degree of H is 2. In this case we have

2n2 + n1 = 2(2q + k + 1),

n2 + n1 + n0 = 4q − k + 1.

From those equalities it is deduced that n2 = 3k + 1 + n0 and, by Lemma 6, the
number of nonadjacent vertices with degree 2 is at least k + 1. We take {v1, . . . , vq}
as in Lemma 1. If the number of nonadjacent vertices of degree 2 is greater than or
equal to q, it is obvious that |E(Hq)| ≤ q. If, on the contrary, it is smaller than q,
then if we remove the vertices {v1, . . . , vq} from H, we would be suppressing at least
2(k + 1) + q − (k + 1) edges and, therefore,

|E(Hq)| ≤ 2q + k + 1− (2(k + 1) + q − (k + 1)) = q.

If the maximum degree of H is at least 3, there exists j ∈ {1, . . . , q} such that the
maximum degree of Hj is smaller than or equal to 2 and upon applying Lemma 7 the
result follows.

In order to show that we have an equality in Lemma 5, the following theorem
will be based on the same idea of the proof of Theorem 3. We start from a graph
G with a given number of vertices and edges and we will construct a bipartite graph
in such a way that if we show the existence of a complete matching in this bipartite
graph, then it will guarantee us that G contains a subgraph homeomorphic to Kn−q.
We recall Hall’s condition for complete matching.

Theorem 9 (see [4]). Given a bipartite graph with classes X and Y , if
|Γ(A)| ≥ |A| for all A ⊂ X, then there exists a complete matching, where
Γ(A) =

⋃
v∈A Γ(v).

Theorem 10. Let n, p be two positive integers with
⌈

2n+5
3

⌉ ≤ p <
⌈

3n+2
4

⌉
.

Then

ex(n, TKp) =

(
n
2

)
− (5n− 6p+ 3).

Proof. It is equivalent to prove that

ex(n;TKn−q) =

(
n
2

)
− (2q + k + 2)

300 M. CERA, A. DIÁNEZ, AND A. MÁRQUEZ

for n = 4q − k + 1 with q ≥ 4, 0 ≤ k ≤ q − 4.

Let G be a graph with (
n
2

)− (2q + k + 1) edges. Let {v1, . . . , vq} be the set of

vertices obtained in Lemma 8 by taking H = G. Let e1 = (a1, b1), . . . , es = (as, bs)
be the edges of Hq. We will prove that there exists a path from ai to bi traversing
through {v1, . . . , vq} for i = 1, . . . , s and that those paths are nonadjacent for each
i ∈ {1, . . . , s}. For that, we consider the bipartite graph whose classes are
Y = {v1, . . . , vq} and X = {e1, . . . , es} such that vj is adjacent to ei in the bipartite
graph if there exists the path aivjbi inG. If we prove the existence of a complete match-
ing in this bipartite graph we will have shown the result. Now we use Hall’s condition
to show the existence of complete matching. We get i ∈ {1, . . . , q}. If ei is not adja-
cent to any vertex of the set {vq−2, vq−1, vq}, then either δHq (ai) ≥ 2 or δHq (bi) ≥ 2
and, furthermore, either δHq−2(ai) ≥ 3 or δHq−2(bi) ≥ 3; hence δHj−1(vj) ≥ 3 for
j = 1, . . . , q − 2 and

|E(H)| ≥ 3(q − 2) + 4 + s = 3q + s− 2.

Since k ≤ q− 3 we would have that |E(H)| > 2q+k+ 1, but this is not possible, thus
|Γ({ei})| ≥ 1.

We denote by Aij the set of vertices {ei, ej} for i, j ∈ {1, . . . , q} with i �= j. If
Γ(Aij) ≤ 1, then at least three vertices of the set {vq−3, vq−2, vq−1, vq} are adjacent
neither to ei nor to ej . Hence δHj−1

(vj) ≥ 3 for j = 1, . . . , q − 3 and

|E(H)| ≥ 3(q − 3) + 4 + 1 + s = 3q + s− 4

> 2q + k + 1

since k ≤ q − 4; therefore |Γ(Aij)| ≥ 2.

Table 1
Exact values of the function ex(n, TKp).

p ex(n, TKp) Reference

3 n− 1
4 2n− 3 [2]
5 3n− 6 ? (conjecture) [3]

..

.
..
.

..

.

⌈
2n+5
3

⌉
≤ p <

⌈
3n+2
4

⌉ (
n
2

)
− (5n− 6p + 3) Theorem 10

⌈
3n+2
4

⌉
≤ p < n

(
n
2

)
− (2n− 2p + 1) Theorem 4

For sets of vertices of sizem with 3 ≤ m ≤ s we consider Ai1,...,im = {ei1 , . . . , eim},
where {i1, . . . , im} ⊂ {1, . . . , q} with i1 < i2 < · · · < im. If Γ(Ai1,...,im) ≤ m− 1, then
there exists at least one nonadjacent vertex to any element of Ai1,...,im in the set of
vertices {vq−(m−1), . . . , vq}; thus

|E(H)| ≥ (q − (m− 1))m+ (m− 1) + s,

GRAPH WITHOUT TOPOLOGICAL COMPLETE SUBGRAPHS 301

but for 3 ≤ m ≤ s, k ≤ q − 3 we have that

(q − (m− 1))m+ (m− 1) + s ≥ mq −m2 + 3m− 1

> 2q + k + 1,

and this is not possible. So Γ(Ai1,...,im) ≥ m, and upon applying Hall’s condition the
result follows.

5. Conclusions. Up to now, exact values of the function ex(n, TKp) were known
only for p = 3, 4. In this work, we provide a new upperbound to that function and we
give its exact value when

⌈
2n+5

3

⌉ ≤ p < n. We can summarize our results in Table 1.

REFERENCES

[1] B. Bollobas, Extremal Graph Theory, Academic Press, London, 1978.
[2] G. A. Dirac, In abstrakten Graphen vorhandene vollständige 4-Graphenund ihre Unterteilun-

gen, Math. Nachr., 22 (1960), pp. 61–85.
[3] G. A. Dirac, Homeomorphism theorem for graphs, Math. Ann., 153 (1964), pp. 69–80.
[4] P. Hall, On representatives of subsets, J. London Math. Soc., 10 (1935), pp. 26–30.
[5] W. Mader, Homomorphieegenshaften und mittlere Kantendichte von Graphen, Math. Ann.,

174 (1967), pp. 265–268.
[6] W. Mader, Hinreichende Bedingungen für die Existenz von Teilgraphen, diezu einem

vollständigen Graphen Homöomorph sind, Math. Nachr., 53 (1972), pp. 145–150.
[7] C. Thomassen, Some homomorphism properties of graphs, Math. Nachr., 64 (1974), pp. 119–

133.

EVALUATION, STRENGTH, AND RELEVANCE OF VARIABLES OF
BOOLEAN FUNCTIONS∗

PETER L. HAMMER† , ALEXANDER KOGAN†‡ , AND URIEL G. ROTHBLUM§

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 3, pp. 302–312

Abstract. Given a Boolean function f , we define the importance of a set S of variables by an
expression measuring to what extent the variables in S determine the value of f . This “evaluation”
uses a “constancy” measure which is assumed to be a real-valued convex function defined on [0, 1].
In spite of the generality of the constancy measure, it is shown that any such evaluation is in strong
agreement with the classical concept of the Winder-strength of variables of a monotone Boolean func-
tion. Further, we study a special class of evaluations called relevances, characterize completely the
cases of extreme relevance value, relating the sets of maximum relevance to fictitious (dummy) vari-
ables and support sets, and establish a lower bound on the relevance of sets “containing” implicants
or implicates of a Boolean function.

Key words. Boolean function, Winder preorder, influence of variables, support set, convex
constancy measure, majorization

AMS subject classifications. 06E30, 94C10, 94A17

PII. S089548019732787X

1. Introduction. It is well known that numerous real life phenomena lead to
mathematical models involving Boolean functions. In such models, variables represent
characteristic features (attributes) of the modeled phenomenon, and the value of the
function represents the outcome. In many applications, it is important to distinguish
variables having a major impact on the outcome from those having only a minor effort
on it. This analysis of the “importance” of variables in a Boolean function may in
some instances be one of the main objectives of model building.

Concepts of importance of variables of a Boolean function were introduced and
studied in various forms in areas as diverse as logic design, voting and game theory,
reliability theory, artificial intelligence, and machine learning. Some of the most
fundamental notions of importance originating in these areas include those of Chow
parameters (Chow [5, 6] and Winder [20]), Winder preorder (Winder [18, 19]), Shapley
values (Shapley and Shubik [16]), and Banzaf indices (Banzaf [1] and Dubey and
Shapley [7]). While this research direction started more than forty years ago, it
remains active in many areas until this day (Ben Orr and Linial [2], Ben Orr, Linial,
and Saks [3], Felsenthal and Machover [9], Kahn, Kalai, and Linial [11], and Taylor
and Zwicker [17]).

The approaches taken by various authors to the concept of importance are ex-
tremely varied. Some authors look for numerical indices measuring importance of
individual variables, while others express the importance by intervals, vectors, etc.

∗Received by the editors March 22, 1997; accepted for publication (in revised form) December
1, 1999; published electronically May 15, 2000. The research of the first and second authors was
partially supported by ONR grant N00014-92-J-1375 and by NSF grant NSF-DMS-98-06389. The
research of the third author was partially supported by ONR grant N00014-92-J-1142.

http://www.siam.org/journals/sidma/13-3/32787.html
†RUTCOR—Rutgers University’s Center for Operations Research, Rutgers University, 640

Bartholomew Road, Piscataway, New Jersey 08854-8003 (hammer@rutcor.rutgers.edu, kogan@
rutcor.rutgers.edu).

‡Accounting and Information Systems, Faculty of Management, Rutgers University, 180 Univer-
sity Ave., Newark, NJ 07102.

§Faculty of Industrial Engineering and Management, Technion—Israel Institute of Technology,
Haifa 32000, Israel (rothblum@ie.technion.ac.il).

302

RELEVANCE OF VARIABLES OF BOOLEAN FUNCTIONS 303

Some other papers define power indices for sets of variables, or simply define con-
ditions under which a group of variables can be considered “more influential” than
another group.

In spite of the wide diversity of approaches to the concepts of importance (or
power, influence, relevance, etc.), it seems to be generally agreed upon that a good
measure should reflect the extent to which a set of variables is capable of determining
the value of the function. Because of that, the various concepts of importance rely
heavily on the particular measure of “constancy” of a Boolean function, i.e., how “con-
stant” a Boolean function becomes under certain partial truth value assignments. In
theoretical studies, the most used constancy measure was the simplest Boolean mea-
sure, i.e., 1 if the function is a constant, and 0 if it is not. Some of the more applied
studies (for example, the splitting criteria in decision tree inference in machine learn-
ing, see Breiman [4] and Quinlan [15]) use more sophisticated measures of constancy,
usually derived from such standard measures as variance or entropy.

In this paper, we consider a new concept of importance based on an abstract
numerical measure of constancy which depends only on the ratio of the number of
true points to the total number of points in the Boolean cube. In the first part of the
paper (section 3), this constancy measure is assumed to be an arbitrary real-valued
convex function defined on [0, 1]. In spite of the generality of the constancy measure,
it is shown in this paper that any such measure of importance is in strong agreement
with the classical concept of the Winder-strength of variables of a monotone Boolean
function. The proof of this result, given in section 3, relies on a combinatorial lemma
of independent interest and on the theory of majorization (Marshall and Olkin [13]).

In the second part of the paper (section 4), the measure of constancy is given a
more specific meaning. It is assumed now that this measure is a real-valued convex
function ρ defined on [0, 1], such that ρ(0) = ρ(1), ρ(1/2) = 0, and ρ(x) = ρ(1 − x)
for any x in [0, 1]. This restricted concept of constancy remains wide enough to
include as special cases all the commonly used measures of constancy, such as the
Boolean measure and the linear measure, as well as the measures based on variance
and entropy. The importance of variables based on this constancy measure is called
relevance. We characterize completely the cases of extreme relevance value, relate the
sets of maximum relevance to the well-known concepts of fictitious (dummy) variables
and support sets, and establish a lower bound on the relevance of a set “containing”
implicants or implicates of a Boolean function. For the sake of brevity, proofs of the
results in section 4 were omitted; they can be found in [10].

2. Boolean functions and evaluations. We refer to 0 and 1 as the Boolean
constants and to vectors whose components are Boolean constants as Boolean vectors.

A Boolean function of n variables is a function f : {0, 1}n → {0, 1}. Given such
a function f , we say that a Boolean vector α is a true (false) vector of f if f(α) = 1
(f(α) = 0). The cardinality of f , denoted |f |, is defined as the cardinality of the set
of true vectors of f , i.e., |f | =∑α∈{0,1}n f(α).

Throughout this paper, n is a fixed positive integer. The variables of a Boolean
function of n variables are always denoted as x1, x2, . . . , xn; we will usually identify
these variables with the corresponding indices 1, . . . , n. In particular, we let N denote
both the set of variables x1, x2, . . . , xn and the set of integers {1, . . . , n}. Given a
subset S of N , we denote by xS the subvector of x = (x1, . . . , xn) corresponding to
S, where the order of the variables of xS is induced by their (natural) order in N .

We use the standard partial order ≤ on Boolean vectors; namely, we write α ≤ β
if αi ≤ βi for all i ∈ N . Given two Boolean functions, f and g, defined on the

304 P. L. HAMMER, A. KOGAN, AND U. G. ROTHBLUM

same set of n variables, we shall write f ≤ g if f(α) ≤ g(α) for every α ∈ {0, 1}n. A
Boolean function of n variables is called monotone nondecreasing, or simply monotone
or positive, if f(α) ≤ f(β) for all Boolean vectors α, β ∈ {0, 1}n satisfying α ≤ β.

Given a Boolean function f of n variables, a subset S of its variable set N , and
a vector α ∈ {0, 1}|S|, we denote by f(xS = α) the Boolean function obtained by
fixing the values of the variables of S to the corresponding values of α; in this way,
the variables of f(xS = α) are those in N\S. In particular, if S = N and α ∈ {0, 1}n,
f(x = α) is the Boolean constant f(α). Also, from the definition of the cardinality of
a Boolean function, we see that

0 ≤ |f(xS = α)| ≤ 2n−|S| for every subset S of N and α ∈ {0, 1}|S|.

If S and T are disjoint subsets of N , α ∈ {0, 1}|S| and β ∈ {0, 1}|T |, we denote
[f(sX = α)](xT = β) = [f(xT = β)](xS = α) by f(xS = α, xT = β). Also, if S and T
are singletons, say S = {i} and T = {j}, we write f(xi = α) and f(xi = α, xj = β)
for f(xS = α) and f(xS = α, xT = β), respectively. Given a subset S of N and
α ∈ {0, 1}|S|, we sometimes refer to xS = α as the partial assignment of the variables
of S to the corresponding Boolean constants.

As usual, the disjunction a∨ b represents the maximum of a and b. Similarly, the
conjunction a ∧ b, also denoted by a & b or simply by ab, denotes the minimum of a
and b. For example, f(x) = x1∨x2x3 is the Boolean function on three variables given
by f(α) = 1 if α1 = 1 or if α2 = α3 = 1, and f(α) = 0 in all other cases.

A subset C of the reals is called convex if τb + (1 − τ)c ∈ C for all b, c ∈ C and
any 0 ≤ τ ≤ 1. A real-valued function ρ on such a convex set C is called convex if
ρ[τb+ (1− τ)c] ≤ τρ(b) + (1− τ)ρ(c) for all b, c ∈ C and 0 ≤ τ ≤ 1.

The main objective of this paper is to analyze the extent to which a subset of
variables of a Boolean function determines the value of the function. In order to
be able to give a precise meaning to the concept, we shall introduce the following
definition.

Definition 2.1. Given a Boolean function f of n variables, for any real-valued
convex function ρ on [0, 1], we define the (ρ, f)-evaluation as the set function Eρ,f :
2N → R, given by

Eρ,f (S) =
1

2|S|
∑

α∈{0,1}|S|

ρ

[|f(xS = α)|
2n−|S|

]
for each subset S of N.(2.1)

For example, Eρ,f (∅) = ρ[|f |2n] and Eρ,f (N) = 2−n{∑α∈{0,1}n ρ[f(α)]}.
The evaluation Eρ,f (S) can be viewed as a measure of the average constancy of the

Boolean function f(xS = α). The constancy measure ρ[|f(xS=α)|
2n−|S|] is an abstraction of

constancy measures used in various areas such as statistics (e.g., variance), information
theory (e.g., entropy), etc.

Using the convexity of ρ, it is easy to show that evaluation is nondecreasing with
respect to set inclusion, i.e., Eρ,f (S) ≤ Eρ,f (T) for any Boolean function f , any real-
valued convex function ρ defined on [0, 1], and any subsets S and T of N satisfying
S ⊆ T . Consequently, for any subset of variables S ⊆ N , we have Eρ,f (∅) ≤ Eρ,f (S) ≤
Eρ,f (N) . The value Eρ,f (∅) measures the constancy of the function f and represents
the zero level of information (i.e., no variable values are expected to be known). On
the other hand, the value of Eρ,f (N) represents the complete information (i.e., all
the values are expected to be known). It is, therefore, natural to measure the relative

RELEVANCE OF VARIABLES OF BOOLEAN FUNCTIONS 305

information content of the set S by

Iρ,f (S) =
Eρ,f (S)− Eρ,f (∅)
Eρ,f (N)− Eρ,f (∅) .(2.2)

Clearly, the value of Iρ,f (S) is not defined when Eρ,f (N) = Eρ,f (∅). This special case
will be characterized in Lemma 4.8 showing that it holds exactly when f is a constant.

3. Evaluations and strength of variables. After introducing in this section
the concept of strength of a variable in a positive Boolean function, we prove that sets
of stronger variables have higher evaluations. The proof will make use of a technical
result (Lemma 3.2) which may be of independent combinatorial interest.

Winder [18] introduced a partial order on the variables of a Boolean function
(also Muroga [14]). Let f be a Boolean function of n variables, and let i and j be the
indices of two of its variables. We say that xi is at least as strong as xj with respect
to f (according to the Winder partial order), written as xi >∼f xj , or simply i >∼f j, if

f(xi = 0, xj = 1) ≤ f(xi = 1, xj = 0).(3.1)

For example, if f(x) = x1∨x2x3, we have 1 >∼f 2 because f(1, 0, 0) = 1 ≥ 0 = f(0, 1, 0)

and f(1, 0, 1) = 1 ≥ 1 = f(0, 1, 1).
We shall further define a set of variables S ⊆ N to be at least as strong as a set

of variables T ⊆ N with respect to f (according to the Winder partial order), written
S >∼f T , if |S| = |T |, and there is a one-to-one correspondence between the variables

of S and those of T such that each i ∈ S is at least as strong (with respect to f) as
its image in T . If S >∼f T and T >∼f S, we shall say that S and T are equivalent in
strength with respect to f and write S ≈f T .

Theorem 3.1. Let f be a positive Boolean function of n variables, and let S
and T be two subsets of the set of variables of f such that S >∼f T . Then for every

real-valued convex function ρ defined on [0, 1], Eρ,f (S) ≥ Eρ,f (T).
In order to prove this theorem, we make use of a technical lemma, which needs

some new concepts. For a set Q of n-dimensional Boolean vectors, we denote by Qc

its complement in {0, 1}n; that is, Qc ≡ {0, 1}n \ Q. A set Q ⊆ {0, 1}n is called a
filter (ideal) if for any α ∈ Q, all vectors β ∈ {0, 1}n satisfying β ≥ α (β ≤ α) are
in Q. Note that Q is a filter if and only if Qc is an ideal. Given subsets U and V of
{0, 1}n, a right-shift of U × V is a mapping of U × V into {0, 1}n × {0, 1}n such that
if (u′, v′) is the image of (u, v), then for every i = 1, . . . , n either (u′

i = ui and v′i = vi)
or (u′

i < ui and v′i > vi).
Lemma 3.2.1 For any filter Q ⊆ {0, 1}n, there exists a one-to-one right-shift of

Q×Qc onto Qc ×Q.
Proof. The proof uses induction on the dimension n. For n = 1, the only nontrivial

filter is Q = {1}, in which case Q×Qc = {(1, 0)}, Qc×Q = {(0, 1)}, and the mapping
of (1, 0) to (0, 1) is a one-to-one right-shift of Q×Qc = {(1, 0)} onto Qc×Q = {(0, 1)}.

Assume that for some positive integer k, the lemma holds for n < k, and consider
a filter Q ⊆ {0, 1}k. Let Q0 ≡ {α ∈ {0, 1}k−1 : (α, 0) ∈ Q} and Q1 ≡ {α ∈ {0, 1}k−1 :

1The main theorem of [8] asserts that “If a family A1, A2, . . . , As of subsets of a set M con-
tains every subset of each member, then the complements in M of the A’s have a permutation
C1, C2, . . . , Cs such that Ci ⊃ Ai;” a short proof of this is given in [12, problem 13.9]. Recently Ron
Aharoni and Ron Holzman found an alternative proof of Lemma 3.2 by a straightforward reduction
to the above theorem. Thereafter, we obtained an alternative proof of the above theorem based on
Lemma 3.2, thus establishing the equivalence of the two results.

306 P. L. HAMMER, A. KOGAN, AND U. G. ROTHBLUM

(α, 1) ∈ Q}. As Q is a filter in {0, 1}k, Q0 and Q1 are filters (in {0, 1}k−1), Q0 ⊆ Q1,
Qc1 ⊆ Qc0, and Q1 \ Q0 = Qc0 \ Qc1. In the following arguments, the degenerate cases
with Q0 = ∅ and/or Q1 = {0, 1}k−1 require special attention.

We notice that Q×Qc is isomorphic (through reordering coordinates and shifting
parentheses) to the union of the following four disjoint sets:

(a) (Q0 ×Qc0)× ({0} × {0}),
(b) (Q0 ×Qc1)× ({0} × {1}),
(c) (Q1 ×Qc0)× ({1} × {0}), and
(d) (Q1 ×Qc1)× ({1} × {1}).

Further, as Q0 ⊆ Q1 and Qc1 ⊆ Qc0, we see that (Q1 ×Qc0)× ({1} × {0}) is the union
of the following four disjoint sets:

(c1) [Q0 × (Qc0 \Qc1)] ×({1} × {0}),
(c2) [(Q0 ×Qc1)] ×({1} × {0}),
(c3) [(Q1 \Q0)×Qc1] ×({1} × {0}), and
(c4) [(Q1 \Q0)× (Qc0 \Qc1)] ×({1} × {0}).

Therefore, by identifying isomorphic sets, we conclude thatQ×Qc has a decomposition
into seven disjoint sets. Similarly, Qc×Q can be decomposed into the union of seven
disjoint sets which are isomorphic to:

(A) (Qc0 × (Q0) ×({0} × {0}),
(B) (Qc1 ×Q0) ×({1} × {0}),
(C1) [(Qc0 \Qc1)×Q0] ×({0} × {1}),
(C2) [Qc1 ×Q0] ×({0} × {1}),
(C3) [Qc1 × (Q1 \Q0)] ×({0} × {1}),
(C4) [(Qc0 \Qc1)× (Q1 \Q0)] ×({0} × {1}), and
(D) (Qc1 ×Q1) ×({1} × {1}).

Table 1
Definition of the right-shift g of Q×Qc onto Qc ×Q.

Index of Index of
the set the set

containing x ∈ y ∈ u v g(x,y,u,v) containing
(x,y,u,v) g(x,y,u,v)

a Q0 Qc
0 0 0 [g0 (x,y),0,0] A

b Q0 Qc
1 0 1 [g0 (x,y), 0, 1] C1 ∪ C2

c1 Q0 Qc
0 \Qc

1 1 0 [g0 (x,y), 0, 1] C1 ∪ C2
[g1 (x,y), 1, 0] if B
g1(x, y) ∈ Qc

1 ×Q0

c2 ∪ c3 Q1 Qc
1 1 0

[g1 (x,y), 0, 1] if C3
g1(x, y) ∈ Qc

1 × (Q1 \Q0)
c4 Q1 \Q0 Qc

0 \Qc
1 1 0 (x,y,0,1) C4

d Q1 Qc
1 1 1 [g1 (x,y), 1, 1] D

A one-to-one right-shift of Q × Qc can now be constructed by considering sepa-
rately the pieces of Q×Qc, as is summarized in Table 1. (For the row indexed by c4
recall that Q1 \ Q0 = Qc0 \ Qc1.) As g0 and g1 are one-to-one right-shifts of Q0 × Qc0
onto Qc0 × Q0 and of Q1 × Qc1 onto Qc1 × Q1, respectively, it is easy to verify that
the function g defined by the above table is a one-to-one right-shift of Q × Qc onto
Qc ×Q. This completes our inductive argument.

Let u be a real-valued function on a finite set A. For B ⊆ A, let u(B) =∑
b∈B u(b). For each integer 1 ≤ i ≤ |A|, let ui = maxB⊆A,|B|=i u(B). If u and

v are real-valued functions defined on the same finite set A, we say that v majorizes u

RELEVANCE OF VARIABLES OF BOOLEAN FUNCTIONS 307

if vi ≥ ui for each 1 ≤ i ≤ |A|, and v|A| = u|A|. Standard results about majorization
and Schur convexity (e.g., Marshall and Olkin [13, p. 64]) show that if v majorizes u,
then for every convex function ρ, we have

∑
a∈A ρ(v(a)) ≥∑a∈A ρ(u(a)).

We are now ready to prove Theorem 3.1.

Proof. For a subset U of {1, . . . , n}, let |fU | be the function which maps every
α ∈ {0, 1}|U | to |f(xU = α)|. Let m be the common cardinality of S and T , and let
q be the common cardinality of S \ T and T \ S. We will show that |fS | majorizes
|fT |. It will then follow that 2n−m|fS | majorizes 2n−m|fT |, and, therefore, from the
convexity of ρ,

2mEρ,f (S) =
∑

α∈{0,1}m

ρ

[|f(xS = α)|
2n−m

]
≥

∑

α∈{0,1}m

ρ

[|f(xT = α)|
2n−m

]
= 2mEρ,f (T) .

As the Winder partial order is transitive, it follows that S \T >∼f T \S. Since the
definition of majorization is invariant under coordinate renumbering, we may assume
that the coordinates of S \ T and T \ S are renumbered so that for k = 1, . . . , q,
with ik and jk as the kth smallest coordinate of S \ T and T \ S, respectively, we
have that ik >∼f jk. Once such renumbering is implemented, it follows that for each

α, β ∈ {0, 1}q, γ ∈ {0, 1}m−q, and every right-shift g of {α} × {β}, we have

|f(xS\T,T\S = g(α, β), xS∩T = γ)| ≤ |f(xS\T,T\S = (α, β), xS∩T = γ)| .(3.2)

(We note that the definition of a right-shift is not invariant with respect to coordinate
renumbering.)

Let 1 ≤ t ≤ 2m. We will prove that |fS |t ≥ |fT |t. The positivity of f implies
that |fT | is monotone, and therefore there exists a filter Q ⊆ {0, 1}m such that
|fT |t =

∑
δ∈Q |f(xT = δ)|. For each γ ∈ {0, 1}m−q, let Qγ be the filter {β ∈ {0, 1}q :

(β, γ) ∈ Q}. We then have that

|fT |t =
∑

γ∈{0,1}m−q

∑

β∈Qγ

|f(xT\S = β, xS∩T = γ)|

=
∑

γ∈{0,1}m−q

∑

β∈Qγ

∑

α∈{0,1}q

|f(xS\T = α, xT\S = β, xS∩T = γ)|

=
∑

γ∈{0,1}m−q

∑

α∈{0,1}q

∑

β∈Qγ

|f(xS\T = α, xT\S = β, xS∩T = γ)|.(3.3)

We also note that

|fS |t ≥
∑

δ∈Q
|f(xS = δ)|(3.4)

=
∑

γ∈{0,1}m−q

∑

α∈Qγ

∑

β∈{0,1}m−q

|f(xS\T = α, xT\S = β, xS∩T = γ)|.(3.5)

We conclude that

308 P. L. HAMMER, A. KOGAN, AND U. G. ROTHBLUM

|fS |t − |fT |t ≥
∑

γ∈{0,1}m−q

∑

(α,β)∈Qγ×(Qγ)c

|f((xS\T , xT\S) = (α, β), xS∩T = γ)|

−
∑

(α,β)∈(Qγ)c×Qγ

|f((xS\T , xT\S) = (α, β), xS∩T = γ)|

 .(3.6)

Let γ ∈ {0, 1}m−q. Since Qγ is a filter, Lemma 3.2 implies that there exists a
one-to-one right-shift, say gγ , of Qγ × (Qγ)

c onto (Qγ)
c × Qγ . Using (3.2), it then

follows from S \ T >∼f T \ S that

∑

(α,β)∈(Qγ)c×Qγ

|f((xS\T , xT\S) = (α, β), xS∩T = γ)|

=
∑

(α,β)∈Qγ×(Qγ)c

|f((xS\T , xT\S) = gγ(α, β), xS∩T = γ)|

≤
∑

(α,β)∈Qγ×(Qγ)c

|f((xS\T , xT\S) = (α, β), xS∩T = γ)|.(3.7)

From (3.6) and (3.7) we conclude that |fS |t ≥ |fT |t. We finally note that for
t = 2m, Q = {0, 1}m, and equalities hold trivially in (3.5), (3.6), and (3.7), completing
the proof of the theorem.

Corollary 3.3. Let f be a positive Boolean function of n variables, and let
S and T be two subsets of the set of variables of f such that there exists a subset
S′ of S with S′ >∼f T . Then for every real-valued convex function ρ defined on [0, 1],

Eρ,f (S) ≥ Eρ,f (T).
Corollary 3.4. Let f be a positive Boolean function of n variables, and let S

and T be two subsets of the set of variables of f such that S ≈f T . Then for every
real-valued convex function ρ defined on [0, 1], Eρ,f (S) = Eρ,f (T).

We note that if the sets S and T are such that S >∼f T but S and T are not

equivalent in strength (i.e., T �>∼f S), then it is not necessary that Eρ,f (S) > Eρ,f (T).

For example, consider the Boolean function f = x1 ∨ x2 ∨ x3x4. Let S = {1, 2} and
T = {3, 4}. Clearly, S >∼f T , T �>∼f S, and

α |f(xS = α)| |f(xT = α)|
(0, 0) 1 3
(0, 1) 4 3
(1, 0) 4 3
(1, 1) 4 4

.

Let ρ(c) = c for c = [0, 1]. Then Eρ,f (S) = 1
4

(
1
4 + 1 + 1 + 1

)
= 13

16 and Eρ,f (T) =
1
4

(
3
4 + 3

4 + 3
4 + 1

)
= 13

16 . However, for the function ρ′ given by ρ′(c) = c2, we
find that Eρ′,f (S) =

49
64 > 43

64 = Eρ′,f (T).

4. Evaluations and relevances. A real-valued convex function ρ on [0, 1] which
is symmetric around 1

2 (i.e., ρ(c) = ρ(1− c) for all 0 ≤ c ≤ 1) and satisfies ρ
(

1
2

)
= 0

and ρ(0) = ρ(1) = 1 is called a relevance function. The following are four standard
relevance functions:

RELEVANCE OF VARIABLES OF BOOLEAN FUNCTIONS 309

(i) the consensus relevance function given by

ρ(c) =

{
0 if 0 < c < 1,

1 if c = 0 or c = 1,

(ii) the linear relevance function given by

ρ(c) = 2

∣∣∣∣c−
1

2

∣∣∣∣ ,

(iii) the quadratic (variance) relevance function given by

ρ(c) = 4

(
c− 1

2

)2

, and

(iv) the entropy relevance function given by

ρ(c) = 1 + c(log2 c) + (1− c) log2(1− c).

In what follows we focus our attention on those (ρ, f)-evaluations Eρ,f where ρ is a
relevance function.

Lemma 4.1. Let ρ be a relevance function. Then
(a) 0 ≤ ρ(c) ≤ 1 for all 0 ≤ c ≤ 1,
(b) ρ(c) = 1 if and only if c = 0 or c = 1, and
(c) either {c ∈ [0, 1] : ρ(c) = 0} =

[
1
2 − δ, 1

2 + δ
]
for some 0 ≤ δ < 1

2 , or

{c ∈ [0, 1] : ρ(c) = 0} = (1
2 − δ, 1

2 + δ
)
for some 0 < δ ≤ 1

2 .
The third statement of Lemma 4.1 asserts that the set of elements attaining the

minimum value 0 is a symmetric interval around 1
2 , not containing 0 or 1; this interval

can be as large as (0, 1), in the case of the consensus relevance function, or as small
as
{

1
2

}
, for example, for the linear, quadratic, and entropy relevance functions.

Lemma 4.2. Let ρ be a relevance function, and let f be a Boolean function. Then
0 ≤ Eρ,f (S) ≤ 1 for all subsets S of N .

Let f be a Boolean function. A subset S of the variables of f is called a support
set of f if the value of the function f is completely determined by the values of the
variables in S. The next theorem characterizes support sets of Boolean functions in
terms of relevance functions and evaluations.

Theorem 4.3. Let f be a Boolean function and let S be a subset of N . Then the
following are equivalent.

(a) S is a support set of f .
(b) Eρ,f (S) = Eρ,f (N) for every real-valued convex function ρ defined on [0, 1].
(c) Eρ,f (S) = 1 for some relevance function ρ.
Let f be a Boolean function of n variables. Variable xi of f is called fictitious

for f if f(α1, . . . , αi−1, 0, αi+1, . . . , αn) = f(α1, . . . , αi−1, 1, αi+1, . . . , αn) for every
α ∈ {0, 1}n.

Lemma 4.4. Let f be a Boolean function of n variables. A set S is a support set
of f if and only if all the variables in N \ S are fictitious for f .

Corollary 4.5. Let f be a Boolean function of n variables, and let S be the set
of all nonfictitious variables of f . Then

(a) a set T ⊆ N is a support set of f if and only if T ⊇ S,
(b) Eρ,f (S) = Eρ,f (N) for each real-valued convex function ρ defined on [0, 1],

and

310 P. L. HAMMER, A. KOGAN, AND U. G. ROTHBLUM

(c) if Eρ,f (T) = 1, for some relevance function ρ and subset T of N , then T ⊇ S.
Following Corollary 4.5, we refer to the set S of all variables that are not fictitious

for a Boolean function f as the (unique) minimum support set of f . Corollary 4.5
shows that this set can be determined by separately testing each variable for ficti-
tiousness, and therefore, the time complexity of the problem of finding the minimum
support set is polynomially equivalent to the problem of testing if a variable is ficti-
tious for a given Boolean function.

Theorem 4.6. Let f be a Boolean function. If y is a fictitious variable of f ,
then for any subset S of the variables of f , such that y �∈ S, and for any real-valued
convex function ρ defined on [0, 1],

Eρ,f (S) = Eρ,f (S ∪ {y}).(4.1)

Conversely, if y is a nonfictitious variable of f , then there exists a subset S of the
variables of f , such that y �∈ S and (4.1) does not hold, i.e., for any relevance function
ρ, Eρ,f (S) < Eρ,f (S ∪ {y}).

Corollary 4.7. Let f be a Boolean function and S a set of fictitious variables
of f . Then for any real-valued convex function ρ defined on [0, 1], Eρ,f (S) = Eρ,f (∅).

Lemma 4.8. A Boolean function f of n variables is a constant if and only if ∅ is
the minimum support set of f .

Lemma 4.8 characterizes those Boolean functions whose minimum support set
has the smallest possible cardinality (0). The opposite extreme case consists of those
Boolean functions whose minimum support set has the largest possible cardinality
(n). For this, consider the Boolean function h of n variables with h(α) = 0 if and only
if
∑n
i=1 αi is even, where α ∈ {0, 1}n. This function and its complement h′ defined for

α ∈ {0, 1}n by h′(α) = 1 − h(α) are called the (two) parity functions. Obviously, no
variable is fictitious for either of the two parity functions, and therefore, the minimum
support set of each of them is the set N . The parity functions are not the only Boolean
functions with this property. For example, the minimum support set of the function
defined by f(1, 1, . . . , 1) = 1 and f(α) = 0 for all α ∈ {0, 1}n \ {(1, 1, . . . , 1)} is also
N .

Lemma 4.2 shows that the range of the relevance function for a Boolean function
is between 0 and 1. The next two lemmas explore the two extreme cases.

Lemma 4.9. Let f be a Boolean function of n variables. Then the following are
equivalent.

(a) f is a constant function.
(b) For each real-valued convex function ρ defined on [0, 1], Eρ,f (S) = Eρ,f (∅)

for every subset S ⊆ N .
(c) For some relevance function ρ, Eρ,f (∅) = 1.
Lemma 4.10. Let f be a Boolean function of n variables. Then the following are

equivalent.
(a) f is a parity function.
(b) For each real-valued convex function ρ defined on [0, 1], Eρ,f (S) = Eρ,f (∅) =

ρ(1
2) for every proper subset S of N .

(c) For some relevance function ρ, Eρ,f (S) = 0 for every subset S of N containing
n− 1 variables.

Let f be a Boolean function of n variables. A subset S of N is called an implicative
set of f if for some α ∈ {0, 1}|S|, f(xS = α) is either identically 1 or identically 0
(in the former case, the partial assignment xS = α is called an implicant of f , and in
the latter case, it is called an implicate of f). For example, for the Boolean function

RELEVANCE OF VARIABLES OF BOOLEAN FUNCTIONS 311

f(x1, x2, x3, x4) = x1x2 ∨ x3x4 the sets S ≡ {1, 2} and T ≡ {2, 4} are implicative,
since f [xS = (1, 1)] is identically 1, and f [xT = (0, 0)] is identically 0. The next
lemma shows that an implicative set of variables of a Boolean function cannot be
“totally irrelevant.”

Lemma 4.11. Let f be a Boolean function on n variables, let S be an implicative
set of f , and let ρ be an arbitrary relevance function. Then Eρ,f (S) ≥ 2−|S|.

One may conjecture that implicative sets have higher relevance than nonimplica-
tive ones. However, this need not be the case. Indeed, let f be the positive Boolean
function of four variables given by

f(x) =

0 if (x1, x2, x3) = (0, 0, 0),

1 if (x1, x2, x3) = (1, 1, 1),

0 if (x1, x2, x3) �∈ {(0, 0, 0), (1, 1, 1)} and x4 = 0,

1 if (x1, x2, x3) �∈ {(0, 0, 0), (1, 1, 1)} and x4 = 1.

Then S ≡ {1, 2, 3} is an implicative set because f [xS = (0, 0, 0)] is identically 0 (and
also, because f [xS = (1, 1, 1)] is identically 1); however, its complement Sc ≡ {4} is
not an implicative set. Since |f(x4 = 0)| = 1 and |f(x4 = 1)| = 7, for the linear
relevance function ρ we have Eρ,f (S

c) = 3
4 . On the other hand,

|f(xS = α)| =

0 if α = (0, 0, 0),

2 if α = (1, 1, 1),

1 otherwise.

Therefore, for any relevance function ρ we have Eρ,f (S) =
1
4 . Thus if ρ is the linear

relevance function, then Eρ,f (S) =
1
4 < 3

4 = Eρ,f (S
c).

Acknowledgments. The authors express their gratitude to an anonymous ref-
eree, whose many useful suggestions helped substantially improve this paper.

REFERENCES

[1] F. J. Banzaf III,Weighted voting doesn’t work: A mathematical analysis, Rutgers Law Review,
19 (1965), pp. 317–343.

[2] M. Ben Orr and N. Linial, Collective coin flipping, in Randomness and Computation, Ad-
vances in Computing Research 5, S. Micali, ed., JAI Press, Greenwich, CT, 1989, pp. 91–
125.

[3] M. Ben Orr, N. Linial and M. Saks, Collective Coin Flipping and Other Models of Imperfect
Randomness, RUTCOR Research Report RRR 44–87, Rutgers University, New Brunswick,
NJ, 1987.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression
Trees, Wadsworth International Group, Belmont, CA, 1984.

[5] C. K. Chow, On the characterization of threshold functions, in Proceedings of the Second
Annual Symposium and Papers from the First Annual Symposium on Switching Circuit
Theory and Logical Design, American Institute of Electrical Engineers, Detroit, MI, 1961,
pp. 34–38.

[6] C. K. Chow, Boolean functions realizable with single threshold devices, Proc. IRE, 49 (1961),
pp. 370–371.

[7] P. Dubey and L. S. Shapley,Mathematical properties of the Banzaf power index, Math. Oper.
Res., 4 (1979), pp. 99–131.

[8] P. Erdös, M. Herzog, and J. Schönheim, An extremal problem on the set of noncoprime
divisors of a number, Israel J. Math., 8 (1970), pp. 408–412.

312 P. L. HAMMER, A. KOGAN, AND U. G. ROTHBLUM

[9] D. Felsenthal and M. Machover, Postulates and paradoxes of relative voting power—A
critical re-appraisal, Theory and Decision, 38 (1995), pp. 195–229.

[10] P. L. Hammer, A. Kogan, and U. G. Rothblum, Relevance Functions and Evaluations of Sets
of Variables of a Boolean Function, RUTCOR Research Report 4–96, Rutgers University,
New Brunswick, NJ, 1996.

[11] J. Kahn, G. Kalai, and N. Linial, The influence of variables on Boolean functions, in Pro-
ceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, White
Plains, NY, 1988, pp. 68–80.

[12] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979.
[13] A. W. Marshall and I. Olkin, Inequalities, Theory of Majorization and Its Applications,

Academic Press, New York, 1979.
[14] S. Muroga, Threshold Logic and Its Applications, Wiley, New York, 1971.
[15] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan-Kaufmann, San Mateo, CA,

1993.
[16] L. S. Shapley and M. Shubik, A method for evaluating the distribution of power in a

committee system, Amer. Polit. Sci. Rev., 48 (1954), pp. 787–792.
[17] A. D. Taylor and W. S. Zwicker, Interval measures of power, Math. Social Sci., 33 (1997),

pp. 23–74.
[18] R. O. Winder, Threshold Logic, Ph.D. dissertation, Department of Mathematics, Princeton

University, Princeton, NJ, 1962.
[19] R. O. Winder, The fundamentals of threshold logic, in Applied Automata Theory, J. Tou, ed.,

Academic Press, New York, 1968, pp. 236–318.
[20] R. O. Winder, Chow parameters in threshold logic, J. ACM, 18 (1971), pp. 265–289.

A TIGHT BOUND ON THE IRREGULARITY STRENGTH OF
GRAPHS∗

TILL NIERHOFF†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 3, pp. 313–323

Abstract. An assignment of positive integer weights to the edges of a simple graph G is called
irregular if the weighted degrees of the vertices are different. The irregularity strength s(G) is the
maximal weight, minimized over all irregular assignments. It is set to ∞ if no such assignment is
possible. Let G �= K3 be a graph on n vertices, with s(G) <∞. Aigner and Triesch [SIAM J. Discrete
Math, 3 (1990), pp. 439–449] used the congruence method to construct irregular assignments, showing
s(G) ≤ n− 1 if G is connected and s(G) ≤ n+1 in general. We refine the congruence method in the
disconnected case and show that s(G) ≤ n − 1 holds for all graphs with s(G) finite, except for K3.
This is tight and settles a conjecture of Aigner and Triesch.

Key words. irregular assignments, irregularity strength, congruence method

AMS subject classification. 05C78

PII. S0895480196314291

1. Introduction. The analysis of the irregularity strength of graphs was initi-
ated by Chartrand et al. [2]. For a survey see the article by Lehel [4] and also the
web page [3]. The assertion proved here was conjectured by Aigner and Triesch in [1],
while the question was raised in a less affirmative way in [4] earlier.

Definition 1.1. Let G = (V,E) be a graph and let x : E → {1, . . . , r} be
an assignment of weights to the edges. Denote by x∗ : V → N the corresponding
weighted degree map: x∗(v) :=

∑
e∈E:v∈e x(e). The assignment x is called irregular

if x∗ is injective. The irregularity strength of G is defined by

s(G) := inf{r ∈ N : there exists an irregular assignment x : E → {1, . . . , r}}.

Since any simple graph G has at least two vertices of the same degree, we know
that s(G) ≥ 2. It is clear that s(G) = ∞ whenever G contains an isolated edge or
more than one isolated vertex. By assigning different powers of 2, say, to the edges of
any other graph, we can see that the converse is also true.

The exponential bound on s(G) that can be derived from the assignment in the
latter case is by far too wasteful. Let n be the number of vertices of G and assume
that s(G) <∞. Already in [2] it was shown that s(G) ≤ 2n−3. Aigner and Triesch [1]
described the so-called congruence method to construct irregular assignments. They
used it to show that s(G) ≤ n + 1 and that if G 	= K3 is connected, then even
s(G) ≤ n− 1.

The relation between connectedness ofG and the value of s(G) seemed to be due to
proof technical reasons. Therefore, Aigner and Triesch conjectured that “s(G) ≤ n−1
for any n-vertex graph G with s(G) < ∞, except for K3.” In this article we refine
the congruence method to verify that conjecture.

Theorem 1.2. Let G 	= K3 be a graph on n vertices without isolated edges and
with at most one isolated vertex. Then s(G) ≤ n− 1.

∗Received by the editors December 30, 1996; accepted for publication (in revised form) December
6, 1999; published electronically May 15, 2000.

http://www.siam.org/journals/sidma/13-3/31429.html
†Humboldt-Universität zu Berlin, Institut für Informatik, D-10099 Berlin, Germany (nierhoff@

informatik.hu-berlin.de).

313

314 TILL NIERHOFF

Notice that the bound is tight as the stars K1,n−1, n ≥ 3, or the union of two
paths on three vertices, 2 · P3, show. The proof in section 3 consists of a general
case (Condition 3.2) and some special cases (the other conditions), proven by the
congruence method in several variants. Also, in its existing form, the congruence
method is not appropriate for tight results on graphs with an odd number of vertices.
The proof is therefore preceded by section 2, where the congruence method is provided
with a versatile interface (Lemma 2.13 and Remark 2.14) and refined to cope with
odd vertex sets.

2. Refined congruence method. Let Zr, r ∈ N, be the additive group modulo
r. The congruence method allows us to construct assignments for a graph such that
the weighted degrees lie in certain given elements of Zr. Its core is the following
lemma, which was originally proved using linear algebra. We give an alternative
proof that provides a simple construction.

Lemma 2.1 (Aigner and Triesch [1]). Let G = (V,E′) be a graph and let F =
(V,E), E ⊂ E′ be a forest of spanning trees of the components of G. Let y : V → Zr

be such that for every tree in F with color classes R and S

∑

v∈R
y(v) ≡

∑

w∈S
y(w) (mod r).(1)

Then there exists an assignment x : E′ → {1, . . . , r} for G such that

x∗(v) ≡ y(v) (mod r)

holds for every vertex v ∈ V . The assignment x is said to realize y.
Proof. Assume without loss of generality that F is a tree. Construct x from y

using a depth-first search:
Fix a start vertex u in color class R, say, and descend to every neighbor, recur-

sively. On the way back from vertex w to v, say, x(e) has been defined for all edges e in-
cident to w but {v, w}. Let x∗(w) be their sum. Then define x({v, w}) := y(w)−x∗(w)
(mod r), and update x∗(w) properly.

For all w ∈ V \ {u}, x∗(w) ≡ y(w) (mod r) holds in the end. Use
∑
v∈R x

∗(v) =∑
e∈E x(e) =

∑
w∈S x

∗(w), to compute

x∗(u) =
∑

w∈S
x∗(w)−

∑

v∈R\{u}
x∗(v) ≡

∑

w∈S
y(w)−

∑

v∈R\{u}
y(v) (mod r).

Therefore x∗(u) ≡ y(u) (mod r) iff (1) holds. Finally, we assign the weight r to the
edges in E′ \ E. This preserves the congruences x∗(v) ≡ y(v) (mod r), v ∈ V .

Observe that if y(v) 	= y(w) for v, w ∈ V , then x∗(v) 	= x∗(w) too. The key idea
of the congruence method is to find a y that obeys (1) and uses only few congruence
classes of Zr more than once.

Corollary 2.2. Let G, F , and y be as in Lemma 2.1. If it is impossible
that x∗(v) = x∗(w) for every two vertices v, w ∈ V with y(v) = y(w), then s(G) ≤
r.

Since in Theorem 1.2 the aim is to show s(G) ≤ n− 1, we shall decompose Zn−1

into pairs and triples that can be used to define y incrementally, preserving (1) in
each step.

Definition 2.3. Let r ∈ N. A pair (κ, r − κ), where κ ∈ {1, . . . , ⌊ r−1
2

⌋}, is
called an r-complementary pair, or, shorter, a c-pair if the choice of r is clear from

A TIGHT BOUND ON THE IRREGULARITY STRENGTH OF GRAPHS 315

the context. A triple (α, β, γ) ∈ {1, . . . , r}3 is called an r-complementary triple,
respectively, a c-triple if α+ β ≡ γ (mod r).

We do not distinguish explicitly between natural numbers and congruence classes
(mod r) in what follows. For instance, κ may denote both an element of Zr and its
representative in {1, . . . , r}. With this in mind, we call κ ∈ Zr small if κ ≤ ⌊ r−1

2

⌋
.

The following lemma by Skolem and O’Keefe [8, 7] is used to decompose Zr into
almost every desirable number of c-pairs and c-triples.

Lemma 2.4 (Skolem, O’Keefe [8, 7]). Let t ∈ N. For z = 3t or z = 3t+ 1 the set
{1, . . . , 3t + 1} \ {z} can be partitioned into t triples (αi, βi, γi), i ∈ {1, . . . , t} such
that αi + βi = γi for all i.

Corollary 2.5. Let n, t ∈ N, r := n − 1, and assume that
⌊
r−1
2

⌋ ≥ 3
⌊
t
2

⌋
+ 1.

Let p :=
⌊
r−1
2

⌋ − ⌊ 3t
2

⌋
. Then Zr can be partitioned into t c-triples, p c-pairs, and a

set M ⊂ { r2 , r}, where r
2 ∈ M iff r is even and r ∈ M iff t is even. If t ≥ 1, then at

least one of the c-triples contains a small congruence class in the first place.
Proof. Notice that (1, r− 1), . . . , (

⌊
r−1
2

⌋
,
⌈
r+1
2

⌉
) is a partition of Zr \ { r2 , r} into⌊

r−1
2

⌋
c-pairs. The c-triples are constructed out of

⌊
3t
2

⌋
of these c-pairs:

Pack triples (αi, βi, γi), i ∈ {1, . . . ,
⌊
t
2

⌋} into {1, . . . , 3 ⌊ t2
⌋

+ 1} as in Lemma 2.4.

These triples are c-triples and, since 3
⌊
t
2

⌋
+ 1 ≤ ⌊ r−1

2

⌋
, they consist of small con-

gruence classes only. The next
⌊
t
2

⌋
c-triples are chosen as (r − αi, r − βi, r − γi),

i ∈ {1, . . . , ⌊ t2
⌋}, using the nonsmall rest of the used c-pairs. In this way, 2

⌊
t
2

⌋
c-

triples have been constructed out of 3
⌊
t
2

⌋
c-pairs. If t is odd, the last c-triple is

chosen as (κ, r − κ, r), where (κ, r − κ) is one of the
⌊
r−1
2

⌋ − 3
⌊
t
2

⌋ ≥ 1 remaining
c-pairs.

Since only the second portion of c-triples does not contain a small congruence
class in the first place, the corollary follows.

In the rest of this section the refined congruence method is described. It uses
c-pairs and c-triples to find irregular assignments via Corollary 2.2.

Definition 2.6 (block, feasibility). Let H = (V,E′) be a component of a graph.
A block for H is a spanning tree T = (V,E) of H and a vertex subset B ⊂ V , called
the blocked vertices.

Let R and S be the color classes of T and let r′ := |R \B| and s′ := |S \B|. Call
(T,B) a feasible block for H if r′ is even unless s′ ≥ 2 and vice versa. Let

t(H,T,B) :=

0 if r′ and s′ are even,

2 if r′ and s′ are odd,

1 otherwise,

and p(H,T,B) := r′+s′−3t(H,T,B)
2 .

Lemma 2.7 (filling with block). Let H = (V,E′) be a component of a graph,
(T,B) a feasible block for H, and r ∈ N. Given a disjoint union M ⊂ Zr of t :=
t(H,T,B) r-complementary triples and p := p(H,T,B) r-complementary pairs, there
is an injective map yB̄ : V \B → M for which (1) holds.

If t = 0 or M contains a c-triple with a small congruence class in the first place,
and there are two unblocked vertices u, v, say, in the same color class of T , then one
may furthermore assume that y(u) is small.

Proof. Equation (1) holds for any map that is assembled from partial maps for
which it holds. In the following, partial maps for subsets of two or three vertices of
V \B are given such that (1) holds. The map yB̄ is then assembled from these partial
maps.

316 TILL NIERHOFF

Let R, S, r′, and s′ be defined as in Definition 2.6. If one of r′ and s′ is odd, say
r′, then s′ ≥ 2 and M contains a c-triple (α, β, γ). Let u ∈ R \B and w1, w2 ∈ S \B.
Let yB̄(u) := γ, yB̄(w1) := α, and yB̄(w2) := β. Since the triple is r-complementary,
(1) holds for this part of yB̄ . If s′ is also odd, then there are another vertex in S \B
and two other vertices in R \B. Perform the same with these vertices and the other
c-triple in M .

As a result, in each color class there is an even number of unblocked vertices left.
Let v1 and v2 be vertices in one color class. Choose a c-pair (κ, r − κ) ⊂ M that
has not been used before and let yB̄(v1) := κ and yB̄(v2) := r − κ. This step also
preserves (1) and can be repeated until yB̄ has been extended to V \B.

Notice that it is irrelevant how the c-pairs and c-triples are distributed. Assume
that u 	= v ∈ V \B are in the same color class of T . If t = 0, then M contains only c-
pairs and the first step might be yB̄(u) := κ and yB̄(v) := r−κ, where (κ, r−κ) ⊂M .
IfM contains a c-triple (α, β, γ) with small α, then the first step might be yB̄(u) := α,
yB̄(v) := β, and yB̄(w) := γ for some w in the other color class. In each case yB̄(u)
is small.

It is easy to verify that this procedure needs precisely t c-triples and p c-pairs and
that yB̄ is injective.

In the following we refer to this process of assigning sufficiently many c-pairs and
c-triples to subsets of color classes by saying that they are spread over the respective
vertices.

Corollary 2.8 (filling without block). Let H = (V,E′) be a k-vertex component
of a graph and assume k ≥ 3, r ∈ N. Let

t := t(H) :=

1 if k is odd,

0 if H has a spanning tree with even color classes,

0 if k is even, and H = K1,k−1,

2 otherwise.

Given a disjoint union M of t r-complementary triples and p := p(H) := k−3t
2 r-

complementary pairs, there is a map y : V → M for which (1) holds and every
realization of which is irregular.

Proof. Let B := ∅. In the following cases the block (T,B) is feasible and t =
t(H,T,B) and p = p(H,T,B):

(i) if k is odd and T is any spanning tree of H,
(ii) if k is even and H has a spanning tree T with even color classes,
(iii) if k is even and H has a spanning tree T with at least three vertices in each

color class.

Therefore Lemma 2.7 gives an injective map y : V → M for which (1) holds and
Corollary 2.2 implies the result.

Otherwise k is even and T := K1,k−1 is a spanning tree, but H has no spanning
tree with even color classes. Then H has no edge between the leaves of T and thus
H = T = K1,k−1. Let c be the center vertex and l be one of the leaves. Choose
B := {c, l}. Then p(H,T,B) = p − 1 and Lemma 2.7 gives an injective map y :
V \B → M\{κ, r−κ}, where (κ, r−κ) is one of the c-pairs ofM . Set y(c) := y(l) := κ.
Then y satisfies (1). To apply Corollary 2.2 it remains to verify that x∗(c) 	= x∗(l) for
any x realizing y.

A TIGHT BOUND ON THE IRREGULARITY STRENGTH OF GRAPHS 317

Notice that in general for a leaf l and its neighbor c

x∗(l) = x({l, c}) <
∑

e∈E:c∈e
x(e) = x∗(c),(2)

as long as {l, c} is not an isolated edge.
Definition 2.9 (blocked graphs, notation). Let G = (V,E) be an n-vertex graph

with m′ components, each of order at least three. Call G a blocked graph if there are
blocks for m, say, of the components. Define the following notation for blocked graphs:

Set r := n − 1. Denote by Hi, i ∈ {1, . . . ,m′} the components, where Hi,
i ∈ {1, . . . ,m} are those with blocks. Denote these blocks by (Ti, Bi) and let pi :=
p(Hi, Ti, Bi) and ti := t(Hi, Ti, Bi). For m < i ≤ m′ let pi := p(Hi) and ti := t(Hi).

Call B :=
⋃m
i=1Bi the block of G. Let b := |B|, p :=

∑m′

i=1 pi, t :=
∑m′

i=1 ti, and
pB :=

⌊
b
2

⌋− 1.
Definition 2.10 (good block). Let G be a blocked graph and use notation of

Definition 2.9. The block B is called a good block for G if the (Ti, Bi) are feasible,

b ≥
{

4 if n is even and p = 0,

2 otherwise,
(3)

and b is odd only if n is odd and b ≥ 5.
Definition 2.11 (block assignment scheme (b.a.s.)). Let G be a blocked graph

and use notation of Definition 2.9. Let M := {κ1, κ̄1, . . . , κpB , κ̄pB} ∪ M ′, where
M ′ ⊂ { r2 , r} such that r ∈ M ′ iff n is even or b is odd and r

2 ∈ M ′ iff n is odd. The
κi, κ̄i are literals.

An initialization of M is a replacement of the κi, κ̄i by pB pairwise disjoint r-
complementary pairs such that κ1 < · · · < κpB and κ̄i = r − κi.

Let yB : B → M and assume that (1) holds for every initialization of yB,
restricted to Bi, i ∈ {1, . . . ,m}. Let y : V → Zr such that y|B is an initialization
of yB, and let x be a realization of y. If it is impossible that x∗(v) = x∗(w) whenever
y(v) = y(w), then yB is called a b.a.s.

The property that x∗(v) 	= x∗(w) if y(v) = y(w) may be conditional on the fact
that in one of the blocked components, say H1, y(u) is small, where u belongs to a
color class of T1 that contains at least two unblocked vertices. In this case yB is called
conditional.

Proposition 2.12. Let G be a blocked graph and use notation of Definition 2.9.
If B is a good block, then Zr can be decomposed into sets Mi, i ∈ {1, . . . ,m′}, M ′ as
in Definition 2.11, and pB extra c-pairs. The Mi are disjoint unions of ti c-triples
and pi c-pairs, and if t1 ≥ 1, then M1 contains a c-triple with a small first place.

Proof. Observe that n = 3t+ 2p+ b. Assume first that b is even. Then
⌊
r−1
2

⌋
=⌊

3t+2p+b−2
2

⌋
=
⌊

3t
2

⌋
+ 2p+b

2 −1 and t ≡ n (mod 2). If n is even, then
⌊

3t
2

⌋
= 3

⌊
t
2

⌋
and,

by (3), 2p+b
2 ≥ 2. In total,

⌊
r−1
2

⌋ ≥ 3
⌊
t
2

⌋
+ 1. If n is odd, then

⌊
3t
2

⌋
= 3

⌊
t
2

⌋
+ 1 and,

by (3), 2p+b
2 ≥ 1. So, also in this case

⌊
r−1
2

⌋ ≥ 3
⌊
t
2

⌋
+1. Therefore, by Corollary 2.5,

Zr can be decomposed into t c-triples,
⌊
r−1
2

⌋−⌊ 3t
2

⌋
= p+pB c-pairs, and M ′ ⊂ { r2 , r}

as in Definition 2.11.
Assume now that b is odd. Then, by assumption, n is odd, t is even, and b ≥ 5.

Let b′ := b− 3 and t′ := t+ 1. Perform the same as in the case where b is even, but
with b′ and t′ instead of b and t. Then Zr is decomposed into p + b′

2 − 1 c-pairs, t′

c-triples, and M ′ = { r2}. Since t′ is odd, one of the c-triples is of the form (κ, r−κ, r)

318 TILL NIERHOFF

(cf. the proof of Corollary 2.5). Split up this c-triple and the result is a decomposition

of Zr into t′ − 1 = t c-triples, p + b′
2 − 1 + 1 = p + pB c-pairs, and M ′ = { r2 , r}, as

required.

Since p =
∑
i pi and t =

∑
i ti the c-pairs and c-triples just need to be distributed

to the Mi. If t1 ≥ 1, choose one c-triple for M1 with a small first place.

Lemma 2.13 (refined congruence method). Let G = (V,E) be a blocked graph
with a good block. Use the notation of Definition 2.11. If there is a block assignment
scheme yB : B → M , then s(G) ≤ r = n− 1.

Proof. Decompose Zr as in Proposition 2.12. Use the pB extra c-pairs to instanci-
ate M . For i ≤ m, apply Lemma 2.7 to Hi with (Ti, Bi) and Mi. If yB is conditional,
make sure that y(u) is small. For m < i ≤ m′, apply Corollary 2.8 to Hi with Mi.
This produces yi : Vi \B → Mi for all i. Let yB̄ : V \B → ⋃

iMi be their union.

Since yB is a b.a.s., (1) holds for the union y of yB̄ with the initialization of yB .
Let x be the realization of y. Then x∗ is injective on each of the Vi \ Bi and B, by
Lemma 2.7, by Corollary 2.8, and by the fact that yB is a b.a.s. Since the y-images
of these sets are pairwise disjoint, x is irregular.

Remark 2.14. Let H = (V,E) be a component of a graph G. If B := V is a good
block1 and there exists an irregular assignment of H such that the weighted degrees
are contained in an arbitrary initialization of M (notation as in Lemma 2.13), then
s(G) ≤ n− 1.

To see this, the proof of Lemma 2.13 needs to be varied only slightly. In this case
H is blocked and yB̄ : V \ B → Zr \M is constructed as in Lemma 2.13. Since B
is the vertex set of a whole component, by Corollary 2.8 there is a realization of yB̄ .
Together with the irregular assignment for H this is an irregular assignment for G
and thus s(G) ≤ n− 1.

3. Proof of Theorem 1.2. The proof of Theorem 1.2 consists of a case analysis
that is organized as follows. Assume that G is an n-vertex graph without isolated
edges and with at most one isolated vertex, but s(G) ≥ n. Let r := n − 1. Several
arguments impose conditions on G, which in the end imply that G = K3. The first
of those conditions holds without loss of generality: if G contained an isolated vertex
v, then every irregular assignment of G− v would also be one of G.

Condition 3.1. Every component of G has at least three vertices.

Condition 3.2. Suppose that G contains a k-vertex component H 	= Ck with
k ≥ 5. Then there are a spanning tree T of H, two vertices u, v in different color
classes of T , and a b.a.s. yB for the block B := {u, v}.

Proof. The spanning tree T and u, v ∈ V are given for different situations. Let
ρ := r

2 if n is odd and ρ := r otherwise. Then M = {ρ} in Definition 2.11 and yB is
defined by yB(u) := yB(v) := ρ. Trivially, (1) holds for yB . It remains to check in
each case that

x∗(u) 	= x∗(v)(4)

for any x realizing a y with y|B = yB .

1. If H contains a leaf, then let T be any spanning tree and let u and v be the
leaf and its neighbor. Here, (4) holds for the same reason as (2). Therefore, one may
assume that H contains no leaves.

1This is abuse of notation, since no spanning tree of H is involved. However, blocking all vertices
of a component is always feasible. Whether a block is good depends mainly on the other components.

A TIGHT BOUND ON THE IRREGULARITY STRENGTH OF GRAPHS 319

2. If there are two adjacent noncut vertices u and v with d(u) > d(v), say, then
choose a spanning tree of H − u. Attach u to this tree as a leaf adjacent to v, thus
obtaining T . There are at least d(v) nontree edges adjacent to u. Since all of those
are assigned the weight r, u gets a larger weighted degree than v. This verifies (4).
Assume therefore that all noncut vertices in the same 2-connected component have
the same degree.

3. If there are cut vertices in H, then there exist two 2-connected components
B1 and B2, say, which contain only one cut vertex. Because of Case 1, both B1 and
B2 have at least two noncut vertices.

Let d1 and d2 be the degrees of the noncut vertices in B1 and B2, respectively,
where d1 ≤ d2, say. Let w be the vertex that cuts off B2. Now take two adjacent
vertices v and v′ out of B1 and let T ′ be a spanning tree of H − B2, with v′ as a
leaf and v as neighbor of v′. Add w to T ′ and let π ∈ {0, 1} denote the parity of the
length of the v-w-path in T ′.

Since B2 is 2-connected, there are u ∈ B2 and a spanning tree T ′′ of B2 in which
u is a leaf whose distance from w has parity 1 − π. Then let T be T ′ and T ′′, with
their copies of w identified. Notice that u and v are in different color classes of T
because the u-v-path has an odd length.

Since the color class of v′ contains at least one further vertex (another neighbor
of v, for instance), y(v′) may be assumed to be small. Then

x∗(v) ≤ y(v′) + (d1 − 1) · r < ρ+ (d2 − 1) · r = x∗(u).(5)

Assume therefore that H contains no cut vertices.
4. The remaining case is that H is d-regular and 2-connected but not a cycle.

Then H contains two vertices u and w with a common neighbor v such that H−{u,w}
still is connected [5]. Let T be a spanning tree of H − {u,w} with u and w attached
as leaves to v.

Since v has a third neighbor, y(w) may be assumed to be small. A similar
calculation as (5) verifies (4) in this last case.

Call a tree 2-class if one of its color classes contains two vertices and the other an
even number which is at least four. If a component of G contained a 2-class spanning
tree, then s(G) would be at most n− 1.

Condition 3.3. No component of G has a 2-class spanning tree.
Proof. Assume some component H = (V,E) of G has a 2-class spanning tree T ,

with color classes R and S. Let B := V and observe that b ≥ 6 is even. Therefore the
block {(T,B)} is good forG. By Lemma 2.13 and using the notation of Definition 2.11,
the condition holds if there exists a b.a.s. yB : B → M .

Observe that M is the disjoint union of some {ρ} and b
2 − 1 c-pairs. In the

following, two vertices z1 and z2 are selected for different situations. Unless stated
otherwise, let yB : z1, z2 �→ ρ and spread the c-pairs over the rest of the vertices. It
is easy to check that |R \ {z1, z2}| and |S \ {z1, z2}| are always even. Since 2ρ ≡ r
(mod r), (1) holds and it remains to check that

x∗(z1) 	= x∗(z2)(6)

must hold for every realization x of yB .
Assume that R = {u, v} and S = {u1, . . . , uk, w, v1, . . . , vl} as in Figure 1. As

|H| is even, k + l is odd. Say k is even and l is odd.
1. Choose z1, z2 ∈ S\{w} with d(z1) > d(z2) if possible. Then x∗(z1)−x∗(z2) =

(d(z1)− d(z2))r > 0. Otherwise, all vertices in S \ {w} have the same degree d in H.

320 TILL NIERHOFF

Fig. 1. A 2-class tree and the modification to be performed in Case 2 of the proof of Condi-
tion 3.3.

2. If one of the ui, say u1, is adjacent to w, then modify T as in Figure 1. Let
z1 := u1 and z2 := v1. The c-pairs can be spread over the other vertices such that
yB : u2 �→ κ1; u �→ κ2; v �→ r − κ1; w �→ r − κ2. Then the assignment x, as produced
by Lemma 2.1, has the following values:

e {u2, u} {u, u1} {u1, w} {w, v} {v, v1}
x(e) κ1 κ2 − κ1 ρ− κ2 + κ1 ρ− κ1 ρ

.

Therefore x∗(u1)− x∗(v1) = r > 0. The case that one of the vi is adjacent to w can
be treated similarly. Assume therefore that w has no neighbor within S.

3. If d = 1 there are two subcases: k > 0 and k = 0. In the latter subcase let
z1 := u and z2 := v. Then x∗(u) = ρ < ρ+ r ≤ x∗(v), since |S| ≥ 4.

In the subcase where k > 0 one proceeds somewhat different. Let yB : u, u1 �→ κ1

and yB : v, v1 �→ r − κ1, and spread the rest of the c-pairs over the other vertices.
Then x∗(u) 	= x∗(u1) and x∗(v) 	= x∗(v1) by the same argument as for (2). In this
case ρ is not used. Assume therefore that d is at least 2.

4. Choose z1 := w and z2 := v1. Then, assuming yB(u) = κ1 and yB(v) = r−κ1,
Lemma 2.1 produces x : {u,w} �→ κ1; {w, v} �→ ρ − κ1; {v, v1} �→ ρ. While v1 is
incident to d − 1 ≥ 1 nontree edges, w is only incident to tree edges. Therefore
x∗(w) = ρ < ρ+ r ≤ x∗(v1).

Condition 3.4. Suppose H, T , and B are as in Condition 3.2 and let l = k−1
2 .

If (T,B) is not a feasible block for H, then n is even and either H = K1,2l or k = 5.
Proof. Let R, S, r′, and s′ be as in Definition 2.6. If (T,B) is not feasible, then

r′ ≤ 1 and s′ is odd, say.
If r′ = 1, then |R| = 2 and |S| ≥ 4 is even. Then T would be 2-class, a contradic-

tion to Condition 3.3. Hence we may assume that r′ = 0, i.e., T = K1,2l.
If n is odd, then ρ = r

2 . Extend the block B by three vertices of S and define the
b.a.s. yB on these vertices using r, κ1, and κ̄1. Then s(G) ≤ n− 1 by Lemma 2.13.

Assume that n is even, H 	= T = K1,2l and l ≥ 3. Distinguish two cases:
1. Two leaves of T have different degree in H. Denote these two leaves by u

and v and change B to B := {u, v}. Then M = M ′ = {r} in Definition 2.11 and
yB ≡ r remains a b.a.s., since for any realization x, x∗(u) = d(u) ·r 	= d(v) ·r = x∗(v).
The block is feasible, because there is an even number of unblocked leaves, and it is
good, because p ≥ p(H) = l − 1 ≥ 1. Therefore s(G) ≤ n− 1 by Lemma 2.13.

2. All leaves of T have the same degree d in H, where d ≥ 2, since H 	= T .
Modify T by making one leaf u, say, adjacent to another leaf v, say. Let w be a third
leaf and c be the center vertex of T . Then B := {c, u, v, w} and yB : c �→ κ1; u �→ κ̄1;
v, w �→ r. This block is feasible for H and good for G, and since x∗(v) = (d− 1) · r <
dr = x∗(w) for any x realizing yB , s(G) ≤ n− 1 by Lemma 2.13.

Condition 3.5. Suppose H, T , B, and k are as in Condition 3.2. If (T,B) is
feasible for H, but {(T,B)} is not good for G, then n is even and k = 5.

A TIGHT BOUND ON THE IRREGULARITY STRENGTH OF GRAPHS 321

Proof. Use notation of Definition 2.10. Since (T,B) is feasible and b is even,
{(T,B)} would be good if (3) held. Thus, n is even and p = 0. Since p(H,T,B) ≤
p = 0, r′ = 3, and s′ ∈ {0, 3} in the notation of Definition 2.6.

If s′ = 0, then k = 5 and the condition holds. If s′ = 3, then k = 8 and each color
class of T has four vertices. There exist exactly nine such trees.

Eight of them are presented in Figure 2. If T is one of them, then let B := V (H)
and let u, v, x1, and x2 be as in the description of Figure 2. If v is incident to fewer
nontree edges than u, then choose the assignment x2, otherwise choose x1. Assign r
to the nontree edges. The resulting assignment is irregular and the weighted degrees
are contained in M (as in Definition 2.11). Thus s(G) ≤ n − 1 by Lemma 2.13 and
Remark 2.14.

Fig. 2. Eight trees with four vertices in each color class. Each has a white vertex u and a
black vertex v. One can check that each tree has two edge assignments x1 and x2, where x∗

1(u) = r,
x∗
1(v) = 2r, and x∗

2(u) = x∗
2(v) = r. Both use the congruence class r and three arbitrary c-pairs.

Assume therefore thatH has none of the trees of Figure 2 as a spanning tree and T
consists of two inner vertices, each with three adjacent leaves. The color classes of all
spanning trees of H contain at least three vertices because otherwise there would be a
2-class spanning tree ofH, contradicting Condition 3.3. Using this, one can check that
H must have at least two leaves u1 and u2 with different neighbors v1 and v2. Choose
B := {u1, u2, v1, v2} and let yB(u1) := yB(v1) := κ1 and yB(u2) := yB(v2) := κ̄1.
Then yB is a b.a.s., and therefore s(G) ≤ n− 1 by Lemma 2.13.

Condition 3.6. If H = Ck is a component of G with k ≥ 5, then n is even and
k = 5.

Proof. If k ≥ 7, then let T be a spanning path of H and let B = {v1, v2, v3, v4}
be four subsequent vertices such that v1 is a leaf. This is a feasible block for H and
good for G. In Definition 2.11, M = {ρ, κ1, κ̄1}, where 2ρ ≡ r (mod r).

Let yB(v1) := ρ, yB(v2) := κ1, yB(v3) := ρ, and yB(v4) := κ̄1. This is a b.a.s.,
since x∗(v1) = r + ρ > ρ = x∗(v3), and thus s(G) ≤ n− 1 by Lemma 2.13.

For the cases “k = 6” and “k = 5, n odd,” irregular assignments of H whose
weighted degrees are contained in the appropriate M are given in Figure 3. Then
s(G) ≤ n− 1 by Lemma 2.13 and Remark 2.14.

Condition 3.7. Every component of G has order at most four.
Proof. Assume that G has a component H1 of order k ≥ 5. If H1 is not a cycle,

then, by Condition 3.2, there is a block (T,B) of that component and an appropriate
b.a.s. That block is not feasible for H1 or it is not good for G, because otherwise
s(G) ≤ n− 1 by Lemma 2.13. In either case, by Conditions 3.4 and 3.5, n is even and
either H1 = K1,2l or k = 5, where l = k−1

2 . Condition 3.6 implies the same if H1 is a
cycle.

Since k is odd but n is even, there must be another odd component H2. If H2

has more than three vertices, then, by the same reasoning as above, H2 is a star with
an even number of leaves or has order five. The plan in this situation is to define a
feasible block consisting of odd vertex subsets B1 and B2 in H1 and H2, respectively.

322 TILL NIERHOFF

Fig. 3. Irregular assignments for cycles of length 6 and, if n is odd, of length 5. The weighted
degrees are contained in the appropriate set M .

Fig. 4. Irregular assignments for components of order 5. The dotted edges may exist or not, if
they do exist they are assigned the value r. The weighted degrees are contained in the appropriate
set M . The weighted degree in the congruence class of r is r itself.

Then the set M consists of the congruence class r and |B1|+|B2|
2 − 1 c-pairs. Split this

into Mi, consisting of r and |Bi|−1
2 c-pairs, i = 1, 2.

In the following, either a b.a.s. yBi : Bi → Mi is given, or an irregular assign-
ment, having weighted degrees only in Mi. In a realization of yB1 the weighted degree
r does not occur, only multiples of r. In a relization of yB2 no multiple occurs, only
r itself. Therefore both together are a b.a.s. for B1 ∪ B2. It is left to the reader to
check this in each case, as well as that the proposed block is good and that yB1 and
yB2 are block assignment schemes. The condition then follows from Lemma 2.13 or
Remark 2.14.

If H1 is a star, then let B1 := {c1, l1, l′1}, where c1 is the center vertex and l1, l2
are two leaves. Then let yB1(c1) := r, yB1(l1) := κ1, and yB1(l

′
1) := κ̄1. Observe that,

in a realization x, x∗(c1) ≥ 2r. If k = 5 and H1 	= K1,4, then let B1 := V (H1). It
is straightforward to construct irregular assignments for components of order 5 such
that the weighted degrees are contained in the congruence class r and two c-pairs but
are not equal to r itself.

If H2 is a star, then let B2 := {c2, l2, l′2}, similarly as for B1. But in this case let
yB2(c2) := yB2(l2) := κ1, and yB2(l

′
2) := r. As in (2), x∗(c2) 	= x∗(l2). Otherwise let

B2 := V (H2). If |H2| = 5 and H2 	= K1,4, then yB2 is given in Figure 4. If |H2| = 3,
then the unique choice for yB2

will work.

Condition 3.8. G contains no component of order four.

Proof. Assume that H is a component of G with |H| = 4. Then let B := V (H)
and M = {ρ, κ1, κ̄1} as in Definition 2.11. In Figure 5 irregular assignments of H,
whose weighted degrees are contained in an arbitrary initialization of M are given.
Therefore s(G) ≤ n− 1 by Lemma 2.13 and Remark 2.14.

Condition 3.9. If G contains only components of order three, then G = K3.

A TIGHT BOUND ON THE IRREGULARITY STRENGTH OF GRAPHS 323

Fig. 5. Irregular assignments for components of order 4. The dotted edges may exist or
not, if they do exist they are assigned the value r. The weighted degrees are contained in the set
{ρ, κ1, r − κ1}.

Proof. This final condition is proved by direct construction. There are two pos-
sible components of order three: K3 and P3. Assume that G = s ·K3 + t · P3, i.e., G
is the disjoint union of s copies of K3 and t copies of P3. In the following it is shown
that s(G) ≤ 3(s+ t)− 1, except for the case s = 1 and t = 0, when G = K3.

The irregularity strength of tP3 was already determined in [1]. The exact value
is rather complicated. Here only the upper bound s(tP3) ≤

⌊
5t
2

⌋
is needed. Since⌊

5t
2

⌋ ≤ 3t− 1 for t ≥ 1, the condition holds if s = 0.
Assume now that s > 0, and that there is an irregular assignment x : E(tP3) →

{1, . . . , ⌊ 5t
2

⌋}. Denote the edges of the ith copy of K3 by ei, e
′
i, and e′′i . Let x : ei �→⌊

5t
2

⌋
+ 2i− 1; e′i �→

⌊
5t
2

⌋
+ 2i; e′′i �→

⌊
5t
2

⌋
+ 2i+ 1. Then x|sK3 is irregular.

It is easy to verify that maxv∈tP3 x
∗(v) < minv∈sK3 x

∗(v). The assignment x
is therefore irregular and the maximal edge weight is

⌊
5t
2

⌋
+ 2s + 1. Notice that⌊

5t
2

⌋
+ 2s+ 1 ≤ 3(s+ t)− 1, unless s = 1 and t = 0.
Conditions 3.1, 3.7, 3.8, and 3.9 imply Theorem 1.2.

4. Acknowledgment. Theorem 1.2 is the main result of my diploma thesis
[6]. I am very grateful to Prof. Dr. E. Triesch for suggesting this topic to me, for
supervision, and especially for valuable conversations (not only on this topic).

REFERENCES

[1] M. Aigner and E. Triesch, Irregular assignments of trees and forests, SIAM J. Discrete Math.,
3 (1990), pp. 439–449.

[2] G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, and F. Saba, Irregular
networks, Congr. Numer., 64 (1988), pp. 197–210.

[3] M. S. Jacobson and J. Lehel, Degree Irregularity, available online at http://athena.louisville.
edu/˜msjaco01/irregbib.html

[4] J. Lehel, Facts and quests on degree irregular assignments, in Graph Theory, Combinatorics
and Applications, vol. 2, Y. Alavi, G. Chartrand, O. R. Oellermann, and A. J. Schwenk,
eds., John Wiley, New York, 1988, pp. 765–781.

[5] L. Lovász, Three short proofs in graph theory, J. Combin. Theory Ser. B, 19 (1975), pp. 269–271.
[6] T. Nierhoff, Irreguläres Gewichten von Bäumen und Wäldern, Diplomarbeit, Universität Bonn,

1995 (in German).
[7] E. S. O’Keefe, Verification of a conjecture of Th. Skolem, Math. Scand., 9 (1961), pp. 80–82.
[8] T. Skolem, On certain distributions of integers in pairs with given differences, Math. Scand., 5

(1957), pp. 57–68.

COMPUTING FUNCTIONS OF A SHARED SECRET∗

AMOS BEIMEL† , MIKE BURMESTER‡ , YVO DESMEDT§ , AND EYAL KUSHILEVITZ¶

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 3, pp. 324–345

Abstract. In this work we introduce and study threshold (t-out-of-n) secret sharing schemes
for families of functions F . Such schemes allow any set of at least t parties to compute privately the
value f(s) of a (previously distributed) secret s, for any f ∈ F . Smaller sets of players get no more
information about the secret than what follows from the value f(s). The goal is to make the shares
as short as possible. Results are obtained for two different settings: we study the case when the
evaluation is done on a broadcast channel without interaction, and we examine what can be gained
by allowing evaluations to be done interactively via private channels.

Key words. secret sharing, broadcast channel, private channels, interaction, private computa-
tions

AMS subject classifications. 68Q99, 68R05, 94A60, 94A62

PII. S0895480195288819

1. Introduction. Suppose, for example, that we are interested in sharing a
secret file among n parties in a way that will later allow any t of the parties to test
whether a particular string (not known in the sharing stage) appears in this file.
This test should be done without revealing the content of the whole file or giving
any other information about the file. This problem can be viewed as an extension
of the traditional definition of threshold (t-out-of-n) secret sharing schemes. In the
traditional definition, sets of at least t parties are allowed to reconstruct a (previously
distributed) secret s, while any smaller set gets no information about the secret. We
introduce a more general definition of t-out-of-n secret sharing schemes for a family
of functions F . These schemes allow authorized sets of parties to compute some
information about the secret and not necessarily the secret itself. More precisely, sets
B of size at least t can evaluate f(s) for any function f ∈ F ; any set C of size less
than t knows nothing (in the information theoretic sense) about the secret prior to
the evaluation of the function and, in addition, after f(s) is computed by a set B no
set C of size less than t knows anything more about the secret s than what follows
from f(s). In other words, the parties in C might know the value f(s), but they know
nothing more than that, although they might have heard part of the communication
during the evaluation of f(s).

Clearly, if we consider a family F that includes only the identity function f(s) = s,
then we get the traditional notion of secret sharing schemes. These schemes, which
were introduced by Blakley [8] and Shamir [34], were the subject of a considerable

∗Received by the editors July 7, 1995; accepted for publication (in revised form) January 20, 2000;
published electronically May 15, 2000.

http://www.siam.org/journals/sidma/13-3/28881.html
†Department of Computer Science, Ben-Gurion University, Beer Sheva 84105, Israel (beimel@

cs.bgu.ac.il, http://www.cs.bgu.ac.il/∼beimel). The research of this author was done when the
author was a Ph.D. student in the Department of Computer Science, Technion.

‡Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 OEX,
UK (m.burmester@rhbnc.ac.uk, http://hp.ma.rhbnc.ac.uk/∼burmester).

§Department of Computer Science, Florida State University, PO Box 4530, 206 Love Building,
Tallahassee, FL 32306-4530 (desmedt@cs.fsu.edu). The research of this author was partially sup-
ported by NSF grants NCR-9106327, INT-9123464, and CCR-9508528.

¶Department of Computer Science, Technion, Haifa 32000, Israel (eyalk@cs.technion.ac.il,
http://www.cs.technion.ac.il/∼eyalk).

324

COMPUTING FUNCTIONS OF A SHARED SECRET 325

amount of work (e.g., [30, 26, 28, 6, 35, 20]). They were used in many applications
(e.g., [31, 5, 15, 19]) and were generalized in various ways [22, 7, 36]. Surveys are given
in [35, 37]. The question of sharing many secrets simultaneously was considered (with
some differences in the definitions) by several researchers [30, 26, 21, 11, 23, 10, 24].
Simultaneous sharing of many secrets is also a special case of our setting.1 Other
similar scenarios in which sharing is viewed as a form of encryption and the security
is computationally bounded have been considered in [32, 3, 1].

Threshold cryptography [19, 18, 17] is also a special case of secret sharing for a
family of functions.2 A typical scenario of threshold cryptography is the following:
Every set B of t parties should be able to sign any document such that any coalition
C of less than t parties cannot sign any other document (even if the coalition C knows
the signatures of some documents). To achieve this goal, the key is shared in such
a way that every set of t parties can generate a signature from their shares without
revealing any information on the key except the signature. Specifically, assume we
have a signature function SIGN : M ×K → O, where M is the domain of messages,
K is the domain of keys, and O is the domain of signatures. For every m ∈M define
fm : K → O as fm(k) = SIGN(m, k). The previous scenario is simply sharing the key
for the family {fm : m ∈M}. These examples show that secret sharing for a family
of functions is a natural primitive.

Obviously, one possible solution to the problem of sharing a secret for a family F
is by sharing separately each of the values f(s) (for any f ∈ F) using known threshold
schemes. While this solution is valid, it is very inefficient, in particular when the size
of F is large. Therefore, an important goal is to realize such schemes while using
“small” shares. For example, to share a single bit among n parties, the average (over
the parties) length of shares is at least log(n − t + 2) (for 2 ≤ t ≤ n − 1) [27] and
log n bits are sufficient [34]. The obvious solution for sharing bits simultaneously will
require log n bits. By [26], it can be shown that shares of at least bits are necessary.
We shall show that -bit shares are also sufficient if interactive evaluation on private
channels is allowed, and O()-bit shares are sufficient if noninteractive evaluation (on
a broadcast channel) is used.3

We present an interactive scheme in which -bit secrets are distributed using -bit
shares; this scheme allows the computation of every linear combination of the bits
(and not only computation of the bits themselves). We use this scheme to construct
schemes for other families of functions. The length of the shares in these schemes can
be much longer than the length of the secret. An interesting family of functions that
we shall consider is the family ALL of all functions of the secret. For this family,
we construct a scheme in which the length of the shares is ≈ 2� log n (where is
the length of the secret and 2� is the length of the description of a function which is
evaluated). In this scheme we can use a broadcast channel with no interaction during
the computation. If we allow interaction on private channels during the computation,
then the length of the shares can be reduced to 2�. Note that the obvious solution of

sharing each bit separately requires, in this case, 22�

bits.

1Let s1, s2, . . . , s� be the secrets we want to share simultaneously. Construct the concatenated
secret s = s1 ◦ s2 ◦ · · · ◦ s� and the functions which can be evaluated are the functions fi(s) = si.
The secrets si may be dependent: our model allows some information to leak provided it is no more
than what follows from the evaluations of f(s).

2The functions considered in [19, 18, 17] are, however, very limited and the scenario in [17] is
restricted to computational security.

3In fact, both results require � to be “sufficiently large”: � ≥ logn in the interactive case and
� ≥ logn log logn in the broadcast model.

326 BEIMEL, BURMESTER, DESMEDT, AND KUSHILEVITZ

Our work deals mainly with two models: the private channels model in which the
computation might require a few rounds of communication, and the broadcast channel
model in which the computation is noninteractive. On one hand, the broadcast model
does not require secure private channels and synchronization; hence, the computation
is more efficient. On the other hand, in the private channels model, a coalition C that
does not intersect the evaluating set B will know nothing about s; not even the value
f(s). Interaction seems to be useful in the computation. It enables us to reduce the
length of the shares by a factor of logn in our basic scheme for linear functions.

We also study ideal threshold schemes. These are schemes in which the size of
the shares equals the size of the secrets4 (see, e.g., [12, 13, 4, 33, 25]). We deal with
the characterization of the families of functions F which can be evaluated by an ideal
threshold scheme. For the interactive private channels model, we prove that every
boolean function that can be evaluated is a linear function. For the broadcast model,
we prove that F cannot contain any boolean function (for every family that contains
the identity function).

An example. To motivate our approach and to clarify the notion of secret sharing
for a family of functions we consider a simple example, which we discuss informally.
Suppose that a dealer shares a secret s among n parties and that at some time later
a set of at least t parties would like to answer the question: “Is the shared secret
equal to the string a?” That is, they want to evaluate the boolean function fa(s)
which is 1 if and only if s = a. The string a is not known when the dealer shares
the secret. We describe a simple scheme which makes it possible for the parties to
answer such questions. Let s = s1s2 . . . s� be the secret bit-string. The dealer chooses
2 random strings from {0, 1}2�, denoted by b0, b1, . . . , b2�−1, and shares each of these
strings using Shamir’s t-out-of-n threshold scheme [34]. Let bi,j be the share of the
secret bi given to party Pj . The dealer computes the sum (i.e., bitwise exclusive-or)

α =
∑�
i=1 b2i+si (that is, si, the value of the ith bit of the secret, selects whether we

take b2i or b2i+1) and gives α to each party. When a subset B of (at least) t parties
wants to check if s = a for some a = a1a2 . . . a�, each Pj ∈ B computes a “new”

share
∑�
i=1 b(2i+ai),j . Then, the parties in B apply Shamir’s secret reconstruction

procedure to compute a “new” secret from these “new” shares. Since this procedure
involves only computing a linear combination of the shares, the “new” secret is simply∑�
i=1 b2i+ai . If the “new” secret differs from

∑�
i=1 b2i+si , then the parties learn that

s �= a. However, they get no more information on the secret s. If the “new” secret is
equal to

∑�
i=1 b2i+si , then it is easy to see that with high probability (over the choice

of b1, . . . , b�) we must have s = a. In this case, the parties learn the secret and there
is no additional information which should be hidden from them. Observe that in both
cases the parties learn no more than what is revealed by answering the question.

Connection to private computations. In our schemes we require that authorized
sets of parties can compute a function of the secret without leaking any other informa-
tion on the secret. This resembles the requirement of (n, k)-private protocols [5, 15]
in which the set of all n parties can evaluate a function of their inputs in a way that
no set of less than k parties will gain any additional information about the inputs of
the other parties. Indeed, in some of our schemes a set B of size t uses a (t, t)-private
protocol. However, it is not necessary to use private protocols in the computation,
since the parties are allowed to leak information about their inputs (the shares) as
long as they do not leak any additional information on the secret. Moreover, using

4The size of each share is always at least the size of the secret [26].

COMPUTING FUNCTIONS OF A SHARED SECRET 327

private protocols does not solve the problem of efficiently sharing a secret for all func-
tions, since not all functions can be computed (t, t) privately [5, 16]. Furthermore, the
parties cannot use the (t, (t− 1)/2�)-private protocols of [5] or [15] since this means
that coalitions of size greater than t/2 (but still smaller than t) gain information.

Organization. The rest of this paper is organized as follows. In section 2 we dis-
cuss our model for secret sharing for families of functions and provide the definitions—
definitions which are more delicate than in the case of traditional threshold schemes.
In section 3 we present interactive and broadcast secret sharing schemes for the family
LIN of linear functions. In section 4 we use these schemes to construct schemes for
other families. In section 5 we describe the broadcast scheme for the bit functions
BIT . In section 6 we characterize ideal schemes in the various models. Finally, in
section 7 we discuss possible extensions of our work. For completeness we give some
background results in three appendices.

2. Definitions. This section contains a formal definition of secret sharing for a
family of functions. We start by defining the model. We consider a system with n
parties U = {P1, P2, . . . , Pn}. In addition to the parties, there is a dealer who has
a secret input s. A distribution scheme is a probabilistic mapping, which the dealer
applies to the secret to generate n pieces of information s1, . . . , sn which are referred
to as the shares. The dealer gives the share si to party Pi. Formally, we have the
following.

Definition 2.1 (distribution schemes). Let S be a set of secrets, S1, S2, . . . , Sn
sets of shares, and R a set of random inputs. Let µ : R → [0, 1] be a probability
distribution on R. A distribution scheme Π over S is a mapping Π : S × R →
S1 × S2 × · · · × Sn. The ith coordinate si of Π(s, r) is the share of Pi. The pair
(Π, µ) can be thought of as a dealer who shares a secret s ∈ S by choosing at random
r ∈ R (according to the distribution µ) and then gives each party Pi as a share the
corresponding component of Π(s, r).

In the scenario we consider, the dealer is active only during the initialization
of the system. After this stage the parties can communicate. We next define our
communication models.

Definition 2.2 (communication models). We consider the following two models
of communication:

1. The private channels model in which the parties communicate via a com-
plete synchronous network of secure and reliable point-to-point communica-
tion channels. In this model a set of parties has access only to the messages
sent to the parties in the set.

2. The broadcast channel model in which the parties communicate via a (public)
broadcast channel. In this model a set of parties can obtain all the messages
exchanged by the communicating parties.

A subset of the parties may communicate in order to compute a function of their
shares. We now define how they evaluate this function.

Definition 2.3 (function evaluation). A set of parties B ⊆ U executes a protocol
FB,f to evaluate a function f .

At the beginning of the execution, each party Pi in B has an input si and chooses
a random input ri. To evaluate f , the parties in B exchange messages as prescribed
by the protocol FB,f . In each round every party in B sends messages to every other
party in B. A message sent by Pi is determined by si, ri, the messages received by
Pi so far, and the identity of the receiver. We say that a protocol FB,f evaluates f
(or computes f(s)) if each party in B can always evaluate f(s) from its input and the

328 BEIMEL, BURMESTER, DESMEDT, AND KUSHILEVITZ

communication it obtained.
We denote by MC(〈si〉B , 〈ri〉B) the messages that an eavesdropping coalition C

can obtain during the communication between the parties in B (this depends on the
communication model). Here 〈si〉B is the vector of shares of B and 〈ri〉B the vector
of random inputs of B.

A protocol is noninteractive if the messages sent by each party Pi depend only on
its input (and not on the messages received during the execution of the protocol). Non-
interactive protocols have only one round of communication. An interactive protocol
might have more than one round. In this case we require that the protocol terminates
after a finite number of rounds (that is, we do not allow infinite runs).

The parties in the system are honest, that is, they send messages according to the
protocol.

A coalition C which eavesdrops on the execution of a protocol FB,f by the parties
in B gains no additional information on the secret s if any information that C may
get is independent of the old information. In our model we shall allow C to gain some
information, but no more than what follows from the evaluation of f . The information
that C gains is determined by the view of C.

Definition 2.4 (the view of a coalition). Let C ⊂ U be a coalition. The view
of C, denoted VIEWC , after the execution of a protocol consists of the information
that C gains. In a distribution scheme, VIEWC = 〈si〉C , the shares of C. In the
evaluation of f(s) by a set of parties B ⊆ U the view of C consists of the inputs
〈si〉C , the local random inputs 〈ri〉C∩B (only the parties in C ∩ B are involved in
the computation), and the messages that C obtains from the communication channel
during the evaluation by B, i.e., MB∩C(〈si〉B , 〈ri〉B). That is,

VIEWC = 〈si〉C ◦ 〈ri〉Pi∈B∩C ◦MB∩C(〈si〉B , 〈ri〉B).

We now define t-out-of-n secret sharing schemes for a family of functions F .
Such schemes allow any set B of at least t parties to evaluate f(s), for any f ∈ F ,
where s is a previously distributed secret, while any set C of less than t parties gains
no more information about the secret than the information inferred from f(s). We
distinguish between three types of schemes depending on the way that the value f(s)
is computed by B and the channels used: (1) interactive private channels schemes,
where the parties in B engage in a protocol via private channels which computes
f(s); (2) noninteractive private channels schemes, where the parties in B engage in
a noninteractive protocol via private channels to compute f(s); and (3) broadcast
noninteractive schemes, where each party in B broadcasts a single message (which
depends only on its share) on a broadcast channel (we do not consider interactive
broadcast schemes in this paper).

The computation of f(s) must be secure. There are two requirements to consider:
(1) the usual requirement for threshold schemes; that is, before the evaluation any set
C of size less than t knows nothing about the secret by viewing their shares; (2) after
the evaluation of f(s) by a set B, any set C of size less than t gains no information
about s that is not implied by f(s). Formally, we have the following.

Definition 2.5 (secret sharing schemes for a family). A t-out-of-n secret sharing
scheme for a family of functions F is a distribution scheme (Π, µ) which satisfies the
following two conditions:
Evaluation. For any set B ⊆ U of size at least t and any function f ∈ F the parties in

B can evaluate f(s). That is, there is a protocol FB,f which, given the shares
of B as inputs, will always output the correct value of f(s). The scheme

COMPUTING FUNCTIONS OF A SHARED SECRET 329

is called noninteractive if FB,f is noninteractive, and interactive otherwise.
Depending on the communication model, we use either a broadcast channel
or private channels.

Security. Let X be a random variable on the set of secrets S and C ⊂ U be any
coalition of size less than t.
Prior to evaluation (after the distribution of shares). For any two secrets

s, s′ ∈ S and any shares 〈si〉C (from Π(s, r)):

Pr[VIEWC = 〈si〉C | X = s] = Pr[VIEWC = 〈si〉C | X = s′] .

After evaluation. For any f ∈ F , any B ⊆ U of size at least t, any secrets
s, s′ ∈ S with f(s) = f(s′), any shares 〈si〉C , any inputs 〈ri〉B∩C , and
any messages MB∩C(〈si〉B , 〈ri〉B) from the computation of f(s) by B:

Pr[VIEWC = 〈si〉C ◦ 〈ri〉B∩C ◦MB∩C(〈si〉B , 〈ri〉B) | X = s]

= Pr[VIEWC = 〈si〉C ◦ 〈ri〉B∩C ◦MB∩C(〈si〉B , 〈ri〉B) | X = s′] .

We say that C gains no information that is not implied by the function f
(or simply: gains no additional information) if in the computation of f(s) we
have security after evaluation.

A (traditional) t-out-of-n secret sharing scheme is a secret sharing scheme for the
family that includes only the identity function f(s) = s and its renamings. (From
Observation 2.1 below it follows that if a function f can be evaluated securely, then
so can all its renamings.)

Remark 2.1. We require only that one function f ∈ F can be evaluated securely.
A more desirable property is that the scheme is reusable: any number of functions
can be evaluated securely (possibly by different sets). All our schemes, except for the
scheme in section 5, are reusable.

Remark 2.2. In Definition 2.5 we required that all coalitions C of size less than t
should gain no additional information on the secret. Clearly, it is sufficient to require
this only for coalitions C of size t− 1, since any smaller coalition has less information
on the secret and, hence, will gain no additional information.5

Remark 2.3. The security in Definition 2.5 is based on the requirement that the
view of a coalition is the same for secrets which have the same evaluation. Alter-
natively we could require Pr[X = s | VIEWC = view] = Pr[X = s | f(s) = v].
That is, the probability that the secret is s, given the view of the coalition C, equals
the probability of s, given the value v = f(s). In Appendix A we show that the two
definitions are equivalent (see [14] for the analogue claim with respect to traditional
secret sharing schemes).

Obviously, any broadcast scheme can be transformed into a scheme in which each
message is sent on private channels. On the other hand, if we take a noninterac-
tive private channels scheme and broadcast the messages, then the security of the
computation may be violated.

A function f ′ is a renaming of f if f(x) = f(y) if and only if f ′(x) = f ′(y).
Suppose that f ′ is a renaming of f and that f can be evaluated securely; then f ′ can
also be evaluated securely. Indeed, to evaluate f ′(s) securely we first evaluate f(s)
securely; after this evaluation s might not be known. Nevertheless, we can find an
input y, such that f(y) = f(s), and output f ′(y).

5This is different from what happens in private multiparty computation; there, a smaller set has
less inputs and hence is expected to learn even less.

330 BEIMEL, BURMESTER, DESMEDT, AND KUSHILEVITZ

Observation 2.1. A secret sharing scheme enables the secure evaluation of a
renaming of f if and only if it enables the secure evaluation of f .

Therefore, we ignore renamings of functions.
We next define certain classes of functions over GF(2�) which are of particular

interest. Recall the structure of GF(2�). Each element a ∈ GF(2�) is an -bit string
a�−1 . . . a1a0 which may be represented by the polynomial a�−1x

�−1 + · · ·+a1x
1 +a0.

Addition and multiplication are as for polynomials, using the structure of GF(2) for
the coefficients and reducing products modulo a polynomial p(x) of degree , which
is irreducible over GF(2). A function f : GF(2�) → GF(2�) is linear over GF(2) if
f(x + y) = f(x) + f(y) for every x, y ∈ GF(2�). Notice that f(0) = f(0) + f(0) = 0
for every linear function f . Thus, we have the following.

Observation 2.2. For every linear function f , for every x ∈ GF(2�), and for
every a ∈ GF(2) it holds that f(ax) = af(x).

Notice that we do not require that f(ax) = af(x) for a ∈ GF(2�). We define the
family LIN � to be the family of all linear functions of GF(2�) over GF(2) (so LIN �

is the family of additive functions). Let ei : GF(2�) → GF(2) be the function that
returns the ith bit of x. Then, ei(x+y) = ei(x)+ei(y) and, hence, ei is linear. We call
the family {e1, . . . , e�} the bit functions and denote it by BIT �. We also consider the
family ALL� of all possible functions of the secret (by Observation 2.1, without loss
of generality, the range of the functions in ALL� is in GF(2�)). We stress that BIT �
contains only boolean functions while both ALL� and LIN � contain nonboolean
functions as well.

We will need the following claim concerning linear functions.
Claim 2.1. For every linear function f , there are constants c1, . . . , c� such that

f(b1b2 . . . b�) =
∑�
j=1 cjbj for every -bit string b1b2 . . . b�.

Proof. Notice that b1b2 . . . bn =
∑n
j=1 bjej . Thus, since f is linear, and by

Observation 2.2,

f(b1b2 . . . bn) = f

n∑

j=1

bjej

 =

n∑

j=1

f (bjej) =

n∑

j=1

f (ej) bj .

Now, define ci = f(ei), and the claim follows.

3. Schemes for the linear functions.

3.1. An interactive scheme. In this section we show that Shamir’s scheme
over GF(2�) [34] (described in Appendix B) is also a secret sharing scheme for the
family LIN �—the family of linear functions.

Theorem 3.1 (basic interactive scheme). For every ≥ 1 there exists an inter-
active private channels t-out-of-n secret sharing scheme for the family LIN � in which
the secrets have length and the shares have length ′ �

= max {, �log(n + 1)�}.
Proof. The dealer uses Shamir’s t-out-of-n scheme over GF(2�

′
) to distribute the

shares. We show how every function f ∈ LIN � can be evaluated securely. Consider a
set B of t′ ≥ t parties with shares 〈si〉B , where si ∈ GF(2�

′
), that wishes to compute

f(s). By the reconstruction procedure of Shamir’s scheme, for each Pj ∈ B there
exist coefficients δj such that s =

∑
Pj∈B δjsj (see Appendix B). Since f is linear,

f(s) = f(
∑
Pj∈B δjsj) =

∑
Pj∈B f(δjsj). Let xj

�
= f(δjsj). Then, f(s) is simply the

sum of the xj ’s. Computing this sum is done using the following interactive protocol
of Benaloh [6] (for a more detailed description of this protocol see Appendix C).
For convenience of notation, we assume that B = {P1, P2, . . . , Pt′}. In the first step

COMPUTING FUNCTIONS OF A SHARED SECRET 331

of the protocol each party Pi ∈ B chooses t′ − 1 random inputs ri,1, . . . , ri,t′−1 in

GF(2�
′
), computes ri,t′

�
=xi −

∑t′−1
j=1 ri,j , and sends ri,j to Pj ∈ B. Then, each party

Pj computes yj =
∑
Pi∈B ri,j and sends yj to P1. Party P1 now computes

∑t′

j=1 yj

and sends it to all the other parties. By the choice of ri,t′ , the sum
∑t′

j=1 yj equals∑
Pi∈B xi = f(s); thus, each party in B computes f(s) correctly.

Let us now prove the security of this scheme. The security prior to evaluation
follows from the security of Shamir’s threshold scheme. For the security after the
evaluation it is sufficient to consider a coalition C of size t−1 (by Remark 2.2). Since
each xj is computed locally, and since f(s) is computed using a private protocol [6] (for
a formal definition of privacy see Appendix C), the parties in C gain no information
about the shares of the other parties that is not implied by f(s). That is, for any shares
〈si〉B and 〈s′i〉B with si = s′i for all Pi ∈ B ∩C and

∑
Pj∈B f(δjsj) =

∑
Pj∈B f(δjs

′
j),

we have

Pr[〈ri〉B∩C ◦MB∩C(〈si〉B , 〈ri〉B) | 〈si〉B]

= Pr[〈ri〉B∩C ◦MB∩C(〈s′i〉B , 〈ri〉B) | 〈s′i〉B].(1)

Now for a secret s and shares 〈si〉C with |C| = t− 1, there are unique shares 〈si〉B\C
of Shamir’s scheme that are consistent with s and 〈si〉C . Therefore,

Pr[viewC | s] = Pr[〈si〉C ◦ 〈ri〉B∩C ◦MB∩C(〈si〉B , 〈ri〉B) | s]

= Pr[〈si〉B ◦ 〈ri〉B∩C ◦MB∩C(〈si〉B , 〈ri〉B) | s]

= Pr[〈ri〉B∩C ◦MB∩C(〈si〉B , 〈ri〉B) | 〈si〉B ◦ s] · Pr[〈si〉B | s]

= Pr[〈ri〉B∩C ◦MB∩C(〈si〉B , 〈ri〉B) | 〈si〉B] · Pr[〈si〉B | s] .(2)

The last equation holds because the shares 〈si〉B determine the secret s. By (1),
the probability Pr[〈ri〉B∩C ◦MB∩C(〈si〉B , 〈ri〉B) | 〈si〉B] is independent of 〈si〉B and
therefore of s, and by the properties of Shamir’s scheme the probability Pr[〈si〉B | s] is
independent of 〈si〉B and s. Therefore, by (2), for every s′ ∈ S such that f(s) = f(s′),

Pr[viewC | s] = Pr[viewC | s′],

and the coalition C gains no information about s that is not implied by f(s).
Remark 3.1. In the special cases when t = 2 or t = n, the parties can compute

f(s) without interaction by simply sending the messages xj . For t = 2 the messages
must be sent via private channels. In this case, only coalitions C ⊆ B can get
messages of the evaluating set B. Let C = {Pi}, B = {Pi, Pj}. Then, party Pi gains
no additional information from the message xj of Pj , because Pi knows f(s) = xi+xj
and its input xi, and therefore can compute xj . For t = n the messages may be sent
via a public broadcast channel. In this case, any coalition C is a subset of B, and
if C has size n − 1, then B = C ∪ {Pj} for some Pj . Again C gains no additional
information from xj , since C can compute xj from f(s) and

∑
Pi∈C xi.

Remark 3.2. When 3 ≤ t ≤ n− 1, the parties evaluate f(s) using an interactive
private channels scheme. It can be shown that for this particular scheme interactive
evaluation is essential. Otherwise, some coalitions C that intersect the evaluating set
B, but are not contained in B, will gain additional information on s when they obtain
the values of xj .

This scheme has the advantage that it is reusable—sets B1, . . . , Bm can compute
values f1(s), . . . , fm(s) while any coalition C does not gain any information on the

332 BEIMEL, BURMESTER, DESMEDT, AND KUSHILEVITZ

secret beside the values fi(s) for every i with C ∩ Bi �= ∅. This is because the
evaluation is done using a private protocol. The private computation ensures that C
cannot distinguish between two vectors of shares with the same value fi(s). Hence,
even if C knows some evaluations fi(s), an evaluation of another function will not
reveal extra information.

3.2. A noninteractive broadcast scheme. Next, we present a broadcast
scheme for the family LIN � of linear functions, in which the length of the shares
is log n + .

Theorem 3.2 (basic broadcast scheme). For every ≥ 1 there exists a non-
interactive broadcast t-out-of-n secret sharing scheme for the family LIN � in which
the secrets have length and the shares have length log n + .

Proof. Let q �
= �log(n + 1)�. The dealer shares each bit of the secret independently

using Shamir’s scheme over GF(2q) (this is the smallest possible field of characteristic
two for Shamir’s scheme). Let s = b1b2 . . . b� be the secret bit-string and let si,j ∈
GF(2q) be the share of bj given to party Pi. Then, the total length of the share of
each party is · q = �log(n + 1)� ≤ log n + .

Clearly, every bit of the secret can be securely reconstructed. To evaluate other
linear functions of the secret, we use the homomorphic property of Shamir’s scheme,
as observed by Benaloh [6], which enables the evaluation of linear combinations of
a shared secret without revealing other information on the secret. To explain how
this property is used we first observe that it is sufficient to show the result for a
boolean linear function, since each coordinate of f(s), where f ∈ LIN �, is also a
linear function (we use the property that this scheme is reusable).

Let f be a boolean linear function and let B be a set of (at least) t parties
with shares 〈si,j〉Pi∈B,1≤j≤� that wishes to compute the bit f(s). By Claim 2.1,

there are constants c1, . . . , c� such that f(b1b2 . . . b�) =
∑�
j=1 cjbj . Recall that for

Shamir’s reconstruction procedure the secret bit bj is computed as bj =
∑
Pi∈B δisi,j ,

where δi ∈ GF(2q) are appropriate coefficients. Let xi
�
=
∑�
j=1 cjsi,j be a “new” share

of Pi. Then, f(s) =
∑�
j=1 cjbj =

∑�
j=1 cj

∑
Pi∈B δisi,j =

∑
Pi∈B δi

∑�
j=1 cjsi,j =∑

Pi∈B δixi.
To evaluate f(s) each party Pi ∈ B computes locally the “new” share xi and then

broadcasts it. The “new” secret f(s) is just the linear combination of these “new”
shares. We claim that a coalition C of size t − 1 gains no information that is not
implied by f(s) during this process. Indeed, the probability of the view of C is

Pr[〈si,j〉Pi∈C,1≤j≤� ◦ 〈xi〉Pi∈B | s] = Pr[〈si,j〉Pi∈C,1≤j≤� ◦ f(s) | s]
= Pr[〈si,j〉Pi∈C,1≤j≤� | s].

The first equality holds because the shares of C and f(s) determine the “new” shares
of B and vice-versa. The second equality holds because s determines f(s). Now
Pr[〈si,j〉Pi∈C,1≤j≤� | s] is independent of s by the security requirement prior to
evaluation. So, we get the security requirement after evaluation. Furthermore, if
this process is repeated more than once and different linear combinations are eval-
uated, then C will gain no information that is not implied by these linear combi-
nations, and the parties in B can evaluate each bit of a nonboolean linear function
independently.

Remark 3.3. Observe that in the broadcast scheme there is no need for the set B
to be given as input for the evaluation: each party Pi which is available just outputs
an appropriate linear combination of its shares, and its identity Pi. Then, a function

COMPUTING FUNCTIONS OF A SHARED SECRET 333

can be evaluated so long as there are at least t parties that agree to evaluate the
function. These parties do not need to be available at the same time or to know in
advance which parties would be available.

4. Schemes for other families of functions. We now show how to use the
basic scheme (for linear functions) to construct schemes for other families of functions.
Given a family of functions, we shall construct a longer secret such that every function
in the family can be evaluated as a linear function of the longer secret. Observe that
any boolean function f : GF(2�)→ GF(2) can be represented as a binary vector over
GF(2) of length 2� whose ith coordinate is f(i). Similarly, any function f : GF(2�)→
GF(2�

′
) can be represented as an array of ′ binary vectors of length 2� in which

the jth vector corresponds to the jth bit function of f(x). The rank of a family of
functions F is the smallest k for which there exist boolean functions f1, . . . , fk such
that for every function f ∈ F there exists a renaming of it f ′, for which each of the
′ vectors representing f ′ is a linear combination of f1, . . . , fk. The rank of a family
does not change if we add renamings of functions. So, we can assume that F contains
all renamings of its functions.

Theorem 4.1. Let F be any family of functions.

• There exists a t-out-of-n interactive private channels secret sharing scheme
for F with shares of length max {rank(F), log n + 1}.

• There exists a t-out-of-n noninteractive broadcast secret sharing scheme for
F with shares of length rank(F)(log n + 1).

Proof. Let f1, f2, . . . , fk be a basis for the vector space spanned by the functions
in F . To share a secret s the dealer generates a new secret

E(s) = f1(s) ◦ f2(s) ◦ · · · ◦ fk(s)

of length k (where ◦ denotes concatenation of strings). The dealer now shares the
secret E(s) using the basic scheme (either the interactive or broadcast version, de-
pending on the communication model). Then, fi(s) = ei(E(s)) for i = 1, 2, . . . , k. Let
f be the function in F to be evaluated. Without loss of generality, we may assume
that f : GF(2�)→ GF(2�

′
) is such that the ′ vectors representing it are spanned by

f1, . . . , fk. Every bit of f(s) is a linear combination of f1, . . . , fk and therefore of the
bits of E(s) (i.e., ei(E(s))). Since addition in GF(2k) is bitwise, concatenation of lin-
ear functions is a linear function too. Therefore f(s) can be computed by evaluating
a linear function of E(s). Thus Theorem 4.1 follows by Theorems 3.1 and 3.2.

We demonstrate the applicability of the above construction by considering the
family ALL of all possible functions of the secret (boolean and nonboolean).

Corollary 4.2.

• There exists a t-out-of-n interactive private channels secret sharing scheme
for ALL� with shares of length max

{
2� − 1, log n + 1

}
.

• There exists a t-out-of-n noninteractive broadcast secret sharing scheme for
ALL� with shares of length (2� − 1)(log n + 1).

Proof. By Theorem 4.1 it is sufficient to show that the rank of ALL� is 2� −
1. Let d = 2� − 1. Consider the d boolean functions f1, . . . , fd, where fi(x) =
1 ⇔ x = i. To evaluate a boolean function f we notice that the functions f(x) and
f(x) + 1 are renamings of each other, so we can assume that f(0) = 0. Hence,
f(s) =

∑
1≤i≤d fi(s)f(i), and therefore f1, . . . , fd form a basis for ALL�. In this case,

the secret s is encoded as the vector E(s) of length d in which the sth coordinate is
1 and all the other coordinates are zero (with the exception of E(0) = 0).

334 BEIMEL, BURMESTER, DESMEDT, AND KUSHILEVITZ

Notice that the length of the secret is , while the length of the shares is (2�− 1).

However, there are 22�−1 different boolean functions with domain of cardinality 2� such
that every function is not a renaming of another function (leaving aside nonboolean
functions). Therefore, our scheme is significantly better than the naive scheme in
which we share every function (up to renaming) separately. Also, the length of E(s)

for ALL� must be at least log 22�−1 = 2� − 1, so the representation for E(s) that we
use is the best possible for the family ALL� in this particular scheme. It remains
an interesting open question whether there exists a better scheme for this family or
whether one can prove that this scheme is optimal.

5. Noninteractive broadcast scheme for the bit family. In this section
we present a noninteractive broadcast scheme for the family of bit functions, whose
shares are of length O() (compared to O(log n) of the scheme from Theorem 3.2.

Theorem 5.1. Let = Ω(log n log log n). There exists a noninteractive broadcast
t-out-of-n secret sharing scheme for the family BIT � in which the length of the secrets
is and the length of the shares is O().

We first present a meta scheme (section 5.1). Then we show a possible implemen-
tation of the meta scheme that satisfies the conditions of the theorem.

5.1. A meta scheme. Let k and h be integers (to be fixed later) such that
h ≥ �log(n + 1)� and the secret s has length ≤ kh. We view the secret as a binary
matrix with k rows and h columns and denote its (i, j) entry by s[i, j]. We construct,
in a way to be specified below, a new binary matrix H with 3k rows and h columns.
Then we share every row of H using Shamir’s t-out-of-n scheme over GF(2h). Since
the length of every row is h ≥ �log(n + 1)�, Shamir’s scheme is ideal and every party
gets 3k shares of length h. The distribution stage of this scheme is illustrated in
Figure 5.1. When a set B of cardinality (at least) t wants to reconstruct the bit s[i, j]
of the secret, the parties in B reconstruct a subset Ti,j of rows (which depends only
on i, j and not on B). We will guarantee that these rows do not give any additional
information on the secret.

3kk Each party...

Shamir
H

h

h

Secret s

Fig. 5.1. An illustration of the meta scheme of the noninteractive broadcast scheme for the bit
family.

More specifically, for every 1 ≤ i ≤ k and 1 ≤ j ≤ h, we fix a set Ti,j ⊆ {1, . . . , 3k}
(independently of the secret). The jth column of H is constructed independently and
depends only on the jth column of the secret. It is chosen uniformly at random among
the column vectors such that

∀ 1 ≤ i ≤ k :
∑

a∈Ti,j

H[a, j] = s[i, j] .(3)

COMPUTING FUNCTIONS OF A SHARED SECRET 335

To reconstruct s[i, j] it is enough to reconstruct the Ti,j-rows of H and compute the
sum (modulo 2) of the jth bit of the reconstructed rows. (Actually, every party can
sum the shares of the Ti,j-rows of H, and then the parties reconstruct the secret
from these shares. The jth bit of the reconstructed secret equals s[i, j].) That is,
the message of a party in a reconstructing set consists of the shares corresponding
to the Ti,j-rows of H. The existence of a matrix H satisfying (3), and the security
requirement after reconstruction, depend on the choice of the sets Ti,j . On the other
hand, independently of the choice of the sets Ti,j , any coalition of size less than t
prior to any reconstruction does not have any information on the rows of H (by the
properties of Shamir’s scheme) and, hence, does not have any information on the
secret. That is, the meta scheme is secure prior to the evaluation.

5.2. Implementing the meta scheme. We show how to construct sets Ti,j
such that the security requirement after reconstruction will hold. Let R1, R2, . . . , Rh ⊂
{k + 1, . . . , 3k} be a collection of different sets of size k. In particular, no set is
contained in another set (R1, R2, . . . , Rh is a Sperner family [2]). For i = 1, . . . , k, let
Ti,j

�
=Rj ∪ {i}.
The number of sets of cardinality k which are contained in {k + 1, . . . , 3k} is(

2k
k

) ≥ 22k−o(k) ≥ 2k. Thus, fixing k �
= �log h� suffices. We require that h �log h� =

hk ≥ , and we choose the smallest possible h. The length of the shares (i.e.,
3h �log h�) is Θ(). The following claims are useful for proving the security of a
reconstruction.

Claim 5.1. For every secret s, the number of matrices H that satisfies (3) for
all j (1 ≤ j ≤ h) is at least 1 and is independent of s.

Proof. Set H[i, j] = s[i, j] for 1 ≤ i ≤ k, and 0 otherwise. This matrix H satisfies
(3). To show that the number of matrices satisfying (3) is independent of s, notice
that H is a solution of a nonhomogeneous system of linear equations. Since the system
has at least one solution, the number of such matrices is the number of solutions to
the homogeneous linear system of equations, where every s[i, j] = 0.

To show that no coalition gains any additional information, we first consider the
case in which the coalition knows only the Ti,j-rows of H. In this case, the coalition
can reconstruct s[i, j]. We prove that the coalition does not gain any information on
the other bits of the secret (i.e., bits s[i′, j′] for i′ �= i or j′ �= j).

Claim 5.2. Let s be a secret and fix the Ti,j-rows of H such that
∑

a∈Ti,j

H[a, j] = s[i, j].

The number of matrices H that satisfies (3) for all j (1 ≤ j ≤ h) is at least 1 and is
independent of s.

Proof. We first prove that there exists a matrix H satisfying the requirements.
Since the columns of H are constructed independently, it is enough to prove the
existence of every column j′. Only the j′th column of the Ti,j-rows of H, and the
j′th column of s, influence the j′th column of H; hence, while considering the j′th
column we can ignore the rest of the columns.

We first consider the jth column of H (i.e., j′ = j). Since Ti′,j = Rj ∪ {i′}, we
can assign H[i′, j] a value as follows: For every i′ such that k + 1 ≤ i′ ≤ 3k and
i′ �∈ Rj , set H[i′, j] = 0 (this is arbitrary); for every i′ such that 1 ≤ i′ ≤ k, set
H[i′, j] =

∑
a∈Rj

H[a, j] + s[i′, j].
The case j′ �= j is similar except that we have to be careful about s[i, j′]. Since

Rj′ �⊆ Rj , there is an element p ∈ Ti,j′ \ Ti,j . We can assign H[i′, j′] a value as

336 BEIMEL, BURMESTER, DESMEDT, AND KUSHILEVITZ

follows: For every i′ such that k + 1 ≤ i′ ≤ 3k, i′ �∈ Rj , and i′ �= p, set H[i′, j′] = 0;
H[p, j′] =

∑
a∈Ti,j′\{p} H[a, j′] + s[i, j′]. For every i′, 1 ≤ i′ ≤ k, and i′ �= i, set

H[i′, j′] =
∑
a∈Rj′

H[a, j′] + s[i′, j′].
We have shown that there exists a matrix as required. By the same arguments

as in the proof of Claim 5.1, the number of possible matrices, given a secret s, is
independent of s.

We are now ready to prove the security requirement (note that this scheme is not
reusable).

Claim 5.3. The above implementation of the meta scheme is secure.
Proof. Let B be any set that evaluates a bit s[i, j] of the secret and C be any

coalition. The security requirement before reconstruction is easy (this was discussed at
the end of section 5.1). Suppose that C has obtained the messages sent by the parties
in B. That is, the parties in C know the shares of the parties of B corresponding to
the Ti,j-rows of H. Therefore, the only information that they gain is the Ti,j-rows
of H. Then, given the shares of the coalition and all the messages that were sent,
every matrix H that agrees with these rows is possible. We need to prove that, given
two secrets in which the (i, j)th bit is the same, and a matrix H in which only the
Ti,j-rows are fixed, the probability that H was constructed from each secret is equally
likely. By Claims 5.1 and 5.2 this probability depends only on s[i, j].

6. Characterization of families with ideal schemes. In this section we con-
sider ideal secret sharing schemes for a family F . We say that two secrets s, s′ are
distinguishable by F if there exists a function f ∈ F for which f(s) �= f(s′). A secret
sharing scheme for F is ideal if the cardinality of the domain of shares equals the
cardinality of the domain of distinguishable secrets. These are the shortest shares
possible by [26]. The following theorem gives several impossibility results for ideal
schemes for a family F which contains the bit functions.

Theorem 6.1 (characterization theorem).
1. Let 2 ≤ t ≤ n. Suppose that there is an ideal interactive t-out-of-n secret

sharing scheme for a family of functions F such that BIT � ⊆ F . Then, any
boolean function f ∈ F is linear.

2. Let t ∈ {2, n}. Suppose that there is an ideal noninteractive t-out-of-n secret
sharing scheme for a family of functions F such that BIT � ⊆ F . Then,
F ⊆ LIN �.

3. Let 3 ≤ t ≤ n − 1. In an ideal t-out-of-n secret sharing the evaluation of
every nonconstant boolean function requires interaction on private channels.

4. Let t = 2. In an ideal noninteractive 2-out-of-n secret sharing every non-
constant boolean function cannot be evaluated via a broadcast channel.

It follows that for families F , with BIT � ⊆ F , if interaction is allowed then every
boolean function in F is linear. If interaction is not allowed, then either t = 2 or t = n,
and all the functions in F are linear. In particular, when t = 2 private channels must
be used.

In section 6.1 we will discuss some basic properties of ideal schemes that will be
needed for the proof of this theorem. In section 6.2 we prove items 1 and 2 and in
section 6.3 we prove items 3 and 4.

6.1. Properties of ideal schemes. In this section we discuss some simple
properties of ideal schemes which are useful in what follows.

Proposition 6.2 (see [26]). Fix the shares of any t− 1 parties in an ideal t-out-
of-n secret sharing scheme. Then, the share of any other party P is a permutation of

COMPUTING FUNCTIONS OF A SHARED SECRET 337

the secret. In particular, all shares are possible for P .
In our proof, we use the following proposition regarding private functions, that

is, functions that can be computed without revealing any other information on the
inputs. (For a formal definition of privacy see Appendix C.) Bivariate boolean private
functions were characterized by Chor and Kushilevitz [16].

Proposition 6.3 (see [16]). Let A1, A2 be nonempty sets and f : A1 × A2 →
{0, 1} be an arbitrary boolean function. Then, f can be computed privately if and only
if there exist boolean functions f1 : A1 → {0, 1} , f2 : A2 → {0, 1} such that for every
x ∈ A1, y ∈ A2 it holds that f(x, y) = f1(x) + f2(y).

Claim 6.1. Let f be a boolean function that can be evaluated securely in an ideal
2-out-of-2 secret sharing scheme. Then, there exist boolean functions f1 and f2 such
that f(s) = f1(x) + f2(y), where x and y are the shares of P1 and P2, respectively.

Proof. The function f is evaluated from x and y, i.e., there is some function
f ′ such that f(s) = f ′(x, y). By Proposition 6.2 any information that a party gets
on the share of the other party is translated into information on the secret. That
is, the parties must compute f ′(x, y) in such a way that each party receives only
information implied by f ′(x, y). In other words, they compute the boolean function f ′

privately. By Proposition 6.3 there exist f1 and f2 such that f(s) = f ′(x, y) = f1(x)+
f2(y).

Consider an ideal t-out-of-n secret sharing scheme for F . Without loss of gener-
ality, we may assume that all the secrets are distinguishable by F . So, the parties
P1, P2, . . . , Pt can reconstruct the secret from their shares. Denote the reconstructing
function by h(s1, s2, . . . , st). We next prove an important property of the messages
sent in a noninteractive protocol that evaluates f .

Claim 6.2. Let f be a function that can be securely evaluated in an ideal t-out-
of-n secret sharing scheme without interaction. Without loss of generality, we may
assume that all the messages sent by Pi, while holding the share si, to the other parties
are identical and equal to

f(h(0, . . . , 0︸ ︷︷ ︸
i−1

, si, 0, . . . , 0︸ ︷︷ ︸
t−i

)).

Proof. It is sufficient to prove the claim for P1. Suppose that the shares of
the parties P2, . . . , Pt are si = 0. Consider a possible message of P1 while the set
{P1, P2, . . . , Pt} computes the value f(s). Party P1 might toss coins, so if there are
several messages choose the first one lexicographically. When P1 holds two shares s1

and s′1 such that f(h(s1, 0, . . . , 0)) �= f(h(s′1, 0, . . . , 0)), the messages of P1 to Pi have
to be different; otherwise Pi will compute an incorrect value in one of the cases. On the
other hand, for two shares s1 and s′1 such that f(h(s1, 0, . . . , 0)) = f(h(s′1, 0, . . . , 0))
the messages sent by P1 to the parties in {P2, . . . , Pt} have to be the same in both
cases; otherwise the coalition {P2, . . . , Pt} can distinguish between the secrets s =
h(s1, 0, . . . , 0) and s′ = h(s′1, 0, . . . , 0), although f(s) = f(s′). Thus, without loss of
generality, the messages sent by P1 while holding the share s1 are identical and equal
to f(h(s1, 0, . . . , 0)).

6.2. Proofs of items 1 and 2 of Theorem 6.1. The proofs of items 1 and
2 are similar and have two stages. We consider the following two-party distribution
scheme over GF(2�), denoted XOR. Given a secret s, the dealer chooses at random
x ∈ GF(2�). The share of the first party is x, and the share of the second party is
y = s + x. In the first stage (section 6.2.1) we characterize the functions that can be
evaluated from the shares of XOR. In the second stage (section 6.2.2) we show that

338 BEIMEL, BURMESTER, DESMEDT, AND KUSHILEVITZ

if there exists an ideal t-out-of-n secret sharing scheme for F , then XOR is a secret
sharing scheme for F . The combination of the two stages implies items 1 and 2.

6.2.1. Characterizing the functions which can be evaluated with XOR.
We first characterize the functions that can be evaluated with XOR without interac-
tion. It can be seen that every linear function of the secret can be evaluated with XOR
(the details are the same as in Remark 3.1). We prove that no other functions can be
evaluated securely without interaction. Then we characterize the boolean functions
that can be evaluated with XOR with interaction and show that these functions are
exactly the boolean linear functions.

To prove the characterization without interaction, we will prove that f(s) can be
computed from f(x) and f(y) (where x and y are the shares). In the next claim we
prove that every function with this property is a renaming of a linear function.

Claim 6.3. Let f : GF(2�)→ GF(2�) be any function. If there exists a function
g such that f(x+ y) = g(f(x), f(y)) for every x, y ∈ GF(2�), then f is a renaming of
a linear function.

Proof. Let X0
�
= {x : f(x) = f(0)}. We first prove that

f(x1) = f(x2) if and only if f(x1 + x2) = f(0).(4)

The “only if” direction follows from f(x1 +x2) = g(f(x1), f(x2)) = g(f(x1), f(x1)) =
f(x1 + x1) = f(0). Similarly, the “if” direction follows from the following simple
equations:

f(x1) = f(x1 +0) = g(f(x1), f(0)) = g(f(x1), f(x1 +x2)) = f(x1 +x1 +x2) = f(x2).

That is, if x1, x2 ∈ X0, then x1 +x2 ∈ X0. In other words, the set X0 is a linear space
over the field GF(2). Now consider a linear transformation f ′ : GF(2�) → GF(2�)
whose null space is X0 (that is, f ′(x) = 0 if and only if x ∈ X0). Since X0 is a linear
space, such a linear transformation exists. We claim that f is a renaming of f ′, i.e.,
f(x) = f(y) if and only if f ′(x) = f ′(y). By (4), f(x) = f(y) if and only if x+y ∈ X0.
Furthermore, x + y ∈ X0 if and only if f ′(x + y) = 0 (by the definition of f ′). Since
f ′ is linear, f ′(x) + f ′(y) = f ′(x + y). Hence, f(x) = f(y) if and only if f ′(x) =
f ′(y).

Claim 6.4. Let f be any function that can be evaluated without interaction with
the scheme XOR. Then, f is a renaming of a linear function.

Proof. Assume, without loss of generality, that f : GF(2�) → GF(2�) (otherwise
consider the function of x defined as min {y : f(y) = f(x)}, which is a renaming of f).
By Claim 6.3 it suffices to prove that f(x+ y) can be computed from f(x) and f(y).

Denote the share of P1 by x and the share of P2 by y. Recall that s = x +
y. By Claim 6.2 the message sent by P2 while holding a share y to P1 is f(y),
and the message sent by P1 while holding a share x to P2 is f(x). Hence, P1 can
compute f(s) = f(x + y) from x and f(y). Moreover, for every two shares x1 and
x2 held by P1 such that f(x1) = f(x2) and every share y held by P2, party P1

must compute the same value of f(s), since P2 receives the same message from P1 in
both cases and therefore computes the same value of f(s). Hence, P1 can compute
f(x + y) from f(x) and f(y). The computed function is the desired function g with
f(x + y) = g(f(x), f(y)). By Claim 6.3 this implies that f is a renaming of a linear
function.

We now prove a similar claim for interactive evaluations. However, this claim
applies only to boolean functions.

COMPUTING FUNCTIONS OF A SHARED SECRET 339

Claim 6.5. Let f be a boolean function that can be evaluated interactively with
the scheme XOR. Then, f is a renaming of a linear function.

Proof. Since XOR is an ideal scheme, Claim 6.1 implies that there exist boolean
functions f1, f2 such that f(s) = f(x+y) = f1(x)+f2(y). In particular, f(x) = f(x+
0) = f1(x) + f2(0). Similarly f(y) = f1(0) + f2(y). So, there exists a bit b such that
f(x + y) = f(x) + f(y) + b. Then, f ′(x) = f(x) + b is a linear function which is a
renaming of f .

The exact family of functions which can be evaluated interactively with XOR
consists of the two-argument functions for which f(s) = f(x + y) can be computed
privately from x and y (as characterized in [29]).

6.2.2. Reduction to XOR. In this section we prove that if there exists an ideal
t-out-of-n secret sharing scheme for a family F , then there exists an ideal 2-out-of-2
secret sharing scheme for F . We then prove that this implies that XOR is a secret
sharing scheme for F .

Claim 6.6. If there exists an interactive (respectively, noninteractive) ideal t-
out-of-n secret sharing scheme for F , then there exists an interactive (respectively,
noninteractive) ideal 2-out-of-2 secret sharing scheme for F .

Proof. Let B = {P1, P2, . . . , Pt} be a set of parties. We ignore the shares dis-
tributed to parties not in B. Therefore, we have an ideal t-out-of-t secret sharing
scheme for F . Let 〈s1, s2, s3, . . . , st〉 be any (fixed) vector of shares that is dealt to
B with positive probability. To share a secret s the dealer now generates a random
vector of shares of s (according to the scheme) that agrees with s3, . . . , st, respectively,
and gives the first two components of this vector to P1 and P2. Parties P1 and P2

know the shares of the other parties (as they are fixed) and therefore P1, say, can
simulate the parties P3, . . . , Pt in the protocol which evaluates the function f ∈ F .
Hence, P1 and P2 can evaluate f(s) from their shares and the messages they exchange.
On the other hand, P1 has no more information than the information known to the
coalition {P1, P3, . . . , Pt} of cardinality t−1 in the t-out-of-t scheme. So, P1 does not
gain additional information on s. Similar arguments hold for P2. This implies that
this scheme is a 2-out-of-2 secret sharing scheme for F .

Claim 6.7. Let BIT � ⊆ F . If there exists an interactive (respectively, non-
interactive) ideal t-out-of-n secret sharing scheme for F , then XOR is an interactive
(respectively, noninteractive) secret sharing scheme for F .

Proof. By Claim 6.6 we can assume that there exists an ideal 2-out-of-2 secret
sharing scheme for F , say Π. We transform Π into XOR in a way that every function
that can be evaluated in Π can also be evaluated in XOR.

Claim 6.1 implies that for every j, where 1 ≤ j ≤ , there exist boolean functions
f j1 , f

j
2 such that ej(s) = f j1 (x)+f j2 (y). For i = 1, 2, define mi(x) as the concatenation

of the values of these functions, that is, mi(x)
�
= f1

i (x) ◦ f2
i (x) ◦ · · · ◦ f �i (x). Then, for

every secret s and random input r of the dealer, s = m1(Π1(s, r)) + m2(Π2(s, r)).
Therefore, the scheme Π′ defined by Π′(s, r) = 〈m1(Π1(s, r)),m2(Π2(s, r))〉 is a dis-
tribution scheme equivalent to XOR. We still have to show that the two parties can
evaluate securely every function in F with Π′.

We first prove that m1 is invertible. Clearly, the two parties can reconstruct the
secret in Π′, while every single party knows nothing about the secret. Therefore, Π′

is a 2-out-of-2 secret sharing scheme and, by [26], the cardinality of the domain of
shares is at least the cardinality of the domain of secrets. Thus, the cardinality of the
range of m1 is at least as large as 2�. The domain of m1, which is the set of shares
of P1, has cardinality 2�. Therefore, m1 is a bijection and, hence, invertible. So, P1

340 BEIMEL, BURMESTER, DESMEDT, AND KUSHILEVITZ

can reconstruct the share x from m1(x). Similarly, P2 can reconstruct the share y
from m2(y). This implies that the parties P1 and P2, while holding m1(x) and m2(y),
respectively, can evaluate every function f ∈ F . We have proved that every function
f ∈ F can be evaluated with Π′ which is equivalent to XOR. Furthermore, if the
evaluation of the original scheme required no interaction, then also the evaluation
with the XOR scheme requires no interaction.

6.3. Proofs of items 3 and 4 of Theorem 6.1. Next we prove item 4. Namely,
in any ideal noninteractive t-out-of-n secret sharing scheme (2 ≤ t ≤ n−1), evaluation
of a boolean function requires private channels. The proof is by contradiction. Sup-
pose that there is an ideal noninteractive t-out-of-n scheme in which the evaluation
can be held on a broadcast channel. Then, by the same arguments as in Claim 6.6,
since t ≤ n− 1, there is an ideal 2-out-of-3 scheme with the same property. Our first
claim is that, without loss of generality, in the evaluation of f(s) every party sends a
one-bit message such that the sum of the messages is f(s).

Claim 6.8. Assume there exists an ideal 2-out-of-3 secret sharing scheme in
which a nonconstant boolean function f can be securely evaluated without interaction
via a broadcast channel. Then parties P1 and P2 can securely compute f(s) by sending
one-bit messages m1 and m2, such that m1 + m2 = f(s).

Proof. By Claim 6.2 we can assume that the message of P1 while holding the
share s1 is the bit m1 = f(h(s1, 0)). Similarly, we assume that the message of P2

while holding the share s2 is m2 = f(h(0, s2)). Furthermore, the value of f(s) is
determined by these two messages. There are two values for f(s) and two values for
each message. Since each party knows nothing about f(s), a change of any message
will result in a change of f(s). The only boolean functions with two binary vari-
ables satisfying this requirement are m1 + m2 + b with either b = 0 or b = 1. So,
without loss of generality, assume that P1 sends the message m1 + b, and the claim
follows.

Claim 6.9. Consider an ideal noninteractive 2-out-of-3 secret sharing scheme
for a family F which contains a nonconstant boolean function f . Then, f cannot be
evaluated via a broadcast channel.

Proof. Fix the share of P3 to be z = 0. By Proposition 6.2, the share x of P1

is a permutation of the secret. Assume, without loss of generality, that this share is
equal to the secret. (Of course P1 does not know that z = 0 and does not know the
secret.) Since P3 does not know f(s) although z = 0, the value of f(s) is not fixed,
and the message that P1 sends to P2 while P1 and P2 evaluate f(s) cannot be constant
(otherwise P2 will not be able to evaluate f(s)). Furthermore, for any two shares x, x′

held by P1 such that f(x) = f(x′), the messages of P1 to P2 should be the same
(otherwise P3 will distinguish between the two secrets). Without loss of generality,
the message m1 which P1 sends to P2 is f(x). By Claim 6.8, f(s) = m1 +m2. Thus,
the message that P2 sends to P1 is constant and P1 will not be able to evaluate
f(s), which leads to a contradiction. Hence, f(s) cannot be evaluated on a broadcast
channel.

We conclude this section by proving item 3. That is, for 3 ≤ t ≤ n−1, the evalua-
tion requires interaction via private channels. Again, we assume for the contradiction
that there exists an ideal noninteractive t-out-of-n scheme for the family F , and we
construct an ideal noninteractive 3-out-of-4 scheme for the family F . We show that
this contradicts Claim 6.9.

Claim 6.10. Assume there is an ideal 3-out-of-4 secret sharing scheme for a
family F in which a function f ∈ F can be evaluated via private channels without

COMPUTING FUNCTIONS OF A SHARED SECRET 341

interaction. Then, there is an ideal 2-out-of-3 secret sharing scheme in which f can
be evaluated via a broadcast channel.

Proof. By Claim 6.2 we may assume that the messages sent during the evaluation
by one party to the other two parties are identical. In particular, if {Pi, Pj , Pk}
evaluates a function, then Pi knows the messages that Pj , Pk exchange. To construct
a 2-out-of-3 secret sharing scheme, we fix a share u for P4 and share the secret s with
a random vector of shares such that the share of P4 is u. When Pi and Pj want to
evaluate f(s), where 1 ≤ i < j ≤ 3, then Pi simulates P4. All messages are exchanged
on a broadcast channel. After this evaluation, every party P�, where ∈ {1, 2, 3},
will have the same information as the coalition {P�, P4} had in the original scheme.
Hence, P� does not gain any information that is not implied by f(s). That is, we get
a 2-out-of-3 secret sharing scheme for F .

7. Discussion. In this section we consider possible extensions of our work. So
far, we considered only threshold secret sharing schemes. In [22] a general notion of
secret sharing schemes for arbitrary collections of reconstructing sets is defined. That
is, we are given a collection A of sets of parties called an access structure and require
that any set in A can reconstruct the secret, while any set not in A does not know
anything about the secret. Clearly, secret sharing schemes exist only for monotone
collections. Conversely, it is known that for every monotone collection there exists a
secret sharing scheme [22]. More efficient schemes for general access structures were
presented (e.g., in [7, 36]). However, the length of the shares in these schemes can
be exponential in the number of parties (i.e., of length 2Θ(n), where n is the number
of parties in the system and is the length of the secret). Our definition of secret
sharing for a family F of functions can be naturally generalized to an arbitrary access
structure. To construct such schemes, observe that the schemes of [22, 7, 36] are
“linear”: the share of each party is a vector of elements over some field, and every set
in A reconstructs the secret using a linear combination of elements in their shares.
Thus, if we share every bit of the secret independently, we can evaluate every linear
function of the secret without any interaction (the details are as in Theorem 3.2). This
implies that for every access structure, there exists a scheme for the family ALL� in
which the length of the shares is O(2�2n). However, if the access structure has a more
efficient linear scheme for sharing a single bit, then the length of the shares can be
shorter (but at least 2�).

Another possible extension of the definition is by allowing a weaker “nonperfect”
definition of security. Such extensions in the context of traditional secret sharing
schemes were considered, e.g., in [9]. As remarked earlier there are several related
works on simultaneous secret sharing. For example, in [23] each set of cardinality at
least t should be able to reconstruct some of the secrets (but not all). In [11] each set
B of cardinality at least t is able to reconstruct any of the distributed secrets.6 The
security requirement considered in [11, 24, 10] is somewhat weak: after revealing one
of the secrets, some limited information about other secrets may be leaked.

Our scheme for the family of functions ALL� uses shares of size 2�. We can
construct an efficient scheme if we relax the security requirement as follows: Every
set of size at least t can evaluate any function f(s) in a way that every coalition of
at most (t− 1)/2� parties gains no information on the secret (but larger coalitions
may get some information). In this case, we can use Shamir’s t-out-of-n scheme to
distribute the secret and the interactive protocol of [5] or [15] to securely compute

6In fact [11] deals with more general access structures and not only threshold schemes.

342 BEIMEL, BURMESTER, DESMEDT, AND KUSHILEVITZ

f(s). In this scenario, the length of the share is the same as the length of the secret.
However, for most functions f , the length of the communication during the evaluation
of f is exponential in .

Appendix A. Equivalence of definitions of security. An alternative defini-
tion to our definition of security of secret sharing for F requires that after evaluating
f(s), the probability of the secret given the view of the coalition is the same as the
probability of the secret given only the value f(s). We prove that these two definitions
are equivalent for private channels schemes.

Claim A.1. Let X be any random variable on the set of secrets S such that
Pr[X = s] > 0 for every s. A private channels secret sharing scheme for the family
F is secure (according to Definition 2.5) if and only if, for any value v in the range
of f , any secret s ∈ S such that f(s) = v, any coalition C of size less than t such that
B ∩ C �= ∅, and any value view of VIEWC such that Pr[VIEWC = view] > 0,

Pr[X = s | VIEWC = view] = Pr[X = s | f(X) = v] ,(5)

where the probability is taken over the distribution of the secrets, the random input of
the dealer, and the random inputs of the parties.7

Proof. Assume that the scheme is secure according to Definition 2.5, that is, for
every s, s′ ∈ S such that f(s) = f(s′): Pr[VIEWC = view | X = s] = Pr[VIEWC =
view | X = s′]. Then, Pr[VIEWC = view | X = s] = Pr[VIEWC = view | f(X) = v].
Using Bayes’ rule and the previous equation, we get

Pr[X = s | VIEWC = view]

=
Pr[VIEWC = view | X = s] · Pr[X = s]

Pr[VIEWC = view]

=
Pr[VIEWC = view | f(X) = v] · Pr[X = s]

Pr[VIEWC = view]

=
Pr[f(X) = v | VIEWC = view] · Pr[X = s]

Pr[f(X) = v]

= Pr[f(X) = v | VIEWC = view] · Pr[X = s | f(X) = v] .

For the last equality recall that f(s) = v, i.e., Pr[X = s] = Pr[(X = s)∧ (f(X) = v)].
Furthermore, each party in B can evaluate f(X) from the information it has. Since
B ∩ C �= ∅, the probability Pr[f(X) = v | VIEWC = view] is 1. Hence, the security
according to Definition 2.5 implies (5).

The proof in the other direction is similar. Assume that (5) holds. Using Bayes’
rule we see that for every s such that f(s) = v,

Pr[VIEWC = view | X = s] =
Pr[f(X) = v | X = s] · Pr[VIEWC = view]

Pr[f(X) = v]

=
Pr[VIEWC = view]

Pr[f(X) = v]
.

For the last equality notice that Pr[f(X) = v | X = s] = 1 (since f(s) = v). Thus,
Pr[VIEWC = view | X = s] is independent of s, which implies the security of the
scheme.

7For broadcast schemes we have to deal also with coalitions C such that B ∩ C = ∅. For these
coalitions (5) does not necessarily hold, as they might not learn the value f(s) (but will learn some
information on f(s)).

COMPUTING FUNCTIONS OF A SHARED SECRET 343

Appendix B. Shamir’s t-out-of-n threshold scheme. For the sake of com-
pleteness we describe the t-out-of-n secret sharing scheme of Shamir [34]. In this
scheme, the set of secrets is identified with the elements of the field GF(q), where q is
a prime power larger than n, the number of parties in the system. To share a secret
s ∈ GF(q) the dealer chooses independently with uniform distribution t − 1 random
elements r1, . . . , rt−1 in GF(q). These elements and the secret s define the polynomial
p(x) = rt−1x

t−1 + rt−2x
t−2 + · · ·+ r1x + s , for which p(0) = s. The dealer gives to

each party Pj the share sj = p(j). Any set B of at least t parties can now reconstruct
p(x) by interpolation,

s = p(0) =
∑

Pj∈B
sj

∏

Pi∈B; i �=j

i

i− j
.

Observe that the secret s is a linear combination of the shares sj of the parties Pj ∈ B,
for which the coefficient of sj is

δB,j
�
=

∏

Pi∈B; i �=j

i

i− j
.

Appendix C. Definition of private computations. We define private pro-
tocols, which are used for evaluating functions of the secrets securely. The model
of computation is the private channels model described in Definitions 2.2 and 2.3.
We say that a coalition C gains no additional information from the execution of a
randomized protocol F which computes f if the view of C does not imply any infor-
mation other than what follows from its input and the function value. That is, for
every two input vectors 〈xi〉, 〈x′

i〉 of F for which 〈xi〉C = 〈x′
i〉C (i.e., which agree in

their C entries) and f(〈xi〉) = f(〈x′
i〉), for every choice of random inputs 〈ri〉C for C,

and every value of the messages MC(〈xi〉, 〈ri〉) and MC(〈x′
i〉, 〈ri〉) received by C,

Pr[MC(〈xi〉, 〈ri〉) ◦ 〈ri〉C | 〈xi〉] = Pr[MC(〈x′
i〉, 〈ri〉) ◦ 〈ri〉C | 〈x′

i〉] .

A protocol F computing f is private if any coalition C of size at most n− 1 gains no
additional information from the execution of the protocol. A function f is private if
there is a private protocol which computes it. It follows that if a private protocol is
used to reconstruct the secret, then the reconstruction is secure.

In our interactive secret sharing scheme for the linear functions we use the private
protocol of Benaloh [6] to compute the sum over GF(q) of the shares. For the sake of
completeness we describe this protocol below:

Private addition over GF(q): x =
∑n

i=1 xi, xi ∈ GF(q).

Each Pi with input xi, where i = 1, . . . , n:
chooses n− 1 random inputs from GF(q) denoted ri,1, . . . , ri,n−1.

computes ri,n
�
=xi −

∑n−1
j=1 ri,j .

sends ri,j to Pj (for every j).
Each Pj computes yj =

∑n
i=1 ri,j and sends it to P1.

Party P1 computes
∑n
j=1 yj = x and sends it to the other parties.

344 BEIMEL, BURMESTER, DESMEDT, AND KUSHILEVITZ

Acknowledgments. The authors would like to thank the referees for several
helpful comments.

REFERENCES

[1] M. Abadi, J. Feigenbaum, and J. Kilian, On hiding information from an oracle, J. Comput.
System Sci., 39 (1989), pp. 21–50.

[2] M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin, 1979.
[3] D. Beaver and J. Feigenbaum, Hiding instances in multioracle queries, in STACS ’90, Pro-

ceedings of the 7th Annual Symposium on Theoretical Aspects of Computer Science,
C. Choffrut and T. Lengauer, eds., Lecture Notes in Comput. Sci. 415, Springer-Verlag,
New York, 1990, pp. 37–48.

[4] A. Beimel and B. Chor, Universally ideal secret sharing schemes, IEEE Trans. Inform. The-
ory, 40 (1994), pp. 786–794.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations, in Proceedings of the 20th Annual ACM
Symposium on the Theory of Computing, ACM, New York, 1988, pp. 1–10.

[6] J. Benaloh, Secret sharing homomorphisms: Keeping shares of a secret secret, in Advances
in Cryptology - CRYPTO ’86, A. M. Odlyzko, ed., Lecture Notes in Computer Sci. 263,
Springer-Verlag, New York, 1987, pp. 251–260.

[7] J. Benaloh and J. Leichter, Generalized secret sharing and monotone functions, in Advances
in Cryptology - CRYPTO ’88, S. Goldwasser, ed., Lecture Notes in Comput. Sci. 403,
Springer-Verlag, New York, 1990, pp. 27–35.

[8] G. R. Blakley, Safeguarding cryptographic keys, in Proceedings of the 1979 AFIPS National
Computer Conference, R. E. Merwin, J. T. Zanca, and M. Smith, AFIPS Conference
Proceedings 48, AFIPS Press, Montvale, NJ, 1979, pp. 313–317.

[9] G. R. Blakley and C. Meadows, The security of ramp schemes, in Advances in Cryptology
- CRYPTO ’84, G. R. Blakley and D. Chaum, eds., Lecture Notes in Comput. Sci. 196,
Springer-Verlag, New York, 1985, pp. 242–268.

[10] C. Blundo, A. De Santis, G. Di Crescenzo, A. Giorgio Gaggia, and U. Vaccaro, Multi-
secret sharing schemes, in Advances in Cryptology - CRYPTO ’94, Y. Desmedt, ed., Lec-
ture Notes in Comput. Sci. 839, Springer-Verlag, New York, 1994, pp. 150–163.

[11] C. Blundo, A. De Santis, and U. Vaccaro, Efficient sharing of many secrets, in STACS
’93, P. Enjalbert, A. Finkel, and K. W. Wagner, eds., Lecture Notes in Comput. Sci. 665,
Springer-Verlag, New York, 1993, pp. 692–703.

[12] E. F. Brickell, Some ideal secret sharing schemes, J. Combin. Math. Combin. Comput., 6
(1989), pp. 105–113.

[13] E. F. Brickell and D. M. Davenport, On the classification of ideal secret sharing schemes,
J. Cryptology, 4 (1991), pp. 123–134.

[14] E. F. Brickell and D. R. Stinson, Some improved bounds on the information rate of perfect
secret sharing schemes, J. Cryptology, 5 (1992), pp. 153–166.

[15] D. Chaum, C. Crépeau, and I. Damgard, Multiparty unconditionally secure protocols, in
Proceedings of the 20th Annual ACM Symposium on the Theory of Computing, ACM,
New York, 1988, pp. 11–19.

[16] B. Chor and E. Kushilevitz, A zero-one law for Boolean privacy, SIAM J. Discrete Math.,
4 (1991), pp. 36–47.

[17] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung, How to share a function securely,
in Proceedings of the 26th Annual ACM Symposium on the Theory of Computing, ACM,
New York, 1994, pp. 522–533.

[18] Y. Desmedt, Threshold cryptosystems, in Advances in Cryptology - AUSCRYPT ’92, J. Se-
berry and Y. Zheng, eds., Lecture Notes in Comput. Sci. 718, Springer-Verlag, New York,
1993, pp. 5–14.

[19] Y. Desmedt and Y. Frankel, Shared generation of authenticators and signatures, in Advances
in Cryptology - CRYPTO ’91, J. Feigenbaum, ed., Lecture Notes in Comput. Sci. 576,
Springer-Verlag, New York, 1992, pp. 457–469.

[20] Y. G. Desmedt and Y. Frankel, Homomorphic zero-knowledge threshold schemes over any
finite abelian group, SIAM J. Discrete Math., 7 (1994), pp. 667–679.

[21] M. K. Franklin and M. Yung, Communication complexity of secure computation, in Pro-
ceedings of the 24th Annual ACM Symposium on the Theory of Computing, ACM, New
York, 1992, pp. 699–710.

[22] M. Ito, A. Saito, and T. Nishizeki, Secret sharing schemes realizing general access structure,

COMPUTING FUNCTIONS OF A SHARED SECRET 345

in Proceedings of the IEEE Global Telecommunication Conference, Globecom ’87, IEEE
Press, Piscataway, NJ, 1987, pp. 99–102. Journal version: Multiple assignment scheme for
sharing secret, J. Cryptology, 6 (1993), pp. 15–20.

[23] W. Jackson, K. M. Martin, and C. M. O’Keefe, Multisecret threshold schemes, in Advances
in Cryptology - CRYPTO ’93, D. R. Stinson, ed., Lecture Notes in Comput. Sci. 773,
Springer-Verlag, New York, 1994, pp. 126–135.

[24] W. Jackson, K. M. Martin, and C. M. O’Keefe, On sharing many secrets, in ASIACRYPT
’94, J. Pieprzyk and R. Safavi-Naini, eds., Lecture Notes in Comput. Sci. 917, Springer-
Verlag, New York, 1995, pp. 42–54.

[25] W. Jackson, K. M. Martin, and C. M. O’Keefe, Ideal secret sharing schemes with multiple
secrets, J. Cryptology, 9 (1996), pp. 233–250.

[26] E. D. Karnin, J. W. Greene, and M. E. Hellman, On secret sharing systems, IEEE Trans.
Inform. Theory, 29 (1983), pp. 35–41.

[27] J. Kilian and N. Nisan, Private communication, 1990.
[28] S. C. Kothari, Generalized linear threshold scheme, in Advances in Cryptology - CRYPTO

’84, G. R. Blakley and D. Chaum, eds., Lecture Notes in Comput. Sci. 196, Springer-Verlag,
New York, 1985, pp. 231–241.

[29] E. Kushilevitz, Privacy and communication complexity, SIAM J. Discrete Math., 5 (1992),
pp. 273–284.

[30] R. J. McEliece and D. V. Sarwate, On sharing secrets and Reed-Solomon codes, Comm.
ACM, 24 (1981), pp. 583–584.

[31] M. O. Rabin, Randomized Byzantine generals, in Proceedings of the 24th Annual IEEE Sympo-
sium on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1983, pp. 403–409.

[32] R. L. Rivest, L. Adleman, and M. L. Dertouzos, On data banks and privacy homomor-
phisms, in Foundations of Secure Computation, R. A. DeMillo, D. P. Dobkin, A. K. Jones,
and R. J. Lipton, eds., Academic Press, New York, 1978, pp. 169–179.

[33] P. D. Seymour, On secret-sharing matroids, J. Combin. Theory Ser. B, 56 (1992), pp. 69–73.
[34] A. Shamir, How to share a secret, Comm. ACM, 22 (1979), pp. 612–613.
[35] G. J. Simmons, An introduction to shared secret and/or shared control and their application,

in Contemporary Cryptology, The Science of Information Integrity, G. J. Simmons, ed.,
IEEE Press, Piscataway, NJ, 1992, pp. 441–497.

[36] G. J. Simmons, W. Jackson, and K. M. Martin, The geometry of shared secret schemes,
Bull. Inst. Combin. Appl., 1 (1991), pp. 71–88.

[37] D. R. Stinson, An explication of secret sharing schemes, Des. Codes Cryptogr., 2 (1992),
pp. 357–390.

AN OPTIMIZATION PROBLEM IN STATISTICAL DATABASES∗

LJILJANA BRANKOVIĆ† , PETER HORAK‡ , AND MIRKA MILLER†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 3, pp. 346–353

Abstract. Let D = {a1, . . . , an} be a set of real numbers, and let S ⊂ {1, . . . , n}. For an
interval I ⊂ {1, . . . , n} we set SUM(I) =

∑
i∈I ai. In this paper we solve the following problem

which has been asked in connection with security of statistical databases: Find a largest family B of
subintervals of {1, . . . , n} so that knowing the value of SUM(I) for all I ∈ B does not enable one to
calculate any element ai ∈ D, where i ∈ S.

Key words. optimization, database security, sum queries

AMS subject classifications. 68R05, 68P15

PII. S0895480198345004

1. Introduction. The optimization problem studied in this paper comes from
the area of database security. For the convenience of readers not closely familiar with
databases we start with a description of the original problem and only later provide
its mathematical formulation. At the same time, this will enable us to explain, from
a real-life point of view, which generalizations of the stated problem are important
for database security.

Let D = {a1, . . . , an} be a (1-dimensional) statistical database. The owner of the
database wants to provide a user with as much information from D as possible but,
at the same time, does not want to disclose the values of some elements of D. For the
sake of an example, let an element ai, 1 ≤ i ≤ n, contain the sum of salaries of all
employees working for a company for i years. Elements of D containing the sum of
salaries of one employee, more than one employee, and no employee (= nobody works
for the company for that particular given number of years; then the corresponding
element of D is set to equal 0) are called single elements, multielements, and holes,
respectively. Without loss of generality, we can assume that there are no holes in D,
otherwise, for practical reasons, they are removed from D. Information about salaries
of individual employees is confidential. The owner cannot allow a compromise of the
database; i.e., the owner should not enable the user to learn, directly or indirectly, the
value of any single element ai of D. (The owner may disclose, i.e., the user may learn,
the value of any multielement, as it is not possible for the user to infer the salary
of any individual employee whose income is included in ai.) The user is allowed to
ask only statistical types of questions. The most frequent scenario is that the user
chooses a query Q = {at; t ∈ T ⊂ {1, . . . , n}} and from the owner gets an answer
SUM(T) =

∑
t∈T at and the cardinality of T in order to calculate the average salary

of the corresponding group of employees. Of course, knowing the values of SUM(T)
for some family of sets T may allow the user to infer the value of a single element.
One possible way to prevent this is to choose in advance a family B of queries which
the owner will answer; the owner will refuse to answer queries not in B. Thus the

∗Received by the editors September 21, 1998; accepted for publication (in revised form) March 2,
2000; published electronically May 26, 2000.

http://www.siam.org/journals/sidma/13-3/34500.html
†Department of Computer Science and Software Engineering, The University of Newcastle, New-

castle, NSW 2308, Australia (lbrankov@cs.newcastle.edu.au, mirka@cs.newcastle.edu.au).
‡Department of Mathematics, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait (horak@

KUC01.kuniv.edu.kw).

346

AN OPTIMIZATION PROBLEM IN STATISTICAL DATABASES 347

problem is to find a largest family B of queries which does not lead to a compromise
of the database. Equivalently, let D = {a1, . . . , an} be a set of real numbers, and let
S ⊂ {1, . . . , n}. Find a largest family B of subsets T of {1, . . . , n} so that knowing
the value of SUM(T) for all T ∈ B does not enable one to calculate any element
ai ∈ D, where i ∈ S.

The problem above has been solved in [5] for databases whose elements are all
single. It has been shown there that the cardinality of a largest family of queries
which does not lead to a compromise in this case equals

(
m

�m
2 �
)
. The uniqueness of

the family described there has been proved in [3]. As already mentioned in [1], if D
has n elements and |S| = m, then the cardinality of the largest family B of queries
not compromising D equals

(
m

�m
2 �
)× 2n−m (for the sake of completeness we provide a

proof of the statement at the end of section 3). The usability of a statistical database
is defined to be the ratio of the cardinality of a largest family F of queries that can be
answered without a compromise to the number of all posable queries. Thus, the result
stated above implies that usability of a database when all queries are posable equals(
m

�m
2 �
)×2−m; that is, it tends to 0 form→∞ . Clearly, a user is not interested in using

a database if he or she does not get an answer to almost all his or her queries. The
only possible way to increase the usability is to restrict the family of posable queries.
With respect to real-life problems, we consider in this paper as posable queries the
so-called range queries. A query Q = {at, t ∈ T} is a range query if T is a subinterval
of {1, . . . , n}. In our example, a range query reads as follows: What is the sum of
salaries (the average salary) of employees working for the company for r ∈ [a, b] years?
The range queries were discussed, for example, in [2].

In this paper we find a largest family of range queries which does not lead to a
compromise of a 1-dimensional database D and, consequently, determine the usability
of D.

2. Preliminaries. In this section we deal only with range queries, that is, in a
sense, with ordered subsets. Thus, throughout this section, we will consider a database
D = (a1, . . . , an) to be an ordered set. Then range queries are contiguous subsets of
D.

Let T be a subset of {1, . . . , n}. Then T can be expressed as a union of disjoint
intervals of {1, . . . , n},

T =
k⋃

j=1

[bj , cj],

if, for each j = 1, . . . , k − 1, it is cj + 1 < bj+1; that is, if we have a representation
of T in the above form with the minimum possible number of intervals, then the
representation will be called the minimum interval representation of T (MIR of T).

Consider a database D = (a1, . . . , an). Let S ⊂ {1, . . . , n} be the set of indices
of those elements which are single. We recall that revealing an element ai of D is
a compromise if and only if i ∈ S. Let S =

⋃k
j=1[bj , cj] be a MIR of S. We will

construct a superset S′ of S and a number L as follows. First we place into S′ all
elements of S. Further, for 1 ≤ j ≤ k, if the interval [bj , cj] is of odd length, then also
cj+1 ∈ S′. If n+1 /∈ S′, set L = n+1 and we are done. Otherwise (i.e., if the interval
[bk, ck] is of odd length and ck = n), we remove n+1 from S′ and consider two cases.
If S′ = {1, . . . , n}, set L = n + 1; otherwise, set L = max{j | j ∈ {1, . . . , n} − S′}
and we add L to S′.

348 LJILJANA BRANKOVIĆ, PETER HORAK, AND MIRKA MILLER

Thus, if S′ �= {1, . . . , n} and L = n+ 1, the set S′ is constructed from the set S
by extending intervals I of odd length in MIR by an element immediately to the right
of I. If L < n, then intervals I of odd length in MIR lying to the right of L have been
extended by the element immediately to the left of I.

In what follows, S and S′ will always have the same meaning as above.

Let S′ = {s1, . . . , sm}, where s1 < s2 < · · · < sm. From the definition of S′ and
L one can easily see the following.

Observation 1. Let S′ �= {1, . . . , n}. Then each interval in MIR of S′ is of an
even length. Thus, |S′| = m is an even number. Further, for j even, sj−1 = sj − 1;
for j odd, sj+1 = sj + 1.

Observation 2. If L ≤ n, then [L, n] ⊂ S′.
Observation 3. If sj /∈ S, then

• j is even if sj < L or
• j is odd if sj ≥ L.

3. Results and proofs. Now we are ready to formulate the main result of the
paper.

Theorem 3. The maximum number of range queries that do not lead to a com-
promise of a database D equals the number of range queries which contain an even
number of elements ai, i ∈ S′.

Proof. We shall refer to a range query that contains an even number of elements
ai, i ∈ S′, as an even range query; otherwise the query will be called odd. First we
claim the following.

Claim 1. The set E of all even range queries does not lead to a compromise.

In this part of the proof we employ techniques from linear algebra. Consider the
n-dimensional vector space over the field of real numbers, where each vector is an
ordered n-tuple. To each range query Q we assign a vector so that the ith coordinate
of the vector equals 1 if and only if ai ∈ Q. By ai we denote the vector assigned to
the range query Q = (ai). Further, if T is a set of range queries, then by L(T) we
denote the linear hull of the set of vectors corresponding to range queries in T . The
following statement plays a crucial role in the proof of Claim 1.

Claim 2. Let Q be a set of range queries. Then Q leads to a compromise if and
only if L(Q) contains one of the vectors ai, i ∈ S.

Proof. The sufficiency of the condition is obvious. To show the necessity suppose
that Q leads to a compromise. Consider a system of linear equations so that to each
query B from Q we assign an equation

∑n
i=1 λiai = SUM(B), where λi = 1 if ai ∈ B;

otherwise λi = 0. Just for this moment we view a′is as unknowns of the system. As
Q leads to a compromise it has to be possible to infer from SUM(B), B ∈ Q, at least
one of the values ai, i ∈ S. This means that in the solution of the system of linear
equations the corresponding unknown is uniquely determined, although the system
can have infinitely many solutions. In turn this implies that the vector ai can be
expressed as a linear combination of SUM(B), B ∈ Q, that is, ai belongs to L(Q).
The proof of Claim 2 is complete.

Hence, in order to prove Claim 1, it suffices to show the following.

Claim 3. L(E) does not contain any vector ai, i ∈ S.
Proof. Let, as before, S′ = {s1 < · · · < sm}. Set W = {at | t ∈ {1, . . . , n} −

S′}⋃{asj +asj+1 , 1 ≤ j ≤ m− 1} . Any even range query is easily seen to be a linear
combination of vectors from W. Therefore, L(E) ⊂ L(W). To finish the proof we
show that L(W) does not contain any ai, i ∈ S. Consider a matrix A of size (n−1)×n

AN OPTIMIZATION PROBLEM IN STATISTICAL DATABASES 349

whose rows are vectors of W. Thus, after a suitable permutation of columns,

A =

1 0 0 ... 0 0 0 0 0 0 ... 0 0 0
0 1 0 ... 0 0 0 0 0 0 ... 0 0 0
...
0 0 0 ... 0 1 0 0 0 0 ... 0 0 0
0 0 0 ... 0 0 1 1 0 0 ... 0 0 0
0 0 0 ... 0 0 0 1 1 0 ... 0 0 0
...
0 0 0 ... 0 0 0 0 0 0 ... 0 1 1

;

i.e., all elements on the main diagonal equal 1, the elements in the last m − 1 rows
which are immediately to the right of the elements on the main diagonal equal 1 as
well, and all other elements of A equal 0.

A can easily be seen to be row equivalent to the matrix whose first (n−1) columns
form the (n− 1)× (n− 1) identity matrix, and the last column B is a column vector
where the first n− |S′| coordinates equal 0:

BT = (0, 0, . . . , 0, (−1)m−2, (−1)m−3, . . . , (−1)1, (−1)0).

This implies that none of the vectors ai, i ∈ S, is a linear combination of vectors
from W; that is, none of the vectors ai, i ∈ S, is in the span of W. The proof of
Claim 3, and thus also the proof of Claim 1, is complete.

To show that E has the largest cardinality among all sets of range queries which
do not lead to a compromise of D, we use methods of graph theory. Consider a graph
G whose set of vertices consists of all range queries from the database D except for
range queries containing exactly one element which is single. The edge set of G is
defined so that there are no edges connecting two vertices corresponding to range
queries of the same parity. Further, each vertex corresponding to an odd range query
q is adjacent to exactly one vertex corresponding to an even range query p. The query
p will be chosen so that the symmetric difference of p and q contains only one element
of the database D, and this element is single. Let q = (ai, . . . , aj); then p is given by
the following cases:

1. i < L
(a) if i /∈ S′,

p = (ai, . . . , aj−1) if j < L, or
p = (ai, . . . , aj+1) if j ≥ L;

(b) if i ∈ S′ and i = sk,
p = (ai+1, . . . , aj) if k is odd, or
p = (ai−1, . . . , aj) if k is even;

2. i ≥ L and j = sk,
p = (ai, . . . , aj−1) if k is even, or
p = (ai, . . . , aj+1) if k is odd.

In what follows we will make use of Claim 4 below.
Claim 4. The unique element at in the symmetric difference of p and q is single;

i.e., t ∈ S.
Proof. If i < L and i /∈ S′, then j ∈ S′. Further, j is odd, and by Observation

3, j ∈ S for j < L, and j + 1 ∈ S for j ≥ L. The other cases follow directly from
Observation 3.

Claim 5. Each vertex corresponding to an even range query is of degree at most
1 in G.

350 LJILJANA BRANKOVIĆ, PETER HORAK, AND MIRKA MILLER

Proof. Let p′ = (ai, . . . , aj) be an even range query. Suppose first that i /∈ S′. By
the definition of the edge set of G, if an odd query q = (ar, . . . , as) is adjacent to p′,
then r = i (note that in cases 1(b) and (2) the leftmost element of p is from S′) and
s = j − 1 or j + 1 with respect to L. Thus p′ is of degree at most 1. If i ∈ S′ and
i < L, then an edge incident to p′, if any, has to be given by case 1(b) of the definition
of G, i.e., there is again at most one such edge. Similarly, for i > L, only case 2 may
apply. Hence, p′ is of degree at most 1 in G. The proof is complete.

In view of Claim 4, |SUM(p) − SUM(q)| = at, where t ∈ S, thus revealing that
both p and q give a compromise. Therefore, if a set of range queries does not lead to
a compromise, then the corresponding set of vertices is an independent set of vertices
of G.

Let E be a set of vertices of G corresponding to even range queries. Obviously,
E is an independent set of G. Claim 5 implies that E is a largest independent set of
G, that is, a largest set of range queries which does not lead to a compromise.

Remark. Theorem 3 describes a largest family of range queries which does not
lead to a compromise. In general, for databases containing multielements, this family
is not determined in a unique way. To see this, it suffices to define the set S′ in a
more general way by the following recursive procedure:

1. Set S′ = S.
2. If there is an interval [a, b] of an odd length in a MIR of S′, add to S′ one of

the numbers a− 1, b+ 1 which is from {1, . . . , n}. Otherwise stop.
3. If S′ �= {1, . . . , n}, go to 2. Otherwise stop.
Thus, if there is at least one interval of odd length in MIR of S, which gives a

choice in step 2, we would obtain at least two distinct sets S′. It is not difficult to see
that the proof of Theorem 3 could be adjusted to show that the statement is valid for
all sets S′ obtained by the above recursive procedure.

To calculate the usability of a database with posable queries being the range
queries, we first determine the cardinality of the family of range queries given in
Theorem 3.

Let n,m be natural numbers. We set, for n = m being an odd number, K(n,m) =
n2−1

4 ; otherwise K(n,m) = m
4 (2n−m) +

(
n−m+1

2

)
.

Theorem 4. Let D be a database with n elements and |S′| = m. Then the
number of even range queries of D equals K(n,m).

Proof. We denote by D(n,m) = (a1, . . . , an) a database with n elements and
|S′| = m such that S′ = {n−m+ 1, . . . , n}.

Claim 1. The total number of even range queries of D(n,m) equals K(n,m).
Proof of Claim 1. If n = m is an odd number, then S′ = {1, . . . , n}. Thus, there

are n−1 range queries with two elements, n−3 range queries with four elements, . . . ,
four range queries with n− 3 elements, and two range queries with n− 1 elements. In

total, there are K(n,m) = n2−1
4 even range queries. Otherwise, m = |S′| is an even

number. Let Q = (ai, . . . , aj) be an even range query. Then, either
(a) j ≤ n −m. In this case Q contains no elements with indices from S′. Then

i can be any number from the interval [1, j]. Thus, in this case, there are
(
n−m+1

2

)

even range queries; or
(b) i ≤ n −m < j. As Q is an even range query, then to an arbitrary choice of

i ≤ n−m we have to take j so that j − (n−m) is an even number. Therefore, there
are (n−m)× m

2 even range queries of this type; or
(c) n−m < i. Then there are m−1 range queries with two elements, m−3 range

queries with four elements, . . . , three range queries with m − 2 elements, and one

AN OPTIMIZATION PROBLEM IN STATISTICAL DATABASES 351

range query with m elements. Together, in this case, we have m2

4 even range queries.
Summing up the numbers obtained in (a)–(c) gives the desired result.
By moving a multielement of a database D �= D(n,m) we mean an operation

which takes the leftmost (= with the minimum index) element x = ak of D, k /∈ S′,
with the property that k−1 ∈ S′, and places it immediately before the first element af
with its index in S′(i.e., f = min(S′)). The obtained database will be denoted by Dx.
For example, let D = (t, t, t, s, s, s, s, t, s, s, t, t, s, s) be a database where t are elements
with indices off S′ and s are elements with indices in S′. Then the element which is
going to be moved is the fourth t from the left and Dx = (t, t, t, t, s, s, s, s, s, s, t, t, s, s).

Claim 2. The cardinalities of the sets of even range queries of D and of Dx are
the same.

Proof of Claim 2. Let D = (a1, . . . , af , . . . , ak−1, ak, ak+1, . . . , an), where f =
min(S′), [f, k − 1] ⊂ S′, and k /∈ S′. Then the operation of moving a multielement
will move the element ak; thus Dx = (a1, . . . , af−1, ak, af , . . . , ak−1, ak+1, . . . , an).
Consider a mapping F which assigns to an even range query Q = (ai, aj) of D an
even range query Qx of Dx such that

(a) Qx = (ai, aj) for k �= j or k = j and i < f ,
(b) Qx = (ak, ai+1) for k = j, f ≤ i < k.
Note that the range queries Q = (ai, aj) of D and Qx = (ai, aj) of Dx do not

have the same number of elements although “visually” they appear to be the same.
It is a matter of routine to check that the mapping F defined above is a bijection on
the sets of all even range queries of D and Dx. This completes the proof of Claim 2.

Now we are ready to prove Theorem 4. Consider a database D with n elements
and |S′| = m. By repeatedly applying the operation of moving a multielement of D
we obtain the database D(n,m). By Claim 2, the number of even range queries in
D equals the number of even range queries in D(n,m) and, in turn, by Claim 1, this
equals K(n,m).

Combining Theorems 3 and 4 we get the following corollary.
Corollary. Let D be a database with n elements, |S| = s, and let there be t

intervals of odd length in MIR of S. Then the maximum number of range queries that
does not lead to a compromise of D is equal to K(n,m), where m = s+ t.

Remark. Given a database D, let MD be the cardinality of a largest set of range
queries which does not lead to a compromise of D. As the values of multielements
could be revealed to the user, at first glance it appears that the bigger the number of
multielements in D, the bigger the numberMD. However, the above statement shows
that MD depends on the set of single elements in an unexpected way. For example,
consider a database D with the same number of multielements and single elements so
that the multielements and single elements of d alternate, and consider a database D′

having only two multielements which are at the beginning of D′. Then MD′ > MD.
On the other hand, whatever is the allocation of multielements ai, i /∈ S′, in gaps
between elements with indices in S′, the number MD is the same for all databases.

The following theorem is an immediate consequence of the corollary.
Theorem 5. The usability of a 1-dimensional database with n elements and

posable queries being range queries is at least n2−1
2(n2+n) .

Proof. A simple calculation shows that, for n fixed, the function K(n,m) is
decreasing on the interval [1, n]. As the maximum possible value of m equals n, we

get K(n,m) ≥ K(n, n) ≥ n2−1
4 . Further, the total number R of range queries equals

the number of combinations of two elements from n elements with repetitions, as each
range query is determined by its first and last elements (which may coincide). Thus,

352 LJILJANA BRANKOVIĆ, PETER HORAK, AND MIRKA MILLER

R =
(
n+1

2

)
= n2+n

2 . The proof follows.
At the end of this section we provide an outline of the proof of a statement given

in the introduction.
Theorem 6. If D = {a1, , . . . , an} is a (nonordered) database with m single

elements, then the cardinality of a largest set of answerable queries of D equals t =(
m
�m

2 �
)× 2n−m.

Proof. Let D′ = {a1, . . . , am} be single elements of D, D′′ = D −D′, and let M
be a set of answerable queries of D′ of cardinality

(
m
�m

2 �
)
. Then the set Q of queries F

of D of the form A∪B, where A ∈M, and B ⊂ D′′, has cardinality t. We show that Q
does not lead to a compromise of D. As in the proof of Theorem 3, consider a system
of linear equations so that to each query F from Q we assign an equation

∑n
i=1 λiai =

SUM(F), where λi = 1 if ai ∈ F ; otherwise λi = 0. Suppose to the contrary that Q
leads to a compromise of D. Then there is a solution of the system such that at least
one of the unknowns xj , j = 1, . . . ,m, is uniquely determined, although the system
may have infinitely many solutions. Consider now a system where, to each query F ,
we assign an equation

∑m
j=1 λijaj = SUM(F) −∑n

j=m+1 λijaj = SUM(A), where
A = (F ∩ D′) ∈ M. The new system also has the property, which contradicts the
assumption that M is a set of answerable queries of D′. Thus |F | ≥ t.

On the other hand, let Q be a set of answerable queries of D and B ⊂ D′′.
Set QB = {S| S ∈ F, S = A ∪ B, where A ⊂ D′}. Then |QB | ≤

(
m
�m

2 �
)
, i.e.,

|Q| ≤ t; otherwise the family {S −B,S ∈ QB} would provide a family of answerable
queries of D′ with more than

(
m
�m

2 �
)

elements, which is a contradiction. The proof is

complete.

4. Conclusions. Let MD be the cardinality of the largest set of posable queries
of a database D which does not lead to its compromise.

As mentioned before, MD has been determined in the case when all queries are
posable. However, the usability of the database in this case tends to 0 when the
number of elements of D grows over all bounds. Thus, this model is of theoretical
value only and cannot be successfully used in practice.

In [4]MD is determined in the case of a k-dimensional database (= k-dimensional
matrix) D whose elements are all single and the set of posable queries is the set of all
range queries (= contiguous submatrices). It is proved there that the largest family
of range queries which does not lead to a compromise of D is uniquely determined
and equals the family of all queries which has an even number of elements. This

means, for large databases, that in this case the usability tends to the number 2k−1
2k

which is definitely sufficient for practical use. However, this model is also more or
less of theoretical value only, as it is unrealistic to expect that in a larger database
no element is a hole. If all elements of D were single or multielements, the above
result would give a family of range queries which would be big enough, although not
a largest one, for practical use.

Theorem 3 is a generalization of the above result from [4] for 1-dimensional
databases as posable queries are also range queries but in addition we admit mul-
tielements. Some methods used for proving Theorem 3 are similar to those developed
in [4]. By Theorem 5 we get that the usability of this database tends to 1

2 with a
growing number of the elements of D. With respect to this, Theorem 3 constitutes
the first result in the area with practical applications, as one can easily exclude holes
in this case. On the other hand, the majority of databases in real life is of dimension
higher than 1. Therefore, a generalization of Theorem 3 for a higher dimension, where

AN OPTIMIZATION PROBLEM IN STATISTICAL DATABASES 353

multielements and holes would be allowed, would be very much appreciated.

REFERENCES

[1] L. Branković, P. Horak, M. Miller, and G. Wrightson, Usability of compromise-free sta-
tistical databases, in Proceedings of the 9th International Conference on Scientific and Sta-
tistical Database Management, IEEE Press, Piscataway, NJ, 1997, pp. 144–154.

[2] F. Y. Chin, P. Kossowski, and S. C. Loh, Efficient inference control for range sum queries,
Theoret. Comput. Sci., 32 (1984), pp. 77–86.

[3] J. R. Griggs, Concentrating subset sums at k points, Bull. Inst. Combin. Appl., 20 (1997),
pp. 65–74.

[4] P. Horak, L. Branković, and M. Miller, On a combinatorial problem in data security, Dis-
crete Appl. Math., 91 (1999), pp. 119–126.

[5] M. Miller, I. Roberts, and J. Simpson, Application of symmetric chains to an optimization
problem in the security of statistical databases, Bull. Inst. Combin. Appl., 2 (1991), pp. 47–
58.

THE GRAPH OF LINEAR EXTENSIONS REVISITED∗

MICHAEL NAATZ†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 3, pp. 354–369

Abstract. The graph of linear extensions G(P) of a poset P has as vertices the linear extensions
of P , and two vertices are adjacent if they differ only by an adjacent transposition. This graph has
so far been investigated mainly with respect to Hamilton paths and intrinsic geodesic convexity.
The work on the latter topic especially shows how the graph-theoretic properties of G(P) reflect the
order-theoretic structure of P .

The aim of this paper is to study the graph G(P) with respect to topics from classical graph
theory, e.g., connectivity, cycle space, isometric embeddings, and to find order-theoretic interpreta-
tions of these notions. The main theorems in this paper are the equality of the connectivity of G(P)
and the jump number of P , the existence of a certain generating system for the cycle space, and a
relationship of P and its subposets obtained via an embedding of the graph of linear extensions.

Key words. poset, linear extension, transposition, jump number, Hamilton path, cycle space,
connectivity, isometric subgraph, embedding

AMS subject classifications. 06A06, 05C12, 05C38, 05C40, 05C45

PII. S0895480199352609

1. Introduction. The graph of linear extensions G(P) of a poset P (also called
the adjacent transposition graph) has as vertices the linear extensions of P , and two
of them are adjacent if they differ only by an adjacent transposition. This graph
was first defined by Pruesse and Ruskey [10] (see also [15] for related work). They
mainly investigated the question, In which cases can one find a linear ordering of all
linear extensions of a poset such that two consecutive linear extensions differ only by
a transposition? They also considered the case where only adjacent transpositions are
allowed, which is equivalent to finding a Hamilton path in G(P). Hamilton paths in
G(P) were also investigated by Stachowiak [17] and West [19].

Björner and Wachs are the first to consider structural properties of G(P) apart
from Hamiltonians. In their paper [1] they prove the fundamental theorem that the
lattices of all extensions of a poset P is dually isomorphic to the lattice of all convex
subsets (vertex sets of convex subgraphs; see also Remark 4.3) of the graph of linear
extensions. This theorem was rediscovered by Reuter [13], who further investigated
the intrinsic geodesic convexity in the graph of linear extensions.

Especially the papers by Björner and Wachs and by Reuter show clearly that
the graph of linear extensions contains a wealth of information about the underlying
poset. It is therefore natural to study the graph-theoretic properties of this graph and
their order-theoretic interpretations—a line of research that is also pursued in [4]. In
the present paper we focus on parameters and constructions from “classical” graph
theory such as cycle space, connectivity, and others.

2. Preliminaries. A poset is a pair (P,≤P), where P is a set and ≤P is a
reflexive, transitive, and antisymmetric relation on P . By standard abuse of notation

∗Received by the editors February 19, 1999; accepted for publication (in revised form) March
1, 2000; published electronically May 26, 2000. The material in this article is part of the author’s
diploma thesis written at the University of Hamburg, Germany. The author was partially supported
by the graduate school Algorithmische Diskrete Mathematik, which is supported by the Deutsche
Forschungsgemeinschaft, grant GRK 219/3.

http://www.siam.org/journals/sidma/13-3/35260.html
†Fachbereich Mathematik MA 6-1, Technische Universität Berlin, Straße des 17. Juni 136, D-10623

Berlin, Germany (naatz@math.tu-berlin.de).

354

THE GRAPH OF LINEAR EXTENSIONS REVISITED 355

we just write P instead of (P,≤P). Furthermore, <P is defined to be the irreflexive
relation corresponding to ≤P , i.e., <P :=≤P \{(p, p) : p ∈ P}. A graph G consists of
a vertex set denoted by V (G) and an edge set E(G) ⊆ {{v, w} : v, w ∈ V (G), v �=
w}. In accordance with this definition, all graphs are assumed to be undirected
and without loops or multiple edges. When we are dealing with graphs of linear
extensions rather than arbitrary graphs we denote the vertices by capital letters,
beginning with L,M, . . . , following the notational conventions for linear extensions
used in [18]. All graphs and posets are assumed to be finite. For graph-theoretic
terminology we refer to [3] and for the basics of order theory to [8] and [18]. In
particular, we will denote the vertex-connectivity (respectively, edge-connectivity) of
a graph G by κ(G) (respectively, λ(G)) and the minimal degree by δ(G). The order
dimension of a poset P will be denoted by dim(P).

We will make use of the following shorthand notations: For the distance of two
vertices v and w in a graph G we will write d(v, w) instead of dG(v, w), when it is
clear which graph is meant—normally it will be the graph of linear extensions of a
given poset. The same applies to the degree deg(v) of a vertex v. A path v1v2 . . . vk
will be called a v1–vk-path, and it will be called a shortest path if d(v1, vk) = k − 1.
The vertices v2, v3, . . . , vk−1 are called the inner vertices of the path. An n-cycle is
a cycle with n edges, which is the same as a cycle of length n. We will call v1 and vk
the end vertices of the path v1v2 . . . vk. Paths P1, . . . , Pn with the same end vertices
v and w will be called independent paths, if every two distinct paths Pi and Pj have
only the vertices v and w in common. If S is some statement, we define 1[S] to be
one if S is true, and zero otherwise. The symmetric difference of two sets A and B
will be denoted by A	B.

A word of the form �i�i+1 . . . �k for some 1 ≤ i ≤ k ≤ n will be called a segment
of �1 . . . �n. If pq is a segment of a given linear extension L, we say that p is the left
neighbor of q (in L), q is the right neighbor of p, and {p, q} is a neighboring pair of L.
We will mostly write linear extensions as words, but if we explicitly want to consider
a linear extension L as an order relation, we will denote this by

<L:= R(L) := tr
({(p, q) ∈ P × P : p is the left neighbor of q in L}),

where tr denotes the transitive hull. It is convenient to use both symbols for readability
reasons. When L is a linear extension of P and we consider a subposet P ′ of P , we
define the word L |P ′ consistently such that R(L |P ′) = R(L) ∩ (P ′ × P ′). Note
that here, as in the following, subposets are not necessarily induced. Comparable
and incomparable pairs are always unordered pairs. The set of all comparable and
incomparable pairs of a poset P is denoted by Com(P) and Inc(P), respectively; hence
we have

Com(P) = {{p, q} : p <P q or q <P p}.

The number |Inc(P)| of incomparable pairs of P will be denoted by inc(P). If the
elements of an incomparable pair J are neighbors in a linear extension L, we call J a
jump of L. The jump number s(P) of a poset P is defined to be the least number of
jumps of all linear extensions of P . The following proposition is an easy consequence
of these definitions.

Proposition 2.1. The number of jumps of a linear extension equals its degree
in G(P), for every poset P . In particular, the jump number of P equals the minimal
degree δ(G(P)) of G(P).

356 MICHAEL NAATZ

When we compare two linear extensions L and L′ that are adjacent in G(P), it is
clear that there is one and only one incomparable pair {p1, p2} of P with p1 <L p2 and
p2 <L′ p1; all other pairs of elements of P will appear in the same order in L and L′.
So for every edge {L,L′} we can use the corresponding incomparable pair {p1, p2} as
an edge label and denote it by ψ({L,L′}). We will refer to this labeling frequently
throughout the paper. When J is a jump of a linear extension L we will write L � J
to denote the linear extension L′ constructed from L by exchanging the elements of J .
Hence L and L � J are always adjacent in G(P), and J is the label of the edge joining
them. We say that the pair {p, q} is reversed in a linear extension L′ (with respect to
a given linear extension L) when p <L′ q and q <L p holds (or vice versa).

The following proposition was already stated in [13] and appeared even earlier
in [1, proof of Proposition 6.2], though in a slightly different setting. We give a short
proof to keep the paper self-contained.

Proposition 2.2 (see [1] and [13]). For every two linear extensions L and M
of a poset P the following holds:

dG(P)(L,M) =
1

2
|R(L)	R(M)|.

Proof. The elements of D := R(L)	R(M) are exactly the pairs (p, q) ∈ P × P ,
where p and q are ordered differently in L andM . Observe that for each element (p, q)
of D, the reverse pair (q, p) is also in D.

Now consider a shortest L–M -path W in G(P). For every pair (p, q) ∈ D there
has to be an edge of W that is labeled {p, q}, since otherwise the pair {p, q} would
appear in the same order in M as in L. Hence dG(P)(L,M) ≥ 1

2 |D|.
We show the opposite inequality by induction on d := 1

2 |D|. For d = 0 we have
L = M and, consequently, d(L,M) = 0. Let L and M be vertices with 1

2 |R(L) 	R(M)| = d+1. Then there is a vertexM ′ adjacent toM such that 1
2 |R(L)	R(M ′)| =

d, and d(L,M) ≤ d+ 1 follows by the induction hypothesis.
We state a second version of the above proposition for later reference.
Proposition 2.3. Let P be a poset.
(i) A path W in G(P) is a shortest path if and only if ψ(e) �= ψ(f) for every

two distinct edges e and f of W .
(ii) If W and W ′ are both shortest paths from L to L′ in G(P), then

{ψ(e) : e is an edge of W} = {ψ(e) : e is an edge of W ′}.

Proof. (i) The first part follows from Proposition 2.2.
(ii) The second part is also easily seen to be implied by part (i) and Proposi-

tion 2.2: Just observe that, for every shortest L–M -path W in G(P),

{ψ(e) : e is an edge of W} = {{p, q} : (p, q) ∈ R(L)	R(M)
}
.

3. Connectivity. The aim of this section is to prove the following theorem.
Theorem 3.1. For every poset P , the edge- and vertex-connectivity of the graph

of linear extensions of P agrees with the jump number of P :

κ(G(P)) = λ(G(P)) = s(P).

As the present author learned after completing the work on this result, Savage
and Zhang [16] conjectured that the vertex-connectivity of G(P) is at least one less

THE GRAPH OF LINEAR EXTENSIONS REVISITED 357

than the width w(P) of P . This conjecture is proved by Theorem 3.1, as w(P)− 1 is
the most well-known lower bound for the jump number of P .

The overall proof strategy for Theorem 3.1 is simple: We will construct at
least δ(G(P)) independent paths between every pair of vertices at distance two. The
equality of vertex-connectivity and minimal degree (and hence the jump number of P)
in G(P) then follows directly from a surprising variant of Menger’s theorem that was
found by Li [7]. We will discuss that variant in the next subsection. It is then clear
that the edge-connectivity has the same value because of the elementary inequality
κ(G) ≤ λ(G) ≤ δ(G), which is true for every graph G.

3.1. An application. Before we prove Theorem 3.1, we want to illustrate its
possible use with an example taken from Pruesse and Ruskey [11, p. 383]; this subsec-
tion is mainly a translation of ideas from this paper. Consider the following problem:

(∗)
{

Generate a linear ordering of the set of all linear extensions of a given
poset P , such that two consecutive extensions differ by at most two
adjacent transpositions.

This is a relaxation of the problem mentioned in the introduction that allows for
only one adjacent transposition.

Corollary 3.2 (see [11], p. 383). The problem (∗) is solvable for every poset
with jump number at least two (and trivially for jump number zero).

Proof. The assertion is clear for jump number zero because this means that
the poset is a chain. The nontrivial case follows from Theorem 3.1 and Fleischner’s
theorem that the square of any two-connected graph has a Hamilton cycle (see [5]
and [6] and also [3] or [14] for a shorter proof).

Note that Theorem 3.1 is a rather heavy tool for the proof of this corollary.
Pruesse and Ruskey suggest instead to prove a lemma to the effect that G(P) minus
any vertices of degree one is always two-connected, which is much easier to show.
This suffices for the proof of Corollary 3.2, using the elementary observation that
vertices of degree one can only occur in G(P) if P has jump number one. Also in [11],
an algorithm is constructed to generate the desired ordering in constant amortized
time, i.e., the time needed is a constant multiple of the number of linear extensions
of the given poset. This algorithm is proved to work for arbitrary ordered sets, hence
Problem (∗) is also solvable in the case of jump number one.

3.2. A variant of Menger’s theorem. The following variant of Menger’s the-
orem seems to be not well known. It was stated by Li in [7]. We give a new proof
here.

Theorem 3.3 (see [7]). The following equivalence holds for every connected
graph G on at least k + 1 vertices: G is k-connected if and only if, for every two
vertices v and w at distance 2, there are at least k independent v–w-paths in G.

Proof. The “only if” part is just a special case of Menger’s theorem, and we prove
the other direction by induction on k ≥ 0.

The theorem is obviously true for k ≤ 1. Let G be a connected graph on at
least k + 2 vertices, such that there exist at least k + 1 independent paths between
every two vertices at distance two. Let x and y be two distinct vertices of G, and let
t1, . . . , tk ∈ V (G)\{x, y}. We show now that x and y are not separated by {t1, . . . , tk}.
By induction, G is k-connected, and from Menger’s theorem we get k independent
x–y-paths in G. If one of these paths contains none of the vertices t1, . . . , tk, we
are already done. Otherwise let P be one of those paths and t the only element of

358 MICHAEL NAATZ

{t1, . . . , tk} that lies on P . There are just two vertices adjacent to t in P ; we call
them v1 and v2. These two vertices are either adjacent in G (then P − {t} together
with the edge {v1, v2} is an x–y-path in G − {t1, . . . , tk}), or d(v1, v2) = 2. In the
latter case there are k + 1 independent v1–v2-paths in G (by the hypothesis), and
obviously there cannot be a ti on every path. So there is a walk from x to y in
G− {t1, . . . , tk}, and we conclude that G is (k + 1)-connected.

Remark 3.4. In the same way one can prove that a connected graph on at least
two vertices is k-edge-connected if there are k edge-disjoint paths between every two
adjacent vertices.

Note that it follows from Proposition 2.2 that G(P) is connected for arbitrary P ,
so Theorem 3.3 will be readily applicable to our problem.

3.3. Order-theoretic preparations. In this subsection we will state and prove
some propositions that are needed to construct the paths necessary for the proof of
Theorem 3.1. For the rest of this section all posets are without loss of generality
assumed to have a least and a greatest element denoted by 0̂ and 1̂, respectively.

Now let p �= 0̂ be an element of a poset P , and let L be a linear extension of
P . Provided p is incomparable with its left neighbor in L, we can construct from L
a new linear extension by successively exchanging p with its left neighbor, until we
end up with a linear extension L′ in which p is comparable with its left neighbor. We
then say that L′ is generated from L by shifting down p. We will frequently use this
construction in this section.

Let us illustrate this notion with a small example: Let P be the poset from
Figure 3.1. Then the linear extension 0̂23141̂ is generated from 0̂21431̂ by shifting
down 3 because 3 is incomparable with 4 and 1 but comparable with 2.

1

^

4

1

2

3

^

0

Fig. 3.1. N-shaped poset with additional least and greatest element.

Proposition 3.5. Let L and L′ be linear extensions of a poset P , such that L′

is generated from L by shifting down p ∈ P \ {0̂}, and let p be incomparable with its
left neighbor in L. Then the degree of L′ in G(P) is given by

deg(L′) = deg(L)− 1[l′‖r′] − 1[p‖r] + 1[l‖r],

where l, r ∈ P and lpr and l′pr′ are segments of L and of L′, respectively.
Proof. Moving from L to L′ just means replacing the segments lpr by lr and l′r′

by l′pr′, respectively. As the degree of a linear extension in the graph G(P) is just
the number of jumps in that extension (Proposition 2.1), the result follows by simply
counting the number of jumps before and after those replacements.

THE GRAPH OF LINEAR EXTENSIONS REVISITED 359

Lemma 3.6. Let L = �1�2 . . . �n be a linear extension of a poset P , and let
I ⊆ {1, 2, . . . , n− 2} be a set of indices with the following properties.

(i) �i ‖P �i+1, �i+1 ‖P �i+2 and �i <P �i+2 for all i ∈ I.
(ii) i ∈ I implies that i+ 2 is not in I.

Then deg(L)− |I| is an upper bound for δ(G(P)).
Proof. The lemma is trivial for I = ∅. For I �= ∅, partition I into

I+ := {i ∈ I : i+ 1 ∈ I} and I− := {i ∈ I : i+ 1 �∈ I}.
The following easy algorithm constructs a linear extension L′′ of P with deg(L′′) ≤
deg(L)− |I+| − |I−| = deg(L)− |I|.

Step 1. Let i := min I and L′ := L.
Step 2, Case 1. i is in I+. In this case, construct from L′ = �′1�

′
2 . . . �

′
n a new

linear extension L′′ by exchanging �′i+1 and �′i+2, which are incomparable by condition
(i). If i+1 = max I, the construction is finished. Otherwise, assign the following new
values: i := min(I \ {1, 2, . . . , i+ 1}) and L′ := L′′. Afterward go back to Step 2.

Step 2, Case 2. i is in I−. In this case, construct from L′ = �′1�
′
2 . . . �

′
n a new linear

extension by shifting down �′i+1. If i = max I, the construction is finished. Otherwise,
assign the following new values: i := min(I \ {1, 2, . . . , i}) and L′ := L′′. Afterward
go back to Step 2.

This algorithm obviously terminates after finitely many steps because the value
of i ∈ I increases every time Step 2 is executed. To see that the algorithm is also
correct, the crucial observation is that �′k = �k holds for all k ≥ i at each moment
during the execution; this follows from Property (ii) of I. For Case 1 of Step 2 this
implies deg(L′′) = deg(L′) − 2 because of the hypotheses, and for Case 1 we get
deg(L′′) ≤ deg(L′)− 1 by Proposition 3.5.

3.4. Proof of the main theorem. The edge labeling defined in the prelimi-
naries can be used as a means of specifying paths in G(P): When we know an end
vertex v of a path W and the edge labels in the order in which they appear when
we move from v to the other end vertex of W , then W is uniquely determined. We
call v the start vertex in this context. But not every pair consisting of a vertex K
and a sequence E1, E2, . . . , Em of edge labels corresponds to a path in G(P). For
a corresponding path to exist, E1 has to be a jump of K, E2 must be a jump of
K � E1, E3 must a jump of (K � E1) � E2, and so on. It is clear that this is
a necessary and sufficient condition. Often it is easy—though perhaps tedious—to
check this condition for a given vertex and sequence, in which case we will leave this
task to the reader without explicitly mentioning it.

Proof of Theorem 3.1. The graph of linear extensions is always connected by
Proposition 2.2. We will now construct at least δ(G(P)) independent paths between
every two vertices at distance two. The equality of vertex connectivity and mini-
mal degree (and hence the jump number of P) in G(P) then follows directly from
Theorem 3.3. The edge connectivity has the same value because of the elementary
inequality κ(G) ≤ λ(G) ≤ δ(G) for every graph G.

Let L = �1 . . . �n and M be vertices of G(P) with d(L,M) = 2 and deg(L) ≤
deg(M). This means that there are exactly two incomparable pairs J1 and J2 of P
that appear in L and M in different order. We assume without loss of generality that
J1 is a jump of L, hence M = (L � J1) � J2. For every edge e incident with L we
will give a sequence of edge labels that has ψ(e) as first element. Afterwards we prove
that at least δ(G) of these sequences define an L–M -path (where we use L as start
vertex), and that all these paths are independent. As for the independence, we will

360 MICHAEL NAATZ

provide a criterion for each path W that distinguishes the inner vertices of W from
the inner vertices of all previously defined paths. When we speak about reversed pairs
of elements in some linear extension we always mean reversed with respect to L. All
paths to be defined by means of label sequences in the following are supposed to have
L as start vertex.

Case 1. For the edge e with ψ(e) = J1, we choose the path with the edge labels J1

and J2, and if there is an edge e′ incident with L such that ψ(e′) = J2, we go along
the edges labeled J2 and J1. It is easily checked that these sequences correspond to
paths in G(P). The only inner vertex of the path belonging to e (respectively, e′) is
L � J1 (respectively, L � J2).

Case 2. For all edges e incident with L that have the additional property that
ψ(e) ∩ J1 = ∅ = ψ(e) ∩ J2, we choose the edge labels ψ(e), J1, J2, and again ψ(e).
It is easy to check that these sequences correspond to paths in G(P). In any inner
vertex K of such a path the pair ψ(e)—which is disjoint from J1 and J2—is reversed.
From this it is clear that the paths defined in Case 2 are mutually independent and
independent of the paths from Case 1.

Case 3. Now we consider the edges e for which ψ(e) has an element in common
with J1 or J2; this part splits up into various subcases and subsubcases.

Case 3.1. J1 and J2 are disjoint. In this case let {o, p} := J1 and {q, r} := J2,
and assume o <L p <L q <L r without loss of generality.

Case 3.1.1. There is an element of P that is strictly between p and q with respect
to L. Let o′opp′ and q′qrr′ be segments of L, where we do not exclude p′ = q′. In
Table 3.1 we define a sequence of edge labels for every jump (other than J1 and J2)
that can possibly occur in one of these segments. For the moment, just ignore the
third column and the fact that some labels are in boldface; both will be needed later.

Table 3.1
Sequences of edge labels used in the proof of Theorem 3.1.

Jump J Corresponding label sequence sJ Characteristic property of inner vertices

{o′, o} {o′, o},{{{o′′′,p}}}, J1, J2, {o′, o}, {o′, p} {o′, o} or {o′, p} reversed

{p, p′} {p, p′},{{{o,p′′′}}}, J1, J2, {p, p′}, {o, p′} {p, p′} or {o, p′} reversed

{q′, q} {q′, q},{{{q′′′, r}}}, J2, J1, {q′, q}, {q′, r} {q′, q} or {q′, r} reversed

{r, r′} {r, r′},{{{q, r′′′}}}, J2, J1, {r, r′}, {q, r′} {r, r′} or {q, r′} reversed

Apart from the fact that we do not know whether the labels in boldface are
actually incomparable pairs, it is easy to check that each of the above label sequences
defines an L–M -path. To find out how many of the bold labels are incomparable
pairs, it is useful to call a comparable pair {x, y} of P bad if {x, y} is a bold label of a
sequence sJ (cf. Table 3.1) such that J is an incomparable pair. Let I be defined by

I :=
{
i : {�i, �i+2} is a bad pair

}
.

Hence |I| is the number of bad pairs and thus the number of edges incident with L
for which the corresponding label sequence does not define a path in G(P). It follows
from Lemma 3.6 that |I| ≤ deg(L) − δ(G(P)), as desired—but there is one special
case in which I does not fulfill the conditions of this lemma, namely, the case that
p′ = q′ and {o, p′} and {p′, r} are both bad. Then o′opp′qrr′ is a segment of L, and
we know that o ‖ p ‖ p′ ‖ q ‖ r and o <P p′ <P r holds. This implies o′ <P o and
r <P r′ because of the condition deg(L) ≤ deg(M) and Proposition 2.1. Hence I has
no other elements apart from {o, p′} and {p′, r}. We first shift down p and then q

THE GRAPH OF LINEAR EXTENSIONS REVISITED 361

in L, and by Proposition 3.5 this results in a linear extension with degree at most
deg(L)− 2, so 2 = |I| ≤ deg(L)− δ(G(P)) holds also in this case.

It remains to check that the paths just defined do not have any inner vertices
in common with previously constructed paths or with each other. This can be seen
directly from the label sequences that were used for the definition of the paths in
question: The paths constructed with the help of Table 3.1 are mutually independent
because K is an inner vertex of the path defined in line i of this table if and only
if one of the pairs listed in the third column of line i is reversed in K. The paths
from Case 3.1.1 are also independent of all previously constructed ones because the
reversed pairs from the third column all have exactly one element in common with
J1 ∪ J2 and reversed pairs of this kind do not occur in the previous cases.

Case 3.1.2. There is no element of P that strictly is between p and q in L. Hence
o′opqrr′ is a segment of L. If {o′, o} (respectively, {r, r′}) is a jump, we define a
corresponding sequence s{o′,o} (respectively, s{r,r′}), according to Table 3.1. We will
later check how many of these sequences actually define L–M -paths, i.e., for how
many of them the bold label is actually an incomparable pair. The independence of
any of these paths from any other path defined so far is proved in the same way as
in Case 3.1.1. If there is an edge e incident to L such that ψ(e) equals {p, q}, we
define {p, q}, {{{o,q}}}, {o, p}, {p, q}, {{{o, r}}}, {q, r}, {o, q}, {o, r} as the corresponding
sequence s{p,q} of edge labels. Again, we do not know whether the bold labels are
incomparable pairs. But if we assume for the moment that this is the case, it is not
difficult to check that the above sequence of labels defines an L–M -path. Note that
the inner vertices of this path can be easily recognized because all pairs reversed in
such a vertex are subsets of J1 ∪J2 and at least one of these pairs is different from J1

and J2. So this path has only the end vertices L and M in common with previously
defined paths.

It remains to check that we have defined enough label sequences that actually
correspond to paths in G(P). In other words, we have to show that the following
inequality holds:

δ(G(P)) ≤ deg(L)− k,(3.1)

where k is the number of jumps J in o′opqrr′ such that sJ contains a bold label that
is a comparable pair.

To turn the set of all neighboring pairs of L into the corresponding set for M ,
we only have to replace three pairs by their counterparts from Table 3.2. From the
condition deg(L) ≤ deg(M) and Proposition 2.1 it follows that there is at most one
line in Table 3.2 such that the pair in the left column is an incomparable pair and its
counterpart in the right column is not.

Table 3.2
All neighboring pairs that are different in L and M .

Neighboring pair of L Neighboring pair of M

{o′, o} {o′, p}
{r, r′} {q, r′}
{p, q} {o, r}

We recall that a comparable pair {x, y} of P is called bad if {x, y} is a bold label
of a sequence sJ such that J is an incomparable pair. Additionally, we call J the
owner of the bad pair. Hence an owner of a bad pair is always an incomparable pair.

362 MICHAEL NAATZ

Note that the only pairs that can possibly be bad are {o′, p}, {q, r′}, {o, r}, and {o, q}.
According to what we have seen in the previous paragraph, only one of the three pairs
in the right column of Table 3.2 can be bad, but not two or three at the same time. In
Table 3.3 we list the arguments by which (3.1) holds for each possible combination of
bad pairs; to see that the table is correct, it is important to note that the pairs {o, q}
and {o, r} have the same owner. This means that if one of them is bad, the other one
must either be bad or incomparable. And if they are both bad, the variable k from
(3.1) is one and not two because k counts the number of sequences that contain a bad
pair, not the bad pairs themselves.

Table 3.3
This table is part of the proof of Theorem 3.1. i0 is chosen such that i0 = o′.

Bad pairs Owners Reason why (3.1) holds

{o′, p} {o′, o} Lemma 3.6 with I := {i0}
{q, r′} {r, r′} Lemma 3.6 with I := {i0 + 3}
{o, q} {p, q} Lemma 3.6 with I := {i0 + 1}
{o, r} {p, q} shift down p and afterwards q in L, the resulting

linear extension has lower degree by Proposition 3.5

{o, q} and {o′, p} {p, q} and {o′, o} Lemma 3.6 with I := {i0, i0 + 1}
{o, q} and {q, r′} {p, q} and {r, r′} shift down p and afterwards r in L, which by

Proposition 3.5 lowers the degree by two

{o, q} and {o, r} {p, q} Lemma 3.6 with I := {i0 + 1}

Case 3.2. J1 and J2 have an element p in common. In this case we can assume
without loss of generality that there is a segment p′pqrr′ of L such that J1 = {p, q}
and J2 = {p, r}. Note that for the independence of the paths to be defined in the
following, we do not need to consider the paths from Case 3.1 because the assumptions
of Case 3.1 and Case 3.2 concerning J1 ∩ J2 mutually exclude each other. We have
three possibilities for ψ(e) in the given situation.

Case 3.2.1. ψ(e) = {p′, p}. If p′ <P q, we need not construct a path because by
Proposition 3.5 the linear extension generated from L by shifting down p has lower
degree than L. If p′ and q are incomparable, there is a path with edges labeled {p′, p},
{p′, q}, {p, q}, {p′, p}, {p, r}, and {p′, q}. The inner vertices of this path are easily
recognized by the following property: Only members of

{{p′, p}, {p′, q}, J1, J2

}

are reversed, and at least one of the reversed pairs is from the set
{{p′, p}, {p′, q}}.

This distinguishes the inner vertices of paths defined in the current case from those
constructed in Cases 1 and 2.

Case 3.2.2. ψ(e) = {q, r}. In this case there is a path with edge labels {q, r},
{p, r}, {p, q}, {q, r}. The inner vertices of this path are easily recognized by the fact
that the pair {q, r} is reversed, which is never the case in any inner vertex of any path
defined before.

Case 3.2.3. ψ(e) = {r, r′}. We have to consider two subsubcases here.
Case 3.2.3.1. p <P r′. Then we have p′ ‖ q and p′ <P p because otherwise L would

have greater degree than M (cf. Proposition 2.1). We choose the path corresponding
to the label sequence {r, r′}, {p, q}, {p′, q}, {r, r′}, {p, r}, {p′, q}. Because of p′ <P p,
Case 3.2.3.1 is only relevant if {p′, p} is not a jump of L. So we do not require this
path to be independent of the one defined in Case 3.2.1, where we assumed that {p′, p}
is a jump of L. For the independence of the other previously constructed paths note

THE GRAPH OF LINEAR EXTENSIONS REVISITED 363

that only pairs from

{{r, r′}, {p′, q}, J1, J2

}

are reversed, and there is always a reversed pair that is different from J1 and J2.
Case 3.2.3.2. p and r′ are incomparable. In this case the labels {r, r′}, {p, q},

{p, r′}, {p, r}, {r, r′}, and {p, r′} define our path. Of course we do not require this
path to be independent of the one defined in Case 3.2.3.1, since that case is only
relevant for p <P r′. It remains to show the independence of the other previously
defined paths, and the characterization for the inner vertices of our path is almost the
same as in the previous case. Only pairs from

{{r, r′}, {p, r′}, J1, J2

}

are being reversed, and there is always a reversed pair that is different from J1 and
J2.

4. Isometric cycles and the cycle space. In this chapter we investigate the
cycle space (always over the two-element field F2) of graphs of linear extensions. For
general information on the cycle space of a graph see, e.g., [3]. The basic question we
want to consider comes up naturally when one looks at drawings of such graphs like
the one in Figure 4.1: Is the cycle space of the graph of linear extensions generated
by the 4- and 6-cycles? The answer is affirmative, and we don’t even need additional
assumptions, as the main theorem of this section shows.

Theorem 4.1. For every poset P , the cycle space of G(P) is generated by the
cycles of lengths 4 and 6.

Fig. 4.1. G(A4) for the 4-element antichain A4.

Our proof strategy will be to show first that the cycle space is generated by the
isometric cycles of a graph (see the definition below; this result holds for arbitrary
graphs), and then we will break down the isometric cycles into 4- and 6-cycles.

Definition 4.2. A subgraph H of a graph G is called an isometric subgraph
of G if dH(v, w) = dG(v, w) holds for every two vertices v and w of H. An isometric
subgraph that is a cycle will be called an isometric cycle.

Remark 4.3. Note that we could equivalently demand that at least one of the
shortest v–w-paths be a subgraph of H for every two vertices v and w of H—where

364 MICHAEL NAATZ

shortest paths are of course meant to be shortest with respect to G, not H. In
particular, subgraphs that contain every shortest path between every two of their
end vertices—so-called convex subgraphs—are also isometric subgraphs. Convex sub-
graphs play an important role in the investigation of the graph of linear extensions
in [1] and [13].

The following theorem is a natural strengthening of the well-known fact that the
induced cycles generate the cycle space, and the proof is based on the same idea.
There doesn’t seem to be a reference for this theorem in the literature, although it
seems to be well known among the researchers in this area of graph theory, according
to Victor Chepoi (personal communication). For the sake of completeness we include
the proof. It is easy to see that every isometric subgraph is induced (but not vice
versa), so this theorem is in fact stronger than the induced version.

Theorem 4.4. The cycle space of a graph G is generated by the isometric cycles
of G.

Proof. Let C be a cycle of G. We show by induction on the length of C that C is
a sum of isometric cycles with respect to the vector addition in the cycle space. For
a cycle of length 3 this is obvious because such a cycle is itself isometric. Now let C
be nonisometric. Then there is a path P = v0v1 . . . vk in G such that v0 and vk are
vertices of C and k < dC(v0, vk). Let v0 = vi0 , vi1 , . . . , vim−1 , vim = vk be the common
vertices of C and P in their natural order along P (which means i0 < i1 < · · · < im).
So for every pair vij , vij+1 there is a vij–vij+1-path in P . At least one of these paths
must have a length smaller than the corresponding distance dC(vij , vij+1) in C. Let
us call this path P ′, and let us call its end vertices v′ and w′. It is clear from the
choice of the indices i1, . . . im that v′ and w′ are the only common vertices of P ′ and
C. In C there are exactly two paths P1 and P2 with end vertices v

′ and w′. P1, P2,
and P ′ are independent. See Figure 4.2 for an example of the situation. Now C is
the sum of two shorter cycles, namely, P ′ ∪ P1 and P ′ ∪ P2, and these are sums of
isometric cycles by induction.

Remark 4.5. It is easily seen from the proof that the isometric cycles share
another interesting feature with the induced cycles: Every cycle that is not isometric
(respectively, induced) is a sum of shorter isometric (respectively, induced) cycles.
This comes in very handy when one uses induction as in the proof of Theorem 4.1
below.

All graphs of linear extensions are bipartite, as is easily seen by viewing the
linear extensions as permutations and observing that an edge always joins an even to
an odd permutation. So all cycles have even length, and in such cycles it is clear what
is meant by opposite edges: {L,L′} and {M,M ′} are opposite edges of a cycle C
when dC(L,M) = dC(L

′,M ′).
Theorem 4.6. Let P be a poset, and e �= f edges of an isometric cycle C of

G(P). Then e and f are opposite if and only if ψ(e) = ψ(f).

Proof. “⇒”: Let e = {L,L′} and f = {M,M ′} be opposite edges of C and,
without loss of generality, d(L,M ′) > d(L,M). There are two L–M -paths in C; let
W be the longer one. According to Propositions 2.2 and 2.3, W has exactly one pair
of edges with the same label. But when we delete the first or the last vertex of W ,
we get a shortest path from L to M ′ or from L′ to M , respectively. But on a shortest
path no label occurs twice (Proposition 2.3), so e and f are the two edges with the
same label.

“⇐”: Now let e and f be nonopposite edges of C. Choose L and M from the
end vertices of e and f such that d(L,M) is maximal. Then e and f are contained in

THE GRAPH OF LINEAR EXTENSIONS REVISITED 365

vi

iv

3i
v

4i
v

1

2

C

P’

Fig. 4.2. Example for the situation in the proof of Theorem 4.4.

a shortest L–M -path, and by Proposition 2.3 they have different labels.

Corollary 4.7. Let P be a poset. A cycle C of G(P) is isometric if and only if
the following two statements are equivalent for every pair e, f of distinct edges of C:

(i) e and f have the same label.
(ii) e and f are opposite.

Proof. We have already shown one direction of the proof in the previous theorem.
For the other direction let C be a cycle of G(P) for which statements (i) and (ii) are
equivalent. For every two vertices L and M of such a cycle there is always an L–M -
path such that no two edges of this path have the same label. By Proposition 2.3 this
is a shortest path, and thus dC(L,M) = dG(P)(L,M).

Lemma 4.8. Let P be a poset, and let C be a cycle of G(P) of length at least 8.
Then at least one of the following statements is true.

(i) There are at least two consecutive edges of C that are contained in a common
4-cycle.

(ii) There are at least three consecutive edges of C that are contained in a com-
mon 6-cycle.

Proof. Two incident edges which have disjoint edge labels are contained in a
common 4-cycle. So we assume that C is a cycle where incident edges never have
disjoint edge labels.

It turns out that there is no element of P that occurs in the label of every edge
of C. Such an element would always be interchanged with its right neighbor when we
move from vertex to vertex in the cycle C in a fixed direction (and always with the
left one when we go the other way round), but in this way we would never get back
to where we started from and hence C would not be a cycle.

Hence we know that there have to be three consecutive edges e1, e2, e3 in C with

ψ(e1) ∩ ψ(e2) �= ψ(e2) ∩ ψ(e3).

Since the labels of two consecutive edges cannot have more than one element in

366 MICHAEL NAATZ

common, the intersection of the three labels is empty:

ψ(e1) ∩ ψ(e2) ∩ ψ(e3) = ∅.

In other words, there have to be four consecutive vertices L1, . . . , L4 of C with the
property that

ψ({L1, L2}) ∩ ψ({L2, L3}) ∩ ψ({L3, L4}) = ∅.(4.1)

Let {p, q} := ψ({L1, L2}) and {p, r} = ψ({L2, L3}). Because of our assumption
that labels of two consecutive edges are never disjoint it follows from (4.1) that
r ∈ ψ({L3, L4}). Obviously pqr (respectively, rqp) is a segment of L1 and qrp (respec-
tively, prq) is a segment of L3. Together with (4.1), this implies that ψ({L3, L4}) =
{q, r}. So we have a path L1 . . . L4 in G(P) with edge labels of the form {p, q}, {p, r},
{q, r}, and we easily verify that such a path is always contained in a cycle of length
6.

Proof of Theorem 4.1. Because of Theorem 4.4 it only remains to show that every
isometric cycle of G(P) is a sum of 4- and 6-cycles. This is trivial for 4- and 6-cycles,
and to prove the theorem for an arbitrary isometric cycle we use induction on its
length. Let C be an isometric cycle of G(P) with length greater than 6. According to
Lemma 4.8 there is a cycle C ′ of G(P) of length 4 (respectively, 6) that has at least 2
(respectively, 3) edges in common with C. In both cases, C + C ′ (with + meaning
the addition defined in the cycle space of G(P)) is not longer than C. If C + C ′ has
strictly smaller length it is—by Theorem 4.4 and Remark 4.5—a sum of isometric
cycles each of which is shorter than C, and we are done by induction.

If C and C + C ′ have the same length, adding C ′ to C just means replacing
two consecutive edges by new ones—respectively, three edges if C ′ is a 6-cycle. This
replacement reverses the order of the affected edge labels, so there is always an edge e
that is replaced by an edge f with a different label. The edge e′ that is opposite to e
in C is not replaced because there are at most three consecutive edges being changed.
Hence the opposite edges f and e′ of C + C ′ have different labels. This implies by
Theorem 4.6 that C + C ′ is not isometric. By Theorem 4.4 and Remark 4.5, C + C ′

is a sum of shorter isometric cycles, and we are done by induction.

5. Isometric embeddings. In this section we want to analyze the metric struc-
ture of graphs of linear extensions. The standard approach is to embed the graph in
question as an isometric subgraph into a Cartesian product of graphs such that ev-
ery factor is prime with respect to Cartesian products (for a detailed account of this
method see [2, Part III]). However, in the context of order theory, embeddings into
products with nonprime factors also deserve to be studied as long as they permit an
order-theoretic interpretation. This is the case when the factors are themselves graphs
of linear extensions as in the following theorem.

Theorem 5.1. Let P be a poset with subposets P1, . . . , Pm, such that every
incomparable pair of P is contained in exactly one Pi. Then G(P) is isomorphic to
an isometric subgraph H of

∏m
i=1 G(Pi).

Proof. Let f : V (G(P)) → ∏m
i=1 V (G(Pi)) be defined by L �→ (L |P1 , . . . , L |Pm).

It follows directly from the hypothesis that f is well defined and injective. Now let L

THE GRAPH OF LINEAR EXTENSIONS REVISITED 367

and M be linear extensions of P . Then Proposition 2.2 yields

dG(P)(L,M) =
1

2
|R(L)	R(M)|

=
1

2
|(R(L) ∩ Inc(P))	 (R(M) ∩ Inc(P))|

=
1

2

∣∣∣
m⊎

i=1

[
(R(L) ∩ Inc(Pi))	 (R(M) ∩ Inc(Pi))

]∣∣∣

=
m∑

i=1

1

2
|R(L |Pi)	R(M |Pi)|

=

m∑

i=1

dG(Pi)

(
(f(L))i, (f(M))i

)

= d∏m
i=1G(Pi)(f(L), f(M)),

where (f(L))i is the ith entry of the m-tuple f(L) and “�” denotes disjoint union.
So the image of G(P) under f is an isometric subgraph of

∏m
i=1 G(Pi).

Remark 5.2. Note that we do not require the subposets P1, . . . , Pm to be induced.
If any of the subposets, say Pi0 , is induced, the above embedding has the additional
property that none of the vertices in G(Pi0) is superfluous: If we modify the product∏m
i=1 G(Pi) by deleting vertices from G(Pi0), H will not be a subgraph of the modified

product. That is to say, for every vertex v of G(Pi0) there exists a vertex (v1, . . . , vm)
of H with vi0 = v. This follows from the well-known fact (see, e.g., [18, Theorem 8.1])
that every linear extension of an induced subposet P ′ of P is of the form L |P ′ , where
L is a linear extension of P .

When we choose the incomparable pairs of P as subposets Pi we can derive from
Theorem 5.1 that G(P) is an isometric subgraph of a hypercube. This was already
shown by Reuter [12, p. 5], but the proof of Theorem 5.1 yields a very natural embed-
ding: Choose some linear extension L to be mapped to the vertex of the hypercube
whose coordinates are all zero. Then the ith coordinate of any other linear exten-
sion L′ is 1 if and only if the ith incomparable pair of P (according to some given
numbering) is ordered differently in L and L′.

5.1. Application to the linear-extension-diameter. From Theorem 5.1 we
easily derive a new bound on the linear-extension-diameter led(P) of a poset P . This
parameter was introduced by Felsner and Reuter in [4], and it is defined as the diam-
eter of the corresponding graph of linear extensions:

led(P) = diam(G(P)) = max
L,M∈V (G(P))

d(L,M).

Corollary 5.3. Let P be a poset with subposets P1, . . . , Pm, such that every
incomparable pair of P is contained in exactly one Pi. Then the following inequality
holds:

led(P) ≤
m∑

i=1

led(Pi).(5.1)

Proof. The following is an easy consequence of Theorem 5.1:

led(P) = diam(G(P)) ≤ diam
(

m∏

i=1

G(Pi)

)
=

m∑

i=1

diam(G(Pi)) =

m∑

i=1

led(Pi).

368 MICHAEL NAATZ

When we again choose the Pi to be the incomparable pairs of P , this corollary
yields the inequality

led(P) ≤ inc(P),(5.2)

which is already known from [4]. Felsner and Reuter also prove that equality holds
in (5.2) if and only if P is at most 2-dimensional. This means that if we choose at least
one Pi with higher dimension, the bound from Corollary 5.3 will be better than (5.2).
In fact, the following example shows that a poset need not have dimension 1 or 2
for (5.1) to be sharp. The poset Q depicted in Figure 5.1 has dimension 3 because
deleting element 1 results in a well-known 3-dimensional poset C called the chevron,
and it is not hard to find a realizer of Q with three elements.

Q

5

7

S4

6

43

2

1

Fig. 5.1. Two examples illustrating Corollary 5.3.

From [4] we know that deleting an element p of a poset P makes the linear-
extension-diameter drop by at most the number of elements that are incomparable
to p. In our example Q, there is just one element incomparable to 1, hence led(C) ≥
led(Q)−1. Also in [4], led(C) is shown to be 6, hence led(Q) can be at most 7. Indeed
the linear extensions 1235647 and 5124736 have distance 7, so led(Q) = 7. If we define
Q15 to be the subposet of Q induced be the elements 1 and 5, every incomparable
pair of P is contained either in Q15 or in C. In this situation, Corollary 5.3 yields
led(Q) ≤ led(C) + led(Q15) = 6 + 1 = 7, which is sharp. The same goes for the
following inequality, which is deduced by Felsner and Reuter as an improved version
of (5.2):

led(P) ≤ inc(P)− (dim(P)− 2).(5.3)

In general, the inequalities (5.1) and (5.3) do not necessarily produce the same bound,
and none of them is in general better than the other. While sometimes our new
bound performs much worse than (5.3)—try it, e.g., on the standard example Sn (see
Figure 5.1 for S4, and [18, p. 12] for the general definition)—there are also cases in
which it is more precise. An easy example is the series-composition S of 3-dimensional
posets P1, . . . Pm. In this situation, led(S) is just the sum of the linear-extension-
diameters of the individual Pi (see [4]), hence inequality (5.1) is sharp. But it is
easily verified that dim(S) = 3, which means that (5.3) yields the following bound:

inc(S)− (dim(S)− 2) =
m∑

i=1

inc(Pi)− 1 ≥
m∑

i=1

(led(Pi) + 1)− 1 = led(S) +m− 1.

THE GRAPH OF LINEAR EXTENSIONS REVISITED 369

Hence the gap between the two bounds can be arbitrarily large. It is not too difficult
to construct other examples using the same basic idea.

Acknowledgments. The author thanks his supervisor Klaus Reuter for intro-
ducing him to the subject and providing the encouragement that made the diploma
thesis [9] possible. The material in this article is taken from this thesis (with the
exception of some improvements, mainly those in section 3). The author is grateful to
Ekkehard Köhler whose suggestions greatly improved the presentation of the results.

REFERENCES

[1] A. Björner and M. L. Wachs, Permutation statistics and linear extensions of posets, J.
Combin. Theory Ser. A, 58 (1991), pp. 85–114.

[2] M. M. Deza and M. Laurent, Geometry of Cuts and Metrics, Springer-Verlag, Berlin, Hei-
delberg, New York, 1997.

[3] R. Diestel, Graph Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1997.
[4] S. Felsner and K. Reuter, The linear-extension-diameter of a poset, SIAM J. Discrete Math.,

12 (1999), pp. 360–373.
[5] H. Fleischner, On spanning subgraphs of a connected bridgeless graph and their applications,

J. Combin. Theory Ser. B, 16 (1974), pp. 17–28.
[6] H. Fleischner, The square of every two-connected graph is hamiltonian, J. Combin. Theory

Ser. B, 16 (1974), pp. 29–34.
[7] X. Li, The connectivity of path graphs, in Combinatorics, Graph Theory and Algorithms,

Y. Alavi, D. R. Lick, and J. Liu, eds., World Scientific, River Edge, NJ, 1994, pp. 187–192.
[8] R. H. Möhring, Computationally tractable classes of ordered sets, in Algorithms and Order,

I. Rival, ed., NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 255, Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1989.

[9] M. Naatz, Der Graph der linearen Erweiterungen einer geordneten Menge, diploma thesis,
Mathematisches Seminar der Universität Hamburg, Germany, 1998.

[10] G. Pruesse and F. Ruskey, Generating the linear extensions of certain posets by transposi-
tions, SIAM J. Discrete Math., 4 (1991), pp. 413–422.

[11] G. Pruesse and F. Ruskey, Generating linear extensions fast, SIAM J. Comput., 23 (1994),
pp. 373–386.

[12] K. Reuter, The comparability graph and the graph of linear extensions of a poset, Preprint
Hamburger Beiträge zur Mathematik, Heft 57 (1996).

[13] K. Reuter, Linear extensions of a poset as abstract convex sets, Preprint Hamburger Beiträge
zur Mathematik, Heft 56 (1996).

[14] S. Řiha, A new proof of the theorem by Fleischner, J. Combin. Theory Ser. B, 52 (1991),
pp. 117–123.

[15] F. Ruskey and C. Savage, Hamilton cycles that extend transposition matchings in Cayley
graphs of Sn, SIAM J. Discrete Math., 6 (1993), pp. 152–166.

[16] C. D. Savage and C.-Q. Zhang, A note on the connectivity of acyclic orientation graphs,
Discrete Math., 184 (1998), pp. 281–287.

[17] G. Stachowiak, Hamilton paths in graphs of linear extensions for unions of posets, SIAM J.
Discrete Math., 5 (1992), pp. 199–206.

[18] W. T. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory, Johns Hop-
kins Series in the Mathematical Sciences, The Johns Hopkins University Press, Baltimore,
1992.

[19] D. B. West, Generating linear extensions by adjacent transpositions, J. Combin. Theory Ser.
B, 58 (1993), pp. 58–64.

THE ONLINE TRANSPORTATION PROBLEM∗

BALA KALYANASUNDARAM† AND KIRK R. PRUHS†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 3, pp. 370–383

Abstract. We study the online transportation problem under the assumption that the adversary
has only half as many servers at each site as the online algorithm. We show that the Greedy
algorithm is Θ(min(m, lgC))-competitive under this assumption, where m is the number of server
sites and C is the total number of servers. We then present an algorithm Balance, which is a simple
modification of the Greedy algorithm, that is, O(1)-competitive under this assumption.

Key words. online algorithms, matching, competitive analysis

AMS subject classifications. 05C85, 05D15, 68R10

PII. S0895480198342310

1. Introduction. We consider the natural online version of the well-known
transportation problem [4, 6]. The initial setting consists of a collection S = {s1, . . . ,
sm} of server sites in a metric space M. Each server site sj has a positive integral
capacity cj . The online algorithm knows the servers sites and the capacities a priori.
The online algorithm A sees over time a sequence R = {r1, . . . rn} of requests for
service, with each request being a point in M. Note that we assume that n is at
most the aggregate server capacities. In response to the request ri, A must select
a site sσ(i) to service ri. The cost for this assignment is the distance d(sσ(i), ri) in
the metric space between sσ(i) and ri. Each site sj can service at most cj requests.
The dilemma faced by the online algorithm A is that, at the time of the request ri,
A is not aware of the location of the future requests. The objective function is to
minimize 1

n

∑n
i=1 d(sσ(i), ri), the average cost to service the requests. Note that this

is equivalent to minimizing the total cost
∑n
i=1 d(sσ(i), ri).

For concreteness, consider the following two examples of online transportation
problems. In the fire station problem, the site sj is a fire station that contains cj fire
crews. Each request is a fire that must be handled by a fire crew. The problem is to
assign the crews to the fire so as to minimize the average distance traveled to get to
a fire. In the school assignment problem, the site sj is a school that has a capacity of
cj students. Each request is a new student who moves into the school district. The
problem is to assign the children to a school so as to minimize the average distance
traveled by the children to reach their schools.

The standard measure of “goodness” of an online algorithm is the competitive
ratio. For the online transportation problem, the competitive ratio for an online
algorithm A is the supremum over all possible instances I, of A(I)/OPT (I), where
A(I) is the total cost of the assignment made by A and OPT (I) is the total cost
of the minimum cost assignment for instance I. Note that as we are considering a
finite problem, it does not make sense to allow an additive constant in the definition
of competitive ratio that is used for infinite problems (see [1]). The standard way to

∗Received by the editors July 24, 1998; accepted for publication (in revised form) February 28,
2000; published electronically May 26, 2000. A preliminary version of this paper appeared in the
Proceedings of the 1995 European Symposium on Algorithms. The research of the first author was
supported in part by NSF under grant CCR-9202158. The research of the second author was sup-
ported in part by NSF under grant CCR-9209283.

http://www.siam.org/journals/sidma/13-3/34231.html
†Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260 (kalyan@cs.

pitt.edu, kirk@cs.pitt.edu).

370

THE ONLINE TRANSPORTATION PROBLEM 371

interpret the competitive ratio is as a payoff of a game played by the online algorithm
A against an all-powerful adversary that specifies the requests and services them in
the optimal way. Note that the instance I specifies the metric space as well as the
values of each sj , cj , and ri.

In [3, 5] the online assignment problem, a special case of online transportation in
which each capacity ci = 1, was studied. In [3], it was shown that the competitive
ratio of the intuitively appealing greedy algorithm, which assigns the nearest available
server site to the new request, has a competitive ratio of 2m − 1. In [3, 5], it was
shown that the optimal deterministic competitive ratio is 2m−1. The algorithm that
achieves this competitive ratio requires a shortest augmenting path computation for
each request. These results illustrate some shortfalls of using competitive analysis,
namely:

• The achievable competitive ratios often grow quickly with input size, and
thus do not reflect the performance on “normal” inputs.
• The algorithm that achieves the optimal competitive ratio is often unneces-
sarily complicated for “normal” inputs.
• The poor competitive ratio of an intuitive greedy algorithm may not reflect
the fact that it may perform reasonably well on “normal” inputs.

In situations where competitive analysis suffers such shortcomings, it is important
to find alternate ways to identify online algorithms that would work well in practice.
In this paper, we adopt a modified version of competitive analysis called the resource
augmentation model. Generally speaking, in this model the online algorithm is given
slightly more resources than the adversary. For “normal” inputs, one might expect
that the performance of an offline algorithm would not degrade significantly if its
resources were slightly reduced. Hence, if we can prove that an online algorithm is
competitive against an adversary with slightly less resources, then one might argue
that the online algorithm will be competitive against an equivalently equipped offline
algorithm on “normal” inputs. One can also view this augmentation as measuring
the additional resources required by the online algorithm to offset the decrease in
performance due to the online nature of the problem.

In the case of the transportation problem we compare the online algorithm with
ci servers at si to an offline line algorithm with ai = ci/2 servers at si (we assume that
ci is even). Given an instance I of the online transportation problem with n requests,
n ≤∑m

i=1 ai, we let I
′ be the same instance with each capacity ci replaced by ai. We

then say the double-competitive ratio of an online algorithm A is the supremum over
all instances I, with n ≤ ∑m

i=1 ai requests, of the ratio A(I)/OPT (I ′). We assume
that the online algorithm has twice as many servers as the adversary because this is
the least advantage that we can give to the online algorithm without annulling our
analysis techniques.

In this paper we present the following results. In section 3, we show that the
double-competitive ratio of the greedy algorithm is Θ(min(m, lgC)), where C =∑m
i=1 ci is the sum of the capacities. If the server capacity of each site is constant,

then the double-competitive ratio is logarithmic in m, a significant improvement over
the exponential bound on the traditional competitive ratio. In section 4, we describe
the algorithm Balance, which is a simple modification of the greedy algorithm, and
has a double-competitive ratio that is O(1). Recall that the traditional competitive
ratio of every deterministic online algorithm is Ω(m).

We now summarize related results. The resource augmentation model was in-
troduced in [8] in the context of studying paging. This model has also been used to

372 BALA KALYANASUNDARAM AND KIRK R. PRUHS

study variants of the k-server problem, a generalization of the paging problem (see,
for example, [10]). References to other suggested variants of competitive analysis can
be found in [1, 2]. Further, ancillary results on online assignment, which are not
directly related to the results in this paper, can be found in [3]. In [9], the average
competitive ratio for the greedy algorithm in the online assignment problem is studied
under the assumption that the metric space is the Euclidean plane and the points are
uniformly distributed in a unit square. The offline transportation problem can be
solved in polynomial time [4, 6].

2. Preliminaries. In this section we introduce some definitions, facts, and con-
cepts that are common to the remaining sections. We generally begin by assuming
the simplifying condition that the online capacity ci of each server site is two. We will
think of si as containing two online servers s

1
i and s

2
i that move to service requests.

We also think of si as containing one adversary server s
a
i . We assume, without loss

of generality, that the adversary services request ri with s
a
i . We use sσ(i) to denote

the site that the online algorithm uses to service request ri. We define a weighted
bipartite graph G = (S ∪ R,E), which we call the response graph, by including an
online edge (ri, sσ(i)), and an adversary edge (ri, si) for each request ri. The weight of
each edge (ri, sj) in G is the distance d(ri, sj) between the ri and sj in the underlying
metric space. In Figure 1, the online edges are the solid edges, the adversary edges
are the dashed edges, the server sites are the filled circles, and the requests are the
question marks. The notation shown in Figure 1 will be used throughout this paper.

?

? ?

??

? ?

? ?? ? ???

ri

sira
r
b

sa sb

rc

sc

r

s

r r

ss

d

d

e

e

f

f

Fig. 1. An example connected component of the response graph.

Lemma 1. Assume ri is a request vertex that is in a cycle in G. Let T be the
connected component of G − (sσ(i), ri) that contains ri. Then T is a tree.

Proof. Consider a breadth first search of T starting from ri. Such a search divides
T into levels L1, . . . , Lb, where the vertices in level Lk are k hops from ri. The vertices
in the odd levels are server vertices, and the vertices in even levels are request vertices.
Edges that go from an even level to an odd level are adversary edges, and edges that
go from an odd level to an even level are online edges. Assume in order to reach a
contradiction that C is a cycle in T . Recall that we measure height from the root
and the root is at level L1. Let y be the vertex in C that is in the highest level Lc
(i.e., largest c), and let x and z be the two vertices adjacent to y in C. Note that it
may be the case that x = z. We now argue that x and z are in Lc−1. If x (or z) is
in Lc+1, we get a contradiction to the choice of c. On the other hand, if x (or z) is
in Lc−j where j > 1, we get a contradiction to the level definition of y. Finally, if x
(or z) is in Lc, then we get a contradiction to the bipartiteness of G. If c is odd, then

THE ONLINE TRANSPORTATION PROBLEM 373

we get a contradiction to the fact that the adversary has only one server per site. If
c is even, we get a contradiction to the fact that the online algorithm uses only one
server to service each request.

Let T be a tree as described in Lemma 1. If we root the tree T at ri, then T
has the following structure. For each request rj ∈ T , the one child of rj is sj . If rj is
not the root, then the server site sσ(i) is the parent of rj in T . The leaves of T are
server sites with no incident online edges. We denote the total cost of the adversary
edges in a tree T by OPT (T), that is, OPT (T) = ∑(ri,si)∈T d(ri, si). Analogously,
we define ON(T) = ∑

ri∈T d(ri, sσ(i)). Note that ON(T) includes the cost of the
online edge incident to the root of T , even though this edge is not in T . For a vertex
x ∈ T , we define the leaf distance ld(x) to be the minimum over all leaves sj in T of
the distance between x and sj . If a server at site sj servicing the root ri of T is not a
node in T , then we define ld(sj) = d(sj , ri) + ld(ri); we make this definition so that
such an sj need not be considered as a special case in our proofs. If x is a node in T ,
we define T (x) to be the subtree of T rooted at x. Intuitively, the leaf distance gives
us an upper bound on the greedy cost to service a request since a server at the leaf is
available to service the request.

In this paper, lg means the logarithm base 2.

3. Analysis of the Greedy algorithm. We begin with the upper bound on
the competitive ratio for the algorithm Greedy, which uses the nearest available
server to service each request. We first assume that the online capacity of each server
site is two and then show how to extend this to the general case of an arbitrary number
of servers per site. This extension does not immediately follow by breaking a site into
many sites, with two servers per site, since our bounds are in terms of the number of
sites.

Theorem 2. The double-competitive ratio of Greedy for online transportation,
with m ≥ 2 sites and two online servers per site, is at most 2 lgm.

In order to prove this theorem, we will divide the response graph G into edge
disjoint rooted trees, T 1, . . . , T l. For each such tree, we will establish the competitive
bound independently.

Our construction yields trees (T j ’s) that satisfy the following tree invariants:
(1) Each nonleaf server site si in T j has two incident online edges in T j .
(2) Each leaf of T j is a server site that had an unused server at the time of each

request in T j .
We use the following iterative procedure to construct the trees.
Tree construction procedure. Assume that trees T 1, . . . , T j−1 have been

constructed. We explain how to construct T j in our next iteration. During this
construction we will modify G. The root of T j is the latest request rα(j) not included
in a previous tree T 1, . . . , T j−1. The online edge incident to rα(j) is removed from G.
Let Lj be the collection of server vertices si such that si is reachable from rα(j) and
si currently has at most one incident online edge in G. Note that an si ∈ Lj might
have originally had two incident online edges if one or both of these edge lead to the
root of one of the trees T 1, . . . , T j . Now let T j be the tree induced by the edges on
paths in G from rα(j) to the server vertices in Lj . Note that by Lemma 1 there is a
unique path from rα(j) to each vertex in Lj . The edges and request vertices in T j
are then removed from G, and we proceed to our next iteration to construct T j+1 if
G still contains edges.

Lemma 3. Each tree T j satisfies the two tree invariants.
Proof. Observe that each vertex in Lj is a leaf server site that has at most one

374 BALA KALYANASUNDARAM AND KIRK R. PRUHS

incident online edge in T j . Therefore, by the definition of Lj , all other server sites
in T j have two incident online edges each. Suppose that the second invariant is not
satisfied for a server site si ∈ Lj . First observe that there are two online edges incident
on si in the original G. Now observe that at least one of these two online edges must
be incident on the root of one the trees T 1, . . . , T j . Otherwise, either si ∈ Lj or si
would be part of one of the trees T 1, . . . , T j−1. We now get a contradiction since the
request nodes at the root of T 1, . . . , T j appear later than any other request nodes in
T j .

3.1. Analysis of a tree. We first provide some intuition. We establish in
Lemma 4 that the cost of a greedy edge is at most twice the cost of the adversaries’
edges in the subtree below this greedy edge of minimum cost. Hence, intuitively the
worst case is when these two subtrees are identical and the tree is then balanced. In
this case we can conclude that the sum of the costs of the greedy edges in any one
level of the tree is at most OPT . The logarithmic bound on the double-competitive
ratio follows since a balanced tree has logarithmic depth. In the general case of an
arbitrary tree, the first tree invariant allows us to inductively establish our desired
bound.

We now fix a particular tree, say T = T j , and for simplicity drop the j superscript.
Lemma 4. For each request ri ∈ T ,

d(sσ(i), ri) ≤ ld(ri) ≤ OPT (T (ri))
and

ld(ri) ≤ d(ri, si) + 2 ·min[OPT (T (ra)), OPT (T (rb))],(1)

where ra and rb are children, if both exist, of si in T .
Proof. The proof is by induction on the number k of request nodes in the induced

tree T (ri). If k = 1, then the child si of ri is a leaf and T (ri) consists of one
adversary edge (ri, si) with d(ri, si) = ld(ri) = OPT (T (ri)). Applying the second
tree invariant property and the definition of Greedy, we have that d(sσ(i), ri) ≤
d(si, ri) = OPT (T (ri)).

Now suppose k > 1. Therefore, si is not a leaf. Applying the first property of
the tree invariant, si has two children in T (ri), say ra and rb (see Figure 1). By
induction, it must be the case that ld(ra) ≤ OPT (T (ra)), d(si, ra) ≤ OPT (T (ra)),
ld(rb) ≤ OPT (T (rb)), and d(si, rb) ≤ OPT (T (rb)). Therefore, by induction and the
triangle inequality,

ld(ri) ≤ d(ri, si) + min[d(si, ra) + ld(ra), d(si, rb) + ld(rb)]
≤ d(ri, si) + min[d(si, ra) +OPT (T (ra)), d(si, rb) +OPT (T (rb))]
≤ d(ri, si) + min[2 ·OPT (T (ra)), 2 ·OPT (T (rb))]
≤ d(ri, si) +OPT (T (ra)) +OPT (T (rb))
= OPT (T (ri)).

Finally, observe that the algorithm Greedy would only assign sσ(i) to ri if
d(sσ(i), ri) ≤ ld(ri).

Lemma 5. Let ri be a request in T , and let k be the number of request vertices
in T (ri). Then ON(T (ri)) ≤ 2 ·max(1, lg k) ·OPT (T (ri)).

Proof. The proof is by induction on k. Observe that, according to our tree
construction, each server node has either two children or none. Therefore, k must be
odd.

THE ONLINE TRANSPORTATION PROBLEM 375

For k = 1, ON(T (ri)) = d(sσ(i), ri), which is less than OPT (T (ri)) = d(ri, si) by
the definition of Greedy.

Now consider the case k = 3. Let the two children of si in T (ri) be ra and rb.
Note that

ON(T (ri)) = d(sσ(i), ri) + d(si, ra) + d(si, rb)

and that

OPT (T (ri)) = d(ri, si) + d(sa, ra) + d(sb, rb).

By the definition ofGreedy, d(si, ra) ≤ d(sa, ra) and d(si, rb) ≤ d(sb, rb). By Lemma
4, d(sσ(i), ri) ≤ OPT (T (ri)). Hence, by substitution,

ON(T (ri)) ≤ OPT (T (ri)) + d(sa, ra) + d(sb, rb) ≤ 2 ·OPT (T (ri)).

Now consider the case k > 3. Once again let the two children of si in T (ri) be ra
and rb. Notice that ON(T (ri)) = ON(T (ra)) +ON(T (rb)) + d(sσ(i), ri). By (1),

d(sσ(i), ri) ≤ d(ri, si) + 2 ·min[OPT (T (ra)), OPT (T (rb))].

Hence,

ON(T (ri)) ≤ ON(T (ra)) +ON(T (rb))
+ d(ri, si) + 2 ·min[OPT (T (ra)), OPT (T (rb))].(2)

Assume, without loss of generality, that OPT (T (ra)) ≤ OPT (T (rb)). Let w =
OPT (T (ra)) + OPT (T (rb)) and x = OPT (T (ra)). Hence, x ≤ w/2. Also let y
be the number of request nodes in T (ra). We now break the proof into cases.

In the first case, we assume that both T (ra) and T (rb) consist of more than one
request vertex. By first applying the tree invariant property, we find that sa and sb
cannot be leaf server sites of T , since otherwise at least one of T (ra) or T (rb) will
contain only one request vertex. Since sa and sb are not leaf server nodes, both must
have two request children each, and thus the number of request vertices in each of
T (ra) and T (rb) is at least 3. Hence, 3 ≤ y ≤ k−4. By induction ON(T (ra)) ≤ 2x lg y
and ON(T (rb)) ≤ 2(w − x) lg(k − 1− y). Hence, by substituting into (2) we get

ON(T (ri)) ≤ 2x lg y + 2(w − x) lg(k − 1− y) + 2x+ d(ri, si).

Since OPT (T (ri)) = w+d(ri, si), in order to show ON(T (ri)) ≤ 2 lg k ·OPT (T (ri)),
it is sufficient to show

2x lg y + 2(w − x) lg(k − 1− y) + 2x+ d(ri, si) ≤ 2(w + d(ri, si)) lg k.

In turn it is sufficient to show that

x lg y + (w − x) lg(k − 1− y) + x ≤ w lg k.(3)

Let f(x, y) = x lg y+ (w− x) lg(k− 1− y) + x be the left-hand side of this inequality.
Notice that f(x, y) is linear in x. Hence, the maximum of f(x, y) must occur at the
boundary, that is, at the point x = 0 or the point x = w/2. Inequality (3) follows
immediately for x = 0. For x = w/2 we have to find the value of y that maximizes

376 BALA KALYANASUNDARAM AND KIRK R. PRUHS

f(w/2, y) = (w/2)(lg y + lg(k − 1 − y) + 1). Applying the concavity of logarithm
function, we know that [lg a+ lg b]/2 ≤ lg[(a+ b)/2]. We find that

max
y
f(w/2, y) ≤ 2w

2

(
lg
k − 1
2

)
+
w

2
≤ w

(
lg
k − 1
2

+ 1

)
≤ w lg k,

which by algebraic simplification is equivalent to lg(k − 1) ≤ lg k.
We now consider the case that T (ra) contains only one request. So y = 1.

By induction ON(T (ra)) ≤ 2x and ON(T (rb)) ≤ 2(w − x) lg(k − 2). Hence, by
substituting into (2) we get

ON(T (ri)) ≤ 2x+ 2(w − x) lg(k − 2) + 2x+ d(ri, si).
In order to show that ON(T (ri)) ≤ 2 lg k ·OPT (T (ri)) it is sufficient to show

2x+ 2(w − x) lg(k − 2) + 2x ≤ 2w lg k.
Since the left-hand side is linear in x, we need consider only x = 0 and x = w/2. The
case x = 0 follows immediately. If x = w/2 we are left with showing (w/2) lg(k−2)+
w ≤ w lg k. This is equivalent to lg(2√k − 2) ≤ lg k, or (2√k − 2) ≤ k, which one can
verify holds for k ≥ 3.

We now consider the case that T (rb) contains only one request. So y = k − 2.
By induction ON(T (ra)) ≤ 2x lg(k − 2) and ON(T (rb)) ≤ 2(w − x). Hence, by
substituting into (2) we get

ON(T (ri)) ≤ 2x lg(k − 2) + 2(w − x) + 2x+ d(ri, si).
In order to show that ON(T (ri)) ≤ 2 lg k ·OPT (T (ri)) it is sufficient to show that

x lg(k − 2) + (w − x) + x ≤ w lg k.
Since the left-hand side is linear in x, one need only verify that the inequality holds
at the boundaries x = 0 and x = w/2.

3.1.1. The general case.
Proof of Theorem 2. When we apply Lemma 5 to each tree T i, we get the desired

result.
We now extend the result to the case that the online capacities are larger than

two. Recall that C =
∑m
i=1 ci is the total online capacity.

Theorem 6. The double-competitive ratio of Greedy for online transportation
is O(min(m, lgC)).

Proof. The upper bound of O(lgC) is immediate by Theorem 2 if we conceptually
split a server site with ci online servers into ci/2 sites with 2 arbitrary online servers
and 1 arbitrary adversary server.

To see the O(m) bound we need to be more careful about how we distribute
the server sites among various trees. Assume that the tree construction procedure
just constructed a tree T k. We perform some pruning of T k, if necessary, before we
proceed to construct T k+1. If no root-to-leaf path in T k passes through two server
sites that are at the same location, then the number of vertices in T k is O(2m). Hence,
the O(m) bound follows from Lemma 5.

If T k contains root-to-leaf paths that pass through two server sites that are at
the same location, we show how to modify T k to remove such paths. Assume that

THE ONLINE TRANSPORTATION PROBLEM 377

T k contains a root-to-leaf path that first passes through si and then passes through
sj , where si and sj are at the same location. We modify T k by making server vertex
sj the child of ri in T k. See Figure 2. Note that may remove edges and vertices
originally below si from T k. We repeat this process until T k has no root-to-leaf path
passing through two server sites at the same location. Notice that the resulting tree
T k still satisfies the tree invariants. Now we start the construction of T k+1.

ri r i

s
i

sj

sj

Fig. 2. The original T k on the left and the new T k on the right.

We now prove an asymptotically matching lower bound for the double-competitive
ratio for Greedy.

Theorem 7. The double-competitive ratio of Greedy for the transportation
problem is Ω(min(m, lgC)).

Proof. We embed m server sites on the real line. The server site s1 is located
at the point −1. The server site si (2 ≤ i ≤ m) is located at 2i−1 − 1. The online
algorithm has ci = 2m−i+1 servers at si, while the adversary has ai = 2m−i servers
at si. Thus, the online algorithm has a total of C = 2m+1 − 2 servers, while the
adversary has a total of A = 2m − 1 servers. The requests occur in m batches. The
first batch consists of 2m−1 requests at the point 0. The ith batch (2 ≤ i ≤ m)
contains 2m−i requests that occur at 2i−1 − 1, the location of si. Greedy responds
to batch i (i < m) by answering each request in batch i with a server at site si+1,
thus depleting site si+1. Greedy responds to the mth batch by moving one server
from s1. Thus, the total online cost is m2

m−1. By using the servers in si to handle
batch i (1 ≤ i ≤ m) it is possible to obtain a total cost of 2m−1.

4. The algorithm Balance. In this section we present an algorithm, Bal-
ance, with a double-competitive ratio of O(1).

Algorithm Balance. At each site sh we classify half of the servers as primary
and half of the servers as secondary. Let c > 5 + 4

√
2 be some constant. Define the

pseudodistance from a request ri to a primary server at site sj to be d(sj , ri) and the
pseudodistance from ri to a secondary server at site sj to be c · d(sj , ri). Balance
services each request ri with an arbitrary server with minimal pseudodistance from
ri.

Now our goal is to show that the double-competitive ratio of Balance for on-
line transportation, with two online servers per site, is O(1). First we break the
response graph G into disjoint trees. Let C1, . . . , Cl be the connected components of
the response graph G. By Lemma 1 each connected component of the response graph
contains a unique cycle. Let rα(i) be the latest request in the cycle in Ci. Let T i be
the tree that is Ci minus the online edge incident to rα(i). We set the root of T i to
be rα(i). Each such tree T i satisfies the following two tree invariants.

(1) Each nonleaf server site sj ∈ T i, with one incident online edge in T i, had the
secondary server available just before the time of each request rh ∈ T j .

378 BALA KALYANASUNDARAM AND KIRK R. PRUHS

(2) Each leaf of T i is a server site sj that had both of its servers available just
before the time of each request in T i.

We now fix a particular tree, say T = T i, and for simplicity drop the superscript i.
In order to show that the double-competitive ratio of Balance is O(1), it is sufficient
to show that ON(T) = O(OPT (T)).

We first provide some intuition. The fact that nonleaf server sites in T may only
have one incident online edge motivates us to partition the Balance edges into two
groups, local edges and global edges. The cost of local edges are amortized against
OPT edges that are at most a constant number edges away in the tree (see Lemma 18
and Lemma 19). Thus any OPT edge can be charged at most a constant number of
times. As a consequence, the total cost of the local edges is O(OPT). We then ignore
the local edges and consider only global edges. We show that the cost of the global
edges geometrically decreases level by level as we go up the tree (see Lemma 14 and
Lemma 16). Hence, we conclude that the cost of the global edges is O(OPT).

Definition 8. Let si be a generic server site in T . We say that the primary
server child sa of si is the server site that the adversary used to service the request
serviced by s1i , and the secondary server child sb of si is the server site that the
adversary used to service the request serviced by s2i . We say that sa and sb are the
server children of si. The server parent sσ(i) of si is the server site used by Balance
to service ri. The site si is a double if it has two server children, and otherwise si is
a single.

Lemma 9. If Balance uses a server at site sσ(i) to handle a request ri ∈ T ,
then

d(sσ(i), ri) ≤ d(ri, si) + ld(si)
and

ld(sσ(i)) ≤ 2(d(ri, si) + ld(si)).(4)

Proof. Observe that there is a path in T from ri to some leaf sk with total length
at most d(ri, si) + ld(si). If sσ(i) = sk, then d(sσ(i), ri) ≤ d(ri, si) + ld(si) since
Balance didn’t use sk to service ri. If sσ(i) = sk, then d(sσ(i), ri) ≤ d(ri, si)+ ld(si)
by the triangle inequality. Now

ld(sσ(i)) ≤ d(sσ(i), ri) + d(si, ri) + ld(si) ≤ 2(d(ri, si) + ld(si)).
Lemma 10. Assume that Balance uses a secondary server s2σ(i) to handle a

request ri ∈ T that is not the root of T . Then
d(sσ(i), ri) ≤ (1/c)(d(ri, si) + ld(si))

and

ld(sσ(i)) ≤ (1 + 1/c)(d(ri, si) + ld(si)).
Proof. Observe that there is a path in T from ri to some leaf sk with total length

at most d(ri, si) + ld(si). Then d(sσ(i), ri) ≤ (1/c)(d(ri, si) + ld(si)) since Balance
didn’t use the primary server at sk to service ri. Now

ld(sσ(i)) ≤ d(sσ(i), ri) + d(si, ri) + ld(si) ≤ (1 + 1/c)(d(ri, si) + ld(si)).

Definition 11. We let γ = 2c+2
3c+1 .

THE ONLINE TRANSPORTATION PROBLEM 379

Observation 12. For our choice of c > 5 + 4
√
2, we have γ ≤ 2γ2 < 1.

Fact 13. For all nonnegative reals x and y, and for all c > 1, min(2x, (1 +
1/c)y) ≤ γ(x+ y).

Proof. Suppose 2x ≥ (1+1/c)y. It suffices to show that min(2x, (1+1/c)y) = (1+
1/c)y ≤ γ(1

2 (1+1/c)y+y). Simple algebra shows that (1+1/c)y = γ(
1
2 (1+1/c)y+y).

On the other hand, suppose 2x < (1+1/c)y. It suffices to show that min(2x, (1+
1/c)y) = 2x ≤ γ(x+ 2c

c+1x). Simple algebra shows that 2x = γ(x+
2c
c+1x).

Lemma 14. Assume that si is a double server site with server children sa and
sb. Then

ld(si) ≤ γ(d(ra, sa) + d(rb, sb) + ld(sa) + ld(sb)).(5)

Proof. Note that ld(si) ≤ 2(d(ra, sa) + ld(sa)) by Lemma 9, and that ld(si) ≤
(1+1/c)(d(rb, sb)+ ld(sb)) by Lemma 10. The lemma then follows by Fact 13.

Definition 15. A server site si is local if either si is a single or one of si’s
server children is a single. Otherwise, si is global. For convenience, we call a request
ri local if si is local. Otherwise ri is global. For a server site si we use z(sσ(i)) to
denote d(si, ri) + d(sa, ra) + d(sb, rb).

We now break the accounting of the online edges in T into cases. We first show
that for every local server si, the cost for Balance to serve ri is O(z(sσ(i))).

Lemma 16.

∑

local ri

d(sσ(i), ri) ≤ (c2 + 2c)OPT (T).

Further, for each parent server sσ(i) of a local server si,

ld(sσ(i)) ≤ (c2 + c)z(sσ(i)) + ld(si).(6)

Proof. We break the proof into two cases. In the first case assume that si is a
single. It must be the case that d(sσ(i), ri) ≤ c · d(ri, si) since Balance didn’t use a
server at si to handle ri. Hence,

∑

single local si

d(sσ(i), ri) ≤ c
∑

single local si

d(si, ri) ≤ c ·OPT (T).

Further,

ld(sσ(i)) ≤ (c+ 1)d(si, ri) + ld(si).

In the second case assume that si is double, and one of si’s server children is a
single. For simplicity assume that sa is a single; one can verify that the following
argument also holds if sb is a single. Since sa is a single we can apply the analysis
from the previous case to get that d(si, ra) ≤ c · d(ra, sa). Since Balance serviced ri
with a server at sσ(i) instead of the unused server at sa we get that

d(sσ(i), ri) ≤ c · d(sa, ri) ≤ c [d(si, ri) + d(si, ra) + d(sa, ra)] .

Hence, by substitution,

d(sσ(i), ri) ≤ c · d(ri, si) + (c2 + c)d(ra, sa).(7)

380 BALA KALYANASUNDARAM AND KIRK R. PRUHS

Thus,

∑

double local si

d(sσ(i), ri) ≤ c
∑

double local si

d(ri, si)

+ (c2 + c)
∑

double local si

d(ra, sa)

≤ (c2 + 2c)OPT (T).

Furthermore,

ld(sσ(i)) ≤ d(sσ(i), ri) + d(ri, si) + ld(si)

≤ (c+ 1)d(ri, si) + (c2 + c)d(sa, ra) + ld(si).

The result follows.
Now we consider the online cost of servicing the global ri’s. Observe that by

Lemma 9 it is the case that

∑

global ri∈T
d(sσ(i), ri) ≤

∑

global ri∈T
[d(si, ri) + ld(si)] ≤ OPT (T) +

∑

global si∈T
ld(si).

We now will show that

∑

global si∈T
ld(si) = O(OPT (T)).

Definition 17. Let si be a global server site in T . We define S(si) to be the set
of global server sites in the subtree of T rooted at si with the property that, for any
server site sj ∈ S(si), there are no global server sites in the unique path from si to sj
in T . We define LC(si) to be the sum of the cost of the offline edges (sj , rj) in the
subtree rooted at si with the property that the unique path from si to rj in T does not
pass through a global server site.

To give an alternative explanation of LC(si), consider pruning T at the global
server vertices, which results in a collection of trees rooted at global server vertices.
Then LC(si) is the total cost of the offline edges in the tree rooted at si.

Lemma 18. For any global server site si,

ld(si) ≤ 2(c2 + c)LC(si) + 2γ2
∑

sj∈S(si)

ld(sj).

Proof. If the server children sa and sb of si are both global, then

ld(si) ≤ γ(d(ra, sa) + d(rb, sb)) + γ(ld(sa) + ld(sb)).

Hence, the result follows in this case since γ ≤ 2γ2 < 1.
Now assume that at least one server child of si, say, sa, is local. Note that sa and

sb must be a double, since si is global. Further, assume for the moment that sb of si
is global. Let sc and sd be the two server children of sa. Then using (5) we get that

ld(si) ≤ γ(d(ra, sa) + d(rb, sb)) + γld(sb)
+ γ2(d(rc, sc) + d(rd, sd)) + γ

2(ld(sc) + ld(sd)).

THE ONLINE TRANSPORTATION PROBLEM 381

In this case we continue to expand ld(sc) and ld(sd) using the general expansion
method described below. Now consider the case that both sa and sb are local. Let se
and sf be the server children of sb. Then using (5) we get that

ld(si) ≤ γ(d(ra, sa) + d(rb, sb))
+ γ2(d(rc, sc) + d(rd, sd) + d(re, se) + d(rf , sf))

+ γ2(ld(sc) + ld(sd) + ld(se) + ld(sf).

In this case we continue to expand ld(sc), ld(sd), ld(se), and ld(sf) using the general
expansion method described below.

We now describe the general expansion method. We expand each ld(sj) using (4)
and (6). A term of the form ld(sj) in the right-hand side of a recurrence relation is
replaced according to the following rules.

(1) If sj is a leaf in T , then ld(sj) is replaced by 0.
(2) If sj has a local server child sk, then ld(sj) is replaced by (c

2+c)z(sj)+ld(sk),
which is valid by (6). Observe that since sk is local it will be subsequently
expanded.

(3) If none of sj ’s server children are local, then ld(sj) is replaced by 2(d(rk, sk)+
ld(sk)), where sk is an arbitrary server child of sj . This is valid by (4). Note
that in this case the term ld(sk) is not replaced again since sk ∈ S(si).

The d(sx, rx) terms that appear in this general replacement process are all included
in LC(si). Hence, we get

ld(si) ≤ αLC(si) + β
∑

sj∈S(si)

ld(sj)

for some α and β. Since each offline edge appears in this general replacement process
at most twice, and in each case the coefficient is at most (c2 + c), we can conclude
that α ≤ 2(c2 + c). Note that in rule (2), the coefficient in front of the ld(sj) term
before the replacement process is the same as the coefficient in front of the ld(sk)
term after the replacement process. Since the coefficient in front of each ld term is
γ2 before the application of any of the general replacement rules, and the only way
that it can change is by application of rule (3), which is a terminal replacement rule,
each coefficient on an ld(sj) term when the general replacement process terminates is
at most 2γ2. The result follows.

Lemma 19. For the choice of c > 5 + 4
√
2 and consequently 2γ2 < 1,

∑

global si∈T
ld(si) ≤ 2(c2 + c)

1− 2γ2
OPT (T).

Proof. First observe that if si and sj are two different global server sites, then
there is no common offline cost in the sums LC(si) and LC(sj). As a consequence
we get

∑

global si∈T
LC(si) ≤ OPT (T).

Therefore, it suffices to show that

∑

global si∈T
ld(si) ≤ 2(c2 + c)

1− 2γ2

∑

global si∈T
LC(si).

382 BALA KALYANASUNDARAM AND KIRK R. PRUHS

Applying Lemma 18 we have that

∑

global si∈T
ld(si) ≤ 2(c2 + c)

∑

global si∈T
LC(si) +

∑

global si∈T
2γ2

∑

sj∈S(si)

ld(sj).

Since S(si) ∩ S(sj) = ∅ for i = j, we get that
∑

global si∈T
2γ2

∑

sj∈S(si)

ld(sj) ≤ 2γ2
∑

global si∈T
ld(si).

Now substituting back, we get

∑

global si∈T
ld(si) ≤ 2(c2 + c)

1− 2γ2

∑

global si∈T
LC(si).

The result follows.
Theorem 20. The double-competitive ratio of Balance, with two online servers

per site, in the online transportation problem is

(c+ 1)2 +
2c(c+ 1)

1− 2γ2
.

Proof. The total online cost is (c2+2c+1)OPT (T) from Lemma 16, plus OPT (T),
plus 2(c2+c)

1−2γ2 OPT (T) from Lemma 19.
We now assume an arbitrary number of online servers per site.
Theorem 21. The double-competitive ratio of Balance for the online trans-

portation problem is

(c+ 1)2 +
2c(c+ 1)

1− 2γ2
.

Proof. This follows immediately by conceptually splitting each server site si into
ci/2 sites.

5. Conclusion. We believe that there are two main contributions of this paper.
The first is that we give some evidence that greedy-like algorithms for the online trans-
portation problem may perform reasonably well in many circumstances. The second
is that these results support the hypothesis that resource augmentation analysis is a
useful algorithmic analysis technique. A survey of the many applications of resource
augmentation subsequent to this research can be found in [7].

The most obvious avenue for further investigation is to determine the competitive
ratio in the resource augmentation model when the adversary’s capacity is more than
half of the online capacity. It seems that some new techniques will be needed in this
case since the response graph no longer has the tree-like property from Lemma 1 that
was so critical in our proofs.

Acknowledgments. We thank the anonymous referees for many helpful com-
ments.

REFERENCES

[1] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge
University Press, Cambridge, UK, 1998.

THE ONLINE TRANSPORTATION PROBLEM 383

[2] A. Fiat and G. Woeginger, Competitive odds and ends, in On-Line Algorithms: The State
of the Art, A. Fiat and G. Woeginger, eds., Lecture Notes in Comput. Sci. 1442, Springer-
Verlag, New York, 1998, pp. 385–394.

[3] B. Kalyanasundaram and K. Pruhs, Online weighted matching, J. Algorithms, 14 (1993),
pp. 478–488.

[4] J. Kennington and R. Helgason, Algorithms for Network Programming, John Wiley, New
York, 1980.

[5] S. Khuller, S. Mitchell, and V. Vazirani, On-line algorithms for weighted matchings and
stable marriages, Theoret. Comput. Sci., 127 (1994), pp. 255–267.

[6] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Win-
ston, New York, Montreal, London, 1976.

[7] K. Pruhs, A Survey of Resource Augmentation Analysis, in preparation.
[8] D. Sleator and R. Tarjan, Amortized efficiency of list update and paging rules, Comm.

ACM, 28 (1985), pp. 202–208.
[9] Y. T. Tsai, C. Y. Tang, and Y. Y. Chen, Average performance of a greedy algorithm for the

on-line minimum matching problem on Euclidean space, Inform. Process. Lett., 51 (1994),
pp. 275–282.

[10] N. Young, The k-server dual and loose competitiveness for paging, Algorithmica, 11 (1994),
pp. 525–541.

BIN PACKING WITH DISCRETE ITEM SIZES, PART I: PERFECT
PACKING THEOREMS AND THE AVERAGE CASE BEHAVIOR OF

OPTIMAL PACKINGS∗

E. G. COFFMAN, JR.† , C. COURCOUBETIS‡ , M. R. GAREY§ , D. S. JOHNSON¶,
P. W. SHOR¶, R. R. WEBER‖, AND M. YANNAKAKIS§

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 3, pp. 384–402

Abstract. We consider the one-dimensional bin packing problem with unit-capacity bins and
item sizes chosen according to the discrete uniform distribution U{j, k}, 1 < j ≤ k, where each item
size in {1/k, 2/k, . . . , j/k} has probability 1/j of being chosen. Note that for fixed j, k as m → ∞
the discrete distributions U{mj,mk} approach the continuous distribution U(0, j/k], where the item
sizes are chosen uniformly from the interval (0, j/k]. We show that average-case behavior can differ
substantially between the two types of distributions. In particular, for all j, k with j < k − 1, there
exist on-line algorithms that have constant expected wasted space under U{j, k}, whereas no on-line
algorithm has even o(n1/2) expected waste under U(0, u] for any 0 < u ≤ 1. Our U{j, k} result is
an application of a general theorem of Courcoubetis and Weber [C. Courcoubetis and R.R. Weber,
Probab. Engrg. Inform. Sci., 4 (1990), pp. 447–460] that covers all discrete distributions. Under
each such distribution, the optimal expected waste for a random list of n items must be either
Θ(n), Θ(n1/2), or O(1), depending on whether certain “perfect” packings exist. The perfect packing
theorem needed for the U{j, k} distributions is an intriguing result of independent combinatorial
interest, and its proof is a cornerstone of the paper.

Key words. bin packing, on-line, average-case analysis, approximation algorithms

AMS subject classifications. 68W25, 68W40

PII. S0895480197325936

1. Introduction. Suppose one is given items of sizes 1, 2, 3, . . . , j, one of each
size, and is asked to pack them into bins of capacity k with as little wasted space as
possible, i.e., one is asked to find a least cardinality partition (packing) of the set of
items such that the sizes of the items in each block (bin) sum to at most k. For what
values of j and k can the set be packed perfectly (i.e., so that the sizes of the items in
each block sum to exactly k)? Clearly the sum of the item sizes must be divisible by k,
but what other conditions must be satisfied? Surprisingly, the divisibility constraint
is not only necessary but sufficient. Readers might want to try their hand at proving
this. Relatively short proofs exist, as illustrated in the next section, but a certain
ingenuity is required to find one. The exercise serves as a warm-up for the following
more general and more difficult theorem, also proved in the next section, in which
there are r copies of each size, for some r ≥ 1.

Theorem 1 (perfect packing theorem). For positive integers k, j, and r, with
k ≥ j, one can perfectly pack a list L consisting of rj items, r each of sizes 1 through
j, into bins of size k if and only if the sum of the rj item sizes is a multiple of k.

∗Received by the editors August 11, 1997; accepted for publication (in revised form) October 14,
1999; published electronically May 26, 2000.

http://www.siam.org/journals/sidma/13-3/32593.html
†New Jersey Institute of Technology, Newark, NJ 07102 (coffman@homer.njit.edu). The research

of this author was completed while at Bell Labs.
‡Department of Computer Science, Athens University of Economics and Business, Athens, Greece

(courcou@csi.forth.gr).
§Bell Labs, Murray Hill, NJ 07974 (mihalis@research.bell-labs.com). M.R. Garey is now retired.
¶AT&T Labs–Research, Florham Park, NJ 07932 (dsj@research.att.com, shor@research.att.com).
‖Statistical Laboratory, University of Cambridge, Cambridge CB2 1SB, UK

(R.R.Weber@statslab.cam.ac.uk).

384

PERFECT PACKING THEOREMS 385

In set-theoretic terms, the question answered by Theorem 1 is an intriguing puzzle
in pure combinatorics. But our motivation to work on it came from its relevance
to certain fundamental questions about the average-case analysis of algorithms. In
particular, consider the standard bin packing problem, in which one is given a list of
items L = (a1, a2, . . . , an), where each ai has a positive size si ≤ 1, and is asked to
find a packing of these items into a minimum number of unit-capacity bins. Clearly,
Theorem 1 can be cast in these terms by a simple rescaling.

In most real-world applications of bin packing, as in Theorem 1, the item sizes are
drawn from some finite set. However, the usual average-case analysis of bin packing
heuristics has assumed that item sizes are chosen according to continuous probability
distributions, which by their nature allow an uncountable number of possible item
sizes (see [1, 8], for example). The assumption of a continuous distribution has the
advantage of sometimes simplifying the analysis, and has been justified on the grounds
that continuous distributions should serve as reasonable approximations for discrete
ones. But there are reasons to ask whether this is actually true. For example, let
U(0, u] denote the continuous uniform distribution over the interval (0, u] and let
U{j, k} denote the discrete uniform distribution on the set {1/k, . . . , j/k}. Then the
limit of the distributions U{mj,mk}, as m → ∞ is U(0, j/k], but in the limit com-
binatorial questions such as those addressed by Theorem 1 evaporate. This suggests
that something important (and interesting) may in fact be lost in the transition from
discrete to continuous models. The results in this paper illustrate that, indeed, fun-
damental aspects of the average-case behavior of classical bin packing algorithms are
obscured by the continuous models.

To describe these results, we need the following notation. If A is an algorithm
and L is a list of items, then A(L) is the number of bins used when A is applied
to L, and s(L) is the sum of the item sizes in L. The waste in the packing of L
by A is denoted by WA(L) = A(L) − s(L). Note that this equals the sum of the
gaps in the bins used by A’s packing of L, where the gap in a bin containing items
of total size σ is 1 − σ. Let OPT(L) denote the length of an optimal packing; OPT
also denotes a corresponding optimal off-line packing algorithm. In what follows, Ln
is a list of n items whose sizes are independent samples from a given distribution.
To avoid trivialities, we disallow the item size k, and hence ignore the distribution
U{k, k}. Further, we will ignore the (deterministic) distribution U{1, k}. Thus, only
the distributions U{j, k}, 1 < j < k, will be of interest.

This paper is the first in a series of articles covering the results announced in [2, 6],
all dealing with classical bin packing under discrete distributions and showing quali-
tative differences between algorithmic behavior under such discrete distributions and
their continuous analogues. The specific problems addressed by the series are sum-
marized in Table 1, and are shown along with the continuous analogues for contrast.
The present paper, Part I of the series, proves the results marked by a bullet (•) in
the table. In this table Ω(f(n)) has the Knuthian sense of “greater than cf(n) for
some c > 0 and all sufficiently large n” and Ω(f(n)) has the weaker sense of Hardy
and Littlewood’s “not o(f(n)),” i.e. “greater than cf(n) for some c > 0 and infinitely
many n.” We say g(n) is Θ(f(n)) (respectively, Θ(f(n))) when g(n) is both O(f(n))
and Ω(f(n)) (respectively, Ω(f(n))). A subscript of u or k indicates that the hidden
multiplicative constants depend on u or k and so we have asymptotics in n that hold
for fixed u or k. Where more than one growth rate is possible, we list all that have
been observed for distributions of the stated type, using “. . . ” to indicate when other
possibilities have not been ruled out. In the case of general discrete distributions it
is NP-hard to determine which possibilities apply under first fit decreasing (FFD),

386 COFFMAN ET AL.

Table 1
Results for expected waste.

U(0, 1] Ref U{j, k}, j = k − 1, k Ref

OPT Θ(n1/2) [17, 16] Θ(n1/2) [8]

FFD, BFD Θ(n1/2) [17, 16] Θ(n1/2) [8]

FF Θ(n2/3) [7] Θ(n1/2k1/2), k = O(n1/3) [7]

Θ(n2/3), k = Ω(n1/3) [7]

BF Θ(n1/2 log3/4 n) [19] Θ(n1/2 log3/4 k), k = O(n) [5]

Θ(n1/2 log3/4 n), k = Ω(n) [5]

Best on-line Θ(n1/2 log1/2 n) [19, 20] Ωk(n
1/2)† [–]

U(0, u], u < 1 Ref U{j, k}, 1 ≤ j ≤ k − 2 Ref
OPT Θu(1) [1] Θk(1) [•]
FFD Θu(1), u ≤ 1/2 [1, 13] Θk(1), Θk(n

1/2)‡, Θk(n)§ [3]

Θu(n1/3), u > 1/2 [1]

FF Θu(n)∗ [2] Θk(1), Θk(n
1/2)‡, Θk(n)∗ [6, 4]

BF Θu(n)∗ [2] Θk(1), Θk(n
1/2)‡, Θk(n) [6, 4, 15]

Best on-line Ωu(n1/2) [•] Θk(1) [•]

General continuous Ref General discrete Ref

OPT Θu(1), Θu(n1/2), [1, 17, 16] Ok(1), Θk(n
1/2), Θk(n) [9]

Θu(n), . . .

FFD Θu(1), Θu(n1/3), [1, 17, 16] Ok(1), Θk(n
1/2), Θk(n)§ [3]

Θu(n1/2), Θu(n), . . .

Best on-line Θ(n1/2 log1/2 n), [19, 20] Ok(1), Θk(n
1/2), Θk(n) [9]

Θu(n), . . .

§ These results also hold for BFD.
† Easily shown to be Ω(n1/2); O(n1/2 log3/4 k) by the results for Best Fit;

conjectured to be Θ(n1/2 log1/2 k), k = O(n) and Θ(n1/2 log1/2 n), k = Ω(n).
‡ Not ruled out by theorems, but no occurrences known either. For FFD and j ≤ k − 2,

Θk(n
1/2) is known not to occur for any k ≤ 10, 000 [3].
∗ Conjecture supported by simulation studies.

best fit decreasing (BFD), and the best on-line algorithm, although exponential-time
decision algorithms exist [9, 4].

Our primary focus in this paper is on the distributions U{j, k} with 1 < j ≤ k−2.
The marked results for these distributions are both contained in the following theorem,
which is proved in section 3.

Theorem 2. For any j, k, 1 < j ≤ k − 2, there exists an on-line algorithm A
with running time bounded by a polynomial in n and k such that if Ln has item sizes
generated according to U{j, k} then E[WA(Ln)] = Θ(1).

The corresponding result in the continuous model, which is proved in section 5,
shows substantially worse behavior.

Theorem 3. If Ln has item sizes generated according to U(0, u] for 0 < u <
1, and A is any on-line algorithm, then there exists a constant c > 0 such that
E[WA(Ln)] > cn1/2 for infinitely many n.

We should note that the comparison between discrete and continuous cases is
much closer in the case of U{k − 1, k}, which corresponds to U(0, 1]. In fact, for
unconstrained (off-line) optimal packings, one obtains the same Θ(n1/2) expected
waste results in both cases. The proof of this fact in the discrete case can be assembled
from standard techniques in the continuous theory, for example by observing that the
algorithm MATCH and its analysis in [8, p. 100] carry over to the discrete case. Note
that this bound is independent of k. There does appear to be a dependence on k

PERFECT PACKING THEOREMS 387

in the on-line case, but one can obtain Ok(n
1/2) behavior in a quite straightforward

manner. Simply keep a pool of 	k/2
 bin types, one each for each matching pair of
item sizes (i, k− i), 1 ≤ i ≤ k/2 and one for item size k/2 if k is even. When an item
of size i arrives, we look to see if there is a partially full bin of its type containing an
item of size k − i and if so, add the new item to the bin, filling it. Otherwise a new
bin of the given type is started. It is easy to show that this procedure has Ok(n

1/2)
expected waste.

The plan for the remaining papers in this series is as follows. Part II of the series
[7] proves the first fit (FF) results under U{k − 1, k}, and in so doing, the O(n2/3)
upper bound for U(0, 1]. Part III [3] will cover the results on FFD and BFD under
discrete distributions (both uniform and general). Parts IV [4] and V [5] will present
the results for best fit (BF) under U{j, k}, 1 < j ≤ k−2 and U{k−1, k}, respectively
(see also [15] which generalizes the results of [6, 4] for the case U{k − 2, k}).

The current paper is organized as follows. The proof of the perfect packing
theorem (Theorem 1) appears in section 2. In addition to being of independent
combinatorial interest, this result contributes to the proof of Theorem 2, which we
present in sections 3 and 4. In section 3, we describe a general result of Courcoubetis
and Weber [9] which implies that for any discrete item-size distribution, E[WOPT(Ln)]
must be one of Θ(n), Θ(n1/2), or O(1), and no matter which case applies, there is an
on-line algorithm A whose expected waste obeys the same bounds. Which case applies
depends on the existence of certain perfect packings, and here is where Theorem 1
comes in. The algorithms provided by [9] for U{j, k}, 1 < j ≤ k − 2, are randomized
algorithms, and in section 4 we present corresponding deterministic algorithms and
give the somewhat more difficult proof that they also have O(1) expected waste.
Theorem 3, this paper’s contribution to the theory of continuous distributions is
proved in section 5.

We conclude in section 6 with a brief discussion of the significance of Theorem 2
and possible extensions to it. As stated, the theorem provides algorithms that are
tailored to the particular distribution U{j, k} in question. We can, however, provide
a single algorithm A with running time bounded by a polynomial in n and k that
yields E[WA(Ln)] = Θ(1) for any such distribution, even if j and k are not known in
advance and have to be discovered on-line. We also discuss the possibility of extending
Theorem 2 to more general classes of discrete distributions and mention some more
recent developments. In particular, in [10, 11] a simple new deterministic on-line
algorithm is introduced that supersedes the algorithms presented in this paper, in that
it has O(1) expected waste for every discrete distribution that has E[WOPT(Ln)] =
O(1), and has a running time O(nk) for all U{j, k} distributions.

2. The perfect packing theorem. We begin our proof of Theorem 1 with
three lemmas that list a number of special instances that lead to perfect packing.
The first lemma takes care of the special case, r = 1.

Lemma 4. Suppose m, j, and k are positive integers such that j ≤ k and mk =
j(j + 1)/2. Then the set of j items, one each of sizes 1, . . . , j, perfectly packs into m
bins of size k.

Proof. The proof is by induction. Pick j and k and assume the theorem is true
for all pairs that are smaller in lexicographic order than (k, j). The theorem is clearly
true for k ≤ 2 or j ≤ 2, so assume k, j > 2.

If j > k/2 then we can start by perfectly packing bins with pairs of items (j −
i, k − j + i), 0 ≤ i < j − k/2, after which the remaining items are those of sizes
1, . . . , k − j − 1, plus the item of size k/2 if k is even. Since the sum of the sizes of

388 COFFMAN ET AL.

the items that have been packed at this point is a multiple of k, the sum of the sizes
of remaining items is also a multiple of k. If k is odd, the unpacked items are an
instance of (k, k − j − 1), with k − j − 1 < j and the induction hypothesis applies.
If k is even then k/2 divides j(j + 1)/2 and all remaining items are no larger than
k/2. Thus the items 1, . . . , k − j − 1 form an instance of (k/2, k − j − 1) and by the
induction hypothesis can be perfectly packed into bins of size k/2. These half-bins
and the item of size k/2 can then be combined into bins of size k.

Now suppose j ≤ k/2. If k is even then we have an instance of (k/2, j) and the
induction hypothesis applies. If k is odd, first note that k/2 ≥ j and j > 2 implies
k > j + 1, which together with mk = j(j + 1)/2 implies j > 2m. Thus we can
construct m pairs of items each of total size k′ = 2j− 2m+1 by combining j− i with
k′ − j + i, 0 ≤ i ≤ m − 1. If we place one pair in each of our m bins, we now have
m bins with gaps of size k − k′ = k − 2j + 2m − 1 and items of sizes 1, . . . , j − 2m.
Because mk = j(j + 1)/2, the sum of these item sizes must be m(k − k′), and so an
application of the induction hypothesis to the instance (k− k′, j− 2m) completes the
proof.

Lemma 5. Consider r > 1 sets, the ith of which consists of j items of consecutive
sizes, �i + 1, . . . , �i + j, for some �i ≥ 0. Suppose either (a) r is even or (b) j is odd.
Then these rj items perfectly pack into j bins of size equal to the sum of the average
item sizes in the r groups, i.e., r(j + 1)/2 +

∑r
i=1 �i.

Proof. The lemma will follow if we can show that for �i = 0, 1 ≤ i ≤ r, and bins
of size r(j + 1)/2 it is possible to pack perfectly the items into the j bins in such a
manner that each bin contains exactly one item from each of the r sets.

If r is even then we simply take two of the sets and pack the ith largest item
in one set with the ith smallest item in the other set, i.e., as the pair (i, j − i + 1),
i = 1, . . . , j. This fills j bins to level j + 1. By repeating this r/2 times we fill j bins
of size r(j + 1)/2.

If r and j are both odd then an extra step is required. The idea is first to pack
items in triples, one item from each of three sets, such that the sum of each triple is
the same. It is easiest to appreciate the construction by considering an example, say
j = 9. The triples, which each sum to 15, are given in the columns below.

1 2 3 4 5 6 7 8 9
6 7 8 9 1 2 3 4 5
8 6 4 2 9 7 5 3 1

In general, the triples are (i, i + (j + 1)/2, j + 1 − 2i), i = 1, . . . , (j − 1)/2, and
(i, i− (j − 1)/2, 2j − 2i+1), i = (j +1)/2, . . . , j. The result of packing these one per
bin is to fill all j bins to level 3(j + 1)/2. The number of remaining sets is even and
the remaining spaces in the j bins are equal. Thus, the procedure for case (a) can be
applied to complete the packing in each bin.

The following lemma provides part of the induction step used in the proof of
Theorem 1.

Lemma 6. Consider a quadruple (k, j, r,m) of positive integers such that k ≥ j
and mk = rj(j + 1)/2. Then there exists a perfect packing of r copies of 1, . . . , j
into m bins of size k if there exists a perfect packing for each lexicographically smaller
quadruple of this form, and if any one of the following holds:

(a) j ≥ k/2.
(b) r does not divide k.
(c) k or r is even.

PERFECT PACKING THEOREMS 389

(d) j ≤ (r − 1)k/2r.

Proof. First, using the arguments of Lemma 4, we demonstrate how to reduce the
problem to a smaller instance if (a) holds. If j ≥ k/2 and k is odd, then we can pack
bins with pairs (j− i, k− j + i), i = 0, . . . , j− (k+1)/2. The remaining items, which
are of sizes 1, . . . , k − j − 1, define the smaller instance (k, k − j − 1, r,m′), where
m′ = m−r(2j+1−k)/2. If j > k/2 and k is even, then we can pack bins in the same
way, i = 0, . . . , j − 1− k/2. The remaining items, which are of sizes 1, . . . , k − j − 1
and k/2, can be packed into bins of size k/2, by the induction hypothesis that there
exists a perfect packing for (k/2, k − j − 1, r,m′), where m′ = 2m− r(2j − k).

If (b) holds then r and m must have a common factor p > 1 and the problem
reduces to the instance (k, j, r/p,m/p).

Now suppose neither (a) nor (b) holds but (c) does. If k is even then k/2 divides
rj(j + 1)/2. Since (a) doesn’t hold, j < k/2. Thus the problem reduces to a smaller
instance in which the bin size is k/2. If r is even, then since (b) does not hold, k is
divisible by r and so must be even too. Thus the same argument applies.

Finally, for case (d), assume that (a), (b), and (c) do not hold, i.e., j < k/2, r
divides k and k and r are both odd. Let r1 = (r+1)/2, k1 = kr1/r and r2 = (r−1)/2,
k2 = kr2/r. Note that r1+r2 = r and k1+k2 = k. The fact that r is odd implies that
r1 and r2 are integers. The fact that r divides k implies that k1 and k2 are integers,
with mk1 = r1j(j + 1)/2 and mk2 = r2j(j + 1)/2. Since by assumption j < k/2, we
have k1 ≥ j, and hence by hypothesis for the instance (k1, j, r1,m), we can pack r1

copies of 1, . . . , j into m bins of size k1. Similarly, if also j ≤ k2 then we can pack
r2 copies of 1, . . . , j into m bins of size k2. Since k1 + k2 = k we can combine pairs
of bins of sizes k1 and k2 into bins of size k. Thus there is a reduction to smaller
instances if j ≤ k2 = (r − 1)k/2r, i.e., if (d) holds.

Proof of the perfect packing theorem. Instances for which the theorem is to be
proved are described by the quadruples of Lemma 6. Notice that it would be enough
to specify the triple (k, j, r); however, it is helpful to mention m explicitly. The proof
of the theorem is by induction on (k, j, r) under lexicographical ordering. By Lemma 4
it is true for r = 1. Assume all quadruples that are smaller than (k, j, r,m) can be
perfectly packed and r > 1. We show there exists a perfect packing of r copies of
1, . . . , j into m bins of size k. By Lemma 6, we need only consider the case when
k and r are odd, r divides k and (r − 1)k/2r < j < k/2. Note that in this case
(r − 1)k/2r is an integer and k/2r is 0.5 more than an integer. We show below that
we can perfectly pack all the items of sizes from j + 1 − (r − 1)k/2r through j into
bins of size k. (Note that the lower bound on this range is greater than 1 because
of the above lower bound on j.) The theorem then follows because the remaining
items form a smaller quadruple, so by the induction hypothesis they can be perfectly
packed into bins of size k.

To follow the construction below, the reader may find it helpful to consider a
specific example. Consider the quadruple (k, j, r,m) = (165, 77, 5, 91). Note that k
and r are odd, r divides k, and j lies between (r − 1)k/2r = 66 and k/2 = 82.5. We
show below how to perfectly pack all items of sizes 12, . . . , 77. The remaining items
form the smaller quadruple (165, 11, 5, 2).

To pack all items of sizes from j+1−(r−1)k/2r through j, we divide the range of
item sizes into intervals, i.e., sets of consecutive integers. Each interval is symmetric
about a multiple of k/2r and has one of two lengths depending on whether the interval
is symmetric about an odd or even multiple of k/2r. To form the intervals, we first
take the largest interval that is symmetric about (r − 1)k/2r; this is the interval

390 COFFMAN ET AL.

[(r−1)k/r−j, j]. Note that this interval does not include (r−2)k/2r since j < k/2 =
rk/2r. Next we take the largest interval that can be formed from the remaining items
that is symmetric about (r−2)k/2r, obtaining the interval [j−k/r+1, (r−1)k/r−j−1].
Continuing in this fashion and taking intervals symmetric about further multiples of
k/2r, we end up with intervals of two kinds. First, there are (r − 1)/2 intervals
centered on even multiples of k/2r, with the interval centered on (r − 1 − 2i)k/2r
being [(r− 1− i)k/r− j, j − ik/r], where i ranges from 0 to (r− 3)/2. Second, there
are an equal number of interval centered on odd multiples of k/2r, with the interval
centered on (r− 2i)k/2r being [j− ik/r+1, (r− i)k/r− j− 1], where i ranges from 1
to (r − 1)/2. Note that the smallest endpoint is j − ik/r + 1 for i = (r − 1)/2, which
equals j + 1− (r − 1)k/2r as claimed above.

For the numerical example above, there are two intervals of each type. Intervals
of the first type are [22, 44] and [55, 77]; they are of length 23 and symmetric about 33
and 66. Intervals of the second type are [12, 21] and [45, 54]; they are of length 10 and
symmetric about 16.5 and 49.5. In general, intervals of the first type have odd length
2j − (r − 1)k/r + 1 and are symmetric about an even multiple of k/2r. Intervals of
the second type have even length k−2j−1 and are symmetric about an odd multiple
of k/2r. Our plan is to use Lemma 5 to perfectly pack into bins of size k those items
whose sizes lie in intervals of the same type.

We begin by considering all those intervals of the first type. These have odd
lengths and they are symmetric about points ik/r, i = 1, . . . , (r − 1)/2. There are
r items of each size in each of these intervals. Our strategy is to partition these
intervals into groups that satisfy the hypotheses of Lemma 5 (b). That is, we arrange
for the midpoints of the intervals within each group to sum to k. Since the midpoints
correspond to the average item sizes for the corresponding intervals, and the number
of items in the intervals is odd, Lemma 5 (b) implies that we can perfectly pack
the items in the intervals of each group. Constructing these groups is a bin packing
problem in which the midpoints of the intervals take on the role of item sizes. In what
follows we write ‘items’ in single quotes when speaking of the midpoints of intervals,
possibly normalized, and viewing them as items to be perfectly packed in bins of some
required size. In considering intervals of the first type, it is as though we had r ‘items’
of each of the sizes ik/r, i = 1, . . . , (r − 1)/2, and wished to pack them into bins of
size k. After a normalization that multiplies each item size by r/k, this is equivalent
to the problem of packing r ‘items’ of each of the sizes 1, . . . , (r − 1)/2 into bins
of size r. That is, we have a smaller version (k′, j′, r′,m′) of our packing problem,
with j′ = (r − 1)/2, k′ = r′ = r and m′ = r′j′(j′ + 1)/2k′. But by the induction
hypothesis this means that the desired packing can be achieved. In the example, it is
as though we had 5 ‘items’ of sizes 33 and 66 that are to be packed in bins of size 165.
Normalizing by a factor of 1/33, this is equivalent to the problem instance (5, 2, 5, 3).

We must now pack items whose sizes lie in intervals of the second type. These
intervals are of even length, symmetric about the points ik/2r, for i odd and i =
1, . . . , r − 2. Again, there are r items of each size in these intervals. As above, we
exhibit a reduction to a smaller perfect packing problem. After multiplying item sizes
by 2r/k the problem is equivalent to perfectly packing r copies of ‘items’ of sizes
1, 3, 5, . . . , r−2 into bins of size 2r. For the example, this is 5 copies of ‘items’ of sizes
1 and 3, to be perfectly packed into 2 bins of size 10. Unfortunately, if the sum of the
‘item’ sizes is an odd multiple of r the ‘items’ cannot be perfectly packed into bins of
size 2r. For this reason, and also because it is convenient to do so even when the sum
of the ‘item’ sizes is a multiple of 2r, we consider perfect packings into bins of sizes
r and 2r. Assume for the moment that r copies of ‘items’ of sizes 1, 3, 5, . . . , r − 2

PERFECT PACKING THEOREMS 391

can be perfectly packed into bins of sizes r and 2r. If they are packed entirely into
bins of size 2r, then the number of ‘items’ in each bin must be even (as all ‘item’
sizes are odd), and so Lemma 5 applies and implies that the original items can be
perfectly packed into bins of size k. On the other hand, suppose a bin of size r is
required. The set of ‘items’ that are packed into a bin of size r corresponds to a set
of intervals whose midpoints sum to k/2. Recall that the intervals are of even length.
We divide each such interval into its first half and its second half, obtaining twice as
many intervals, whose midpoints now sum to k. Now we can again use Lemma 5 to
construct the perfect packing.

The final step in the proof is to show that we can indeed perfectly pack r copies
of each of the item sizes 1, 3, 5, . . . , r − 2 into bins of sizes r and 2r. We shall use a
different packing depending upon whether r = 4α + 1 or r = 4α + 3.

For the case r = 4α + 1, the ‘items’ are perfectly packed by the following simple
procedure. We begin by packing one bin with (1, 1, r − 2), one bin with (2i + 1, 2i +
1, r−2i−2, r−2i), for each i = 1, . . . , α−1, and one bin with (2i−1, 2i+1, r−2i, r−2i),
for each i = 1, . . . , α, (noting that in the final case, when i = α, we get three ‘items’ of
size 2i+1 = r−2i). This packs four ‘items’ of each size larger than 1, and three ‘items’
of size 1. We can apply this packing α times, leaving us with one ‘item’ of each size
larger that 1 and α+1 ‘items’ of size 1. Then we pack one bin with (1, 2i− 1, r− 2i)
for each i = 1, . . . , α. This uses up all the remaining ‘items’ (where α + 1 items of
size 1 are used because there are two ‘items’ of size 1 when i = 1). For the numerical
example, in which α = 1, this construction says that we should pack 5 copies of 1
and 3 into bins of size 5 and 10 by first packing one bin with (1, 1, 3) and then one
bin with (1, 3, 3, 3). This leaves one ‘item’ of size 3 and two of size 1. These perfectly
pack into a bin of size 5.

When r = 4α + 3 the procedure is very similar to that above. We begin by
packing one bin with (1, 1, r − 2), one bin with (2i + 1, 2i + 1, r − 2i − 2, r − 2i), for
each i = 1, . . . , α, and one bin with (2i−1, 2i+1, r−2i, r−2i), for each i = 1, . . . , α.
As before, this packs four ‘items’ of each size larger than 1, and three ‘items’ of size 1.
We apply this packing α times, leaving us with three ‘items’ of each size larger than
1, and α+3 ‘items’ of size 1. Then we pack one bin with (2i− 1, 2i+1, r− 2i, r− 2i),
for each i = 1, . . . , α. This leaves us with α + 2 ‘items’ of size 1, two ‘items’ of size
2α + 1, and one ‘item’ of each other size. Finally, as before, we pack one bin with
(1, 2i− 1, r− 2i), for each i = 1, . . . , α+ 1, which uses up all remaining items.

3. Proof of Theorem 2 using randomized algorithms. Recall the theo-
rem statement: For any distribution U{j, k}, with 1 < j ≤ k − 2, there is an on-
line algorithm A with running time bounded by a polynomial in n and k, and with
E[WA(Ln)] = Θ(1). In this section we show that this is true if we are willing to
consider randomized algorithms.

We rely on the following general result of Courcoubetis and Weber [9]. Let �p =
(p1, . . . , pd) be a discrete distribution on the set S = {s1, . . . , sd}; pi is the probability
of item size si. Any packing of items with sizes from S into a bin of size k can be
viewed as a nonnegative integer vector �c = (c1, . . . , cd), where

∑d
i=1 cisi ≤ k. Of

particular interest are those vectors that give rise to a sum of exactly k, which we
shall call perfect packing configurations. For instance, if S = {1, 2, 3} and k = 7, one
such configuration would be (1, 0, 2). Let PS,k denote the set of all perfect packing
configurations for a given S and k. Let ΛS,k be the convex cone in R

d spanned by all
nonnegative linear combinations of configurations in PS,k.

392 COFFMAN ET AL.

Theorem (Courcoubetis and Weber [9]).

(a) If �p lies in the interior of ΛS,k, then there is a polynomial-time randomized
on-line bin packing algorithm A with E[WA(Ln)] = O(1).

(b) If �p lies on the boundary of ΛS,k, then E[WOPT (Ln)] = Θ(n1/2) and there
is a polynomial-time randomized on-line bin packing algorithm A with E[WA(Ln)] =
Θ(n1/2).

(c) If �p lies outside of ΛS,k, then E[WOPT (Ln)] = Θ(n).

Case (a) is the relevant one here. Case (b) holds for the distributions U{k−1, k},
but we already have shown in the introduction how the conclusion of (b) can be proved
by more direct means for those distributions. We explain below how the algorithm
implicit in case (a) works, but first we use that case to prove the version of Theorem 2
involving randomized algorithms. In general it is NP-hard to determine which of the
three cases applies to a given distribution (as can be proved by a straightforward
transformation from the PARTITION problem [14]). However, for the distributions
U{j, k} we can use the following lemma, which we shall prove using the perfect packing
theorem.

Lemma 7. For each i, j, k with i ≤ j < k − 1, there exist positive integers
ri, si,mi < 2k2 such that the set of rij + si items consisting of ri + si items of size i
together with ri items of each of the other j − 1 sizes can be packed perfectly into mi
bins of size k.

Note that this lemma implies that the j-dimensional vector ē = (1, 1, . . . , 1) is
strictly inside the appropriate cone when S = {1, 2, . . . , j}, j < k − 1. This is be-
cause ē is in the interior of the cone spanned by vectors of the form (ri, . . . , ri, ri +
si, ri, . . . , ri), i = 1, . . . , j, and those vectors are sums of perfect packing config-
urations by Lemma 7. The proof of Theorem 2 thus follows from case (a) of the
Courcoubetis and Weber theorem.

Proof of Lemma 7. We make use of the perfect packing theorem. There are two
cases. If k ≥ i + j, we simply set ri = k − i and si = mi = j(j + 1)/2. Note
that the total size of ri items each of the sizes 1, . . . , j equals rij(j + 1)/2, so by the
perfect packing theorem, we can perfectly pack them into j(j+1)/2 = mi bins of size
ri = k− i. The remaining si = mi items of size i can then go one per bin to fill these
bins up to size precisely k.

On the other hand, suppose k < i + j. Now things are a bit more complicated.
We have ri = 2(k − i), si = (k − j)(k − j − 1), and mi = si + ri(2j − k + 1)/2. By
the perfect packing theorem ri items each of the sizes 1, . . . , k − j − 1 perfectly pack
in si bins of size k − i. (Such items exist because by assumption j < k − 1.) We
then add the additional si items of size i to these bins, one per bin, to bring each
bin up to size k. There remain ri items each of sizes k − j through j, for a total of
ri(j−(k−j−1)) = 2(mi−si) items. These can be used to completely fill the remaining
mi− si bins with pairs of items of sizes (j, k− j), (j−1, k− j+1), . . . , (k/2
, �k/2�).
Note that if k is even, the last bin type contains two items of size k/2, but we have an
even number of such items by our choice of ri = 2(k− i), so this presents no difficulty.

It is easy to verify that in both cases the values of ri, si,mi are all less than
2k2.

We now describe how the algorithms implicit in the Courcoubetis and Weber
theorem [9] work for our distributions. Each bin can be labeled with a “type” that
specifies the configuration of items it contains. Given a distribution U{j, k}, we choose
a set of perfect packing configurations {�cq : 1 ≤ q ≤ Q} that spans a cone having
(1, 1, . . . , 1) in its interior, say those configurations generated in the proof of Lemma 7.

PERFECT PACKING THEOREMS 393

Let cq,i denote the number of items of size i used in configuration �cq. (Note that by

the lemma, we may assume that Q ≤ ∑ji=1 mi < 2jk2 = O(k3).) We imagine that
there is a separate packing facility for each configuration �cq, and that each arriving
item is routed to one such packing facility, where it finds space in a partially full bin
of that type or starts a new bin of that type. Let eq,i denote the number of different
item sizes amongst those used in �cq for which there are presently fewer spaces at
facility q than there are for item size i. Note that eq,i = 0 for i such that cq,i = 0.
The routing probabilities are determined by finding an ε > 0 such that the following
linear program has a feasible solution:

Q∑

q=1

αq(cq,i + εeq,i) = 1/j, i = 1, . . . , j.

αq > 0, 1 ≤ q ≤ Q.

Such an ε exists because (1, 1, . . . , 1) is in the interior of the cone spanned by the cq’s;
a precise value for ε can be computed directly from the distance of (1, 1, . . . , 1) from
the boundary of the cone, which itself can be derived from the proof of Lemma 7.
Moreover, it is not difficult to see that this distance is such that the number of bits of
precision needed to describe ε is O(log k). Thus the linear program can be constructed
and solved in time polynomial in k, or in constant time for fixed k.

When an item of size i is to be packed, it is randomly routed for packing at facility
q with probability

αq(cq,i + εeq,i)/(1/j).

The impact of this construction is to ensure that facility q receives items of size i at
a faster rate than items of size i′ whenever there are more spaces for items of size i
than i′ in partially full bins of type q. For the details of why this suffices, see [9].

4. A deterministic algorithm. The algorithm described at the end of the pre-
vious section is randomized but relatively straightforward. Our deterministic algo-
rithm is a bit more complicated and works on slightly different principles. (Designing
a new algorithm from scratch turns out to be easier than attempting to derandomize
the above algorithm directly.) We shall use the following consequence of Lemma 7.

Lemma 8. For each i, j, k with i ≤ j < k − 1, there exist positive integers
r′i, s

′
i,m

′
i < 4k5, with s′i ≤ r′i, such that the set of r′ij − s′i items consisting of r

′
i − s′i

items of size i together with r′i items of each of the j − 1 other sizes can be packed
perfectly into m′

i bins of size k.
Proof. Let ri, si,mi > 0 be as given in the conclusion of Lemma 7. This means

that for 1 ≤ i ≤ j, the set Ri consisting of ri items each of sizes 1, 2, . . . , j together
with an additional si items of size i can be packed perfectly into mi bins. Note that
by the proof of Lemma 7, we may assume that si = (k− j)(k− j− 1) if i > k− j and
otherwise si = j(j + 1)/2. Denote the first quantity by s and the second by s.

First let us suppose j ≤ k/2, in which case there is no i for which i > k − j. We
can thus construct the set desired for i, j, k by merging together one copy each of the
sets Rh for all h, 1 ≤ h ≤ j except i. This set has the parameters r′i =

∑
q �=i rh + s

and s′i = s, and packs perfectly into m′
i =

∑
q �=imh bins by Lemma 7.

The situation is a bit more complicated if j > k/2 and si can take on both values
s and s. Now we construct our desired set by merging together s copies of each Rh,

394 COFFMAN ET AL.

1 ≤ h ≤ k − j, with s copies of each Rh, k − j < h ≤ j, and then deleting one
copy of Ri. This set has the parameters r′i =

∑k−j
h=1 rhs +

∑j
h=k−j+1 rhs + ss − ri

and s′i = s or s depending on whether or not i ≤ k − j. It packs perfectly into

m′
i =

∑k−j
h=1 mhs +

∑j
h=k−j+1 mhs−mi bins by Lemma 7.

The fact that in both cases r′i, s
′
i,m

′
i < 4k5 can be derived from the above argu-

ments and the proof of Lemma 7.
We now begin the description of our deterministic algorithm for U{j, k}. As in

the randomized algorithm of the previous section, we shall build our packing based
on the fixed set of Q < 2k3 perfect packing configurations {�cq : q = 1, . . . , Q} derived
from Lemma 7 for j and k. (Note that these are the only bin configurations needed in
the proof of Lemma 8, since that proof constructs its packings based on the packings
of Lemma 7.) Every time we start a new bin in our packing, we permanently assign
one of these configurations to it, as in the previous algorithm. The bin remains open
until it is completely packed in the manner required by its assigned configuration.
During certain phases of the algorithm we may also open some empty bins and assign
them configurations, with the bins losing those assignments (and open status) if they
remain empty at the end of the phase.

If �c = (c1, c2, . . . , cj) is one of our perfect packing configurations, let (c1 : a1, c2 :
a2, . . . , cj : aj) be a labeled configuration denoting a bin with configuration �c that
contains ai ≤ ci items of size i, 1 ≤ i ≤ j. As far as the packing process is concerned,
the “state” of the system can at any time be described by giving the current number
of open bins of each possible labeled configuration.

Let In be the state after the nth item has been packed; I0 denotes the empty
state in which there are no partially packed bins. We define two functions of In that
are of use in the description and subsequent analysis of our algorithm. Suppose there
are xi as-yet-unfilled spaces for items of size i in the open bins. Let X(In) =

∑j
i=1 xi

denote the total number of items that are required to complete the packing of the
open bins of state In. Let T (In) = j

∑j
i=1 r

′
i�xi/s′i�, where r′i and s′i are the numbers

given in Lemma 8. Note that by Lemma 8, we can assign configurations to additional
(empty) bins in such a manner that if there were exactly T (In)/j items of each of
the sizes 1, . . . , j to be packed then these could be used to perfectly pack these newly
configured empty bins, with s′i�xi/s′i� items of size i left over, 1 ≤ i ≤ j: For each i
we would use (r′i − s′i)�xi/s′i� items of size i and r′i�xi/s′i� items of each of the other
sizes to perfectly pack m′

i�xi/s′i� empty bins. The s′i�xi/s′i� surplus items of size i
could be used to fill all but ui = xi − s′i�xi/s′i� of the spaces for items of size i that
already existed in our packing of the first n items. Note that 0 ≤ ui < s′i. Let
Rmin = min{r′i/s′i : 1 ≤ i ≤ j}, and note that Rmin ≥ 1 since by Lemma 8, s′i ≤ r′i
for all i. It is easy to see that by definition of T (In),

jRminX(In)− j

j∑

i=1

r′i ≤ T (In) < 4k6X(In).(4.1)

The algorithm proceeds in phases, depending on the value of X(In) at the end
of the previous phase. The final state of one phase will also be viewed as the initial
state of the following phase. We denote the indices of the final states of the phases
by nh, h ≥ 0, with n0 = 0. The sequence of nh’s is defined inductively as follows.
Suppose there are more than nh items so the current phase is not the last.

If X(Inh) < L, where L is specified below, we take nh+1 = nh + 1, that is, the
next phase involves only the packing of the next item. This item is placed in the

PERFECT PACKING THEOREMS 395

first bin in the list having a space for it or, if necessary, a new bin. For the purpose
of defining “first,” we assume the open bins are ordered lexicographically according
to their labeled configuration, with ties broken according to the order in which the
bins were opened. (Any definition of “lexicographic” will do, although presumably
we would want all the empty labeled configurations to come after all the partially full
ones.) When no open bin has space for the item, the new bin where it is placed is
assigned the lexicographically first configuration that includes an item of the given
size.

If, on the other hand, X(Inh) ≥ L then nh+1 = nh+T (Inh). The phase proceeds
as follows: Initially, a set of m ≡∑im′

i�xi/s′i� < 2k5X(Inh) empty bins are opened
with configurations assigned in the manner described above. Thereafter, as each item
arrives during the phase, it is packed in the first bin that has a space for an item of
that size, with “first” defined as above. If during the phase we encounter more than
ui+T (Inh)/j items of some size i then it is necessary to open additional bins for items
of size i. Each time such an item arrives, the new bin is assigned the lexicographically
first configuration that includes items of size i. The phase terminates after T (Inh)
items have been packed or after the last item has been packed, whichever comes first.
At the end of the phase, any still-empty bin that has a configuration assigned to it is
stripped of that assignment and returned to the pool of unopened empty bins.

This completes our description of the algorithm (except for specifying the constant
L, which we shall do below). We now begin our analysis. Our first goal is to show
that X and X2 are well behaved. Lemma 9 bounds the expected change in these
functions during a phase.

Lemma 9. For all h ≥ 0,

X(Inh+1
) ≤ X(Inh) + k − 1 if X(Inh) < L(4.2)

E
[
X(Inh+1

)2|X(Inh)
] ≤ 100k18X(Inh) if X(Inh) ≥ L.(4.3)

Proof. When X(Inh) < L the phase lasts for the packing of a single item. In the
worst case, this item starts a new bin. Since no configuration can contain more than
k items, this means that X(Inh+1

) has at most k − 1 more items, so (4.2) holds.

Now assume X(Inh) ≥ L, in which case the phase lasts for T ≡ T (Inh) ≤
4k6X(Inh) items by (4.1). The number Ni of items of size i amongst the T items that
are packed during this interval has a binomial distribution with mean T/j and vari-
ance (T/j)(1− 1/j). If these T items contained exactly T/j items of each size then,
using the scheme described above, we would have X(Inh+1

) =
∑
i ui. Any shortfall or

surplus of Ni over T/j can produce at most |Ni−T/j| extra partially full bins. Since
by Lemma 8, ui < s′i < 4k5, 1 ≤ i ≤ j,

X(Inh+1
) ≤

j∑

i=1

(ui + (k − 1)|Ni − T/j|) < 4jk5 + k
∑

i

|Ni − T/j| .

Squaring the above, taking expected values, and using (4.1), knowledge of the mean

396 COFFMAN ET AL.

and variance of Nj , and Cauchy–Schwarz inequalities, we derive (4.3) from

E[X(Inh+1
)2] < 16k12 + 8k7E

[
∑

i

|Ni − T/j|
]

+ k2E

(
∑

i

|Ni − T/j|
)2

≤ 16k12 + 8k7
∑

i

√
E(Ni − T/j)2 + k2E

[
j
∑

i

|Ni − T/j|2
]

≤ 16k12 + 8k7j
√

(T/j)(1− 1/j) + k2j2(T/j)(1− 1/j)

≤ 16k12 + 8k7.5
√
T + k3T

< 25k12T

≤ 100k18X(Inh) .

The analysis which follows begins by considering the Markov chain {Inh}, re-
stricted to the set of states Z reachable from the empty state z = φ by a sequence of
phases of the algorithm — note that in the chain {Inh} a step corresponds to an entire
phase of the algorithm. It is easily verified that {Inh} restricted to Z is irreducible,
since any state can eventually be converted to φ by an arrival sequence having positive
probability. We may also assume {Inh} is aperiodic. To ensure this, we need only to
augment the set {�cq : q = 1, . . . , Q} of perfect packing configurations used by our
algorithm to include the following two configurations, assuming they are not already
present: (a) the configuration consisting of k items of size 1 and (b) the configuration
consisting of one size-2 item and k − 2 items of size 1. (The latter configuration is
possible since we are already assuming that j > 1.) Now whenever we are in empty
state φ there will be ways of returning to it in either k or k−1 steps, depending on the
next items to arrive. This will prevent φ and every other state from being periodic.

Let P
(t)
y (z) be the t-step transition probability from state y to state z. We have

the following convergence result.
Lemma 10. For any j, k, and L ≥ 200k18, Pφ(z) converges to a stationary

distribution {π(z)} geometrically quickly in the X2 norm, i.e., there exists constants
K > 0 and ρ > 1 such that for all x ∈ Z,

∣∣∣∣∣
∑

z∈Z
X(z)2P (h)

x (z)−
∑

z∈Z
X(z)2π(z)

∣∣∣∣∣ ≤ Kρ−h, h ≥ 1.(4.4)

Proof. We use the following result on geometric ergodicity, a specialization of
Theorem 15.0.1 of [18] to countable chains, which uses the function 1C(x) = 1 if
x ∈ C and 0 otherwise.

Theorem (Meyn and Tweedie [18]). Suppose {Φk} is an irreducible, aperiodic

Markov chain on a countable state space Z, and let P
(t)
y (z) be the t-step transition

probability from state y to state z for {Φk}. If there is a function V : Z → [1,∞),
constants b <∞, β > 0, and a finite subset C ⊂ Z such that for all x ∈ Z,

∑

z∈Z
Px(z)V (z) ≤ (1− β)V (x) + b1C(x),

then P
(h)
φ (z) converges to a stationary distribution π(z) geometrically quickly in the

V norm in the sense that there exist constants K > 0, ρ > 1 such that for all x ∈ Z,

sup
|f |≤V

∣∣∣∣∣
∑

z∈Z
f(z)P (h)

x (z)−
∑

z∈Z
f(z)π(z)

∣∣∣∣∣ ≤ Kρ−h.

PERFECT PACKING THEOREMS 397

To apply the theorem, suppose L ≥ 200k18. Then by (4.2) and (4.3)

(4.5)

X(Inh+1
)2 ≤ (1/2)X(Inh)

2 + (1/2)L2 + 2(k − 1)L + (k − 1)2 if X(Inh) < L,

(4.6)

E[X(Inh+1
)2|X(Inh)] ≤ 100k18(X(Inh)/L)X(Inh) ≤ (1/2)X(Inh)

2 if X(Inh) ≥ L.

Let V (z) = X(z)2 for all z ∈ Z except φ, for which we take V (φ) = 1, and let
C = {z : X(z) < L}. By (4.5)–(4.6) we can then take β = 1/2 and b = L2/2 + 2(k −
1)L + (k − 1)2.

Now note that if we needed only to prove that the expected waste of our algorithm
was bounded at the times nh at which phases end, we would be done. This is because
the waste in any state z is bounded by X(z) (and so by X(z)2) and Lemma 10 tells
us that the Markov chain that considers only the states at the ends of phases has an
equilibrium distribution and that the expected value of X(z)2 under that equilibrium
distribution (i.e.,

∑
z∈Z X(z)2π(z)) is a finite constant; moreover, E[X(Inh)

2] con-
verges geometrically to this constant. Unfortunately, we need to prove that E[X(In)]
is bounded by a fixed constant for all sufficiently large n, not just those n at which
phases end, and this latter result is not implied by Lemma 10. So further argument
is needed.

Let us now construct a Markov chain that changes state after each item is packed,
not after each phase. Note that {In} is not Markov since we need to retain more
information in a state than simply the current packing state, given that the number
of steps to the end of a phase depends not only on the current packing state but also
on the packing state that existed at the beginning of the phase and the number of
steps taken since then. For a given beginning-of-phase state z ∈ Z, let t(z) denote
the length of the phase beginning at z. That is, t(z) = 1 if X(z) < L and t(z) = T (z)
otherwise. The set of states of our Markov chain, which we denote by {I ′n}, is Z ∪W ,
where

W =
{
w(z, ξ, i) : z ∈ Z, ξ ∈ {1, 2, . . . , j}t(z), 1 ≤ i < t(z)

}
.

The state w(z, ξ, i) corresponds to the packing state (the ordered set of partially empty
and empty bins to which configurations have been assigned) that would be obtained
from z after the beginning-of-phase assignment of configurations to empty bins has
been made and after items of sizes ξ1, ξ2, . . . , ξi have been packed (in that order),
where ξ = (ξ1, ξ2, . . . , ξt(z)). The norm X(w(z, ξ, i)) is simply the number of empty
slots in this derived set of bins.

The transition function p for {I ′n} is defined as follows: For states z ∈ Z,
pz(w(z′, ξ, i)) is nonzero only if z′ = z and i = 1, with all jt(z) such states being
equally likely. We have pw(z,ξ,i)(w(z, ξ, i + 1)) = 1 for states w(z, ξ, i) ∈ W with
i < t(z) − 1, and 0 for all other states, i.e., the transition is deterministic. Finally,
the transition from w(z, ξ, t(z)− 1) is also deterministic, with the state to which the
transition is made being the state z′ ∈ Z that would result from the phase starting
at z if the t(z) items to arrive had the sizes and order specified by ξ. Note that {I ′n}
inherits from {Inh} the properties of being irreducible and aperiodic.

Lemma 11. Let π be the equilibrium distribution for {Inh}, and let Eπ[t] denote
the expected value of t(z) under π, i.e.,

∑
z∈Z π(z)t(z). Then {I ′n} has an equilibrium

398 COFFMAN ET AL.

distribution π′ where

π′(z) =
π(z)

Eπ[t]
, z ∈ Z,

π′ (w(z, ξ, i)) =
π(z)

jt(z)Eπ[t]
, z ∈ Z, ξ ∈ {1, 2, . . . , j}t(z), 1 ≤ i < t(z).

Proof. Note that Eπ[t] is a well-defined constant, since Eπ[X] ≡∑z∈Z π(z)X(z)
is bounded by Lemma 10, and t(z) ≤ 4k6X(z) by (4.1). Thus π′ is well defined. To
prove Lemma 11 we use a standard result from [12, p. 393].

Theorem (Feller [12]). Suppose we are given an aperiodic, irreducible Markov
chain on a countable state space S with transition function p, and there exists a
function µ : S → [0, 1] such that (a)

∑
s∈S µ(s) = 1 and (b) for all states s′ ∈ S,

µ(s′) =
∑
s∈S µ(s)ps(s

′). If we let sn denote the state after n steps, then we have for
all states s, s′ ∈ S,

lim
n→∞P [sn = s′|s0 = s] = µ(s′).

Given this theorem, we prove Lemma 11 by showing that (a) and (b) hold for π′.
For (a), we have

∑

z∈Z
π′(z) +

∑

w∈W
π′(w) =

∑
z∈Z π(z)

Eπ[t]
+
∑

z∈Z

t(z)−1∑

i=1

∑

ξ∈{1,2,... ,j}t(z)

π(z)

jt(z)Eπ[t]

=
∑

z∈Z

π(z)

Eπ[t]
+
∑

z∈Z

π(z)(t(z)− 1)

Eπ[t]

=
∑

z∈Z

π(z)t(z)

Eπ[t]
= 1.

Property (b) holds for all states w(z, ξ, i) ∈ W by design, and for states z ∈ Z by
the fact that π is the equilibrium distribution for {Inh}. Thus the above theorem of
Feller applies and the proof of Lemma 11 is complete.

There are now only two more steps to completing a proof that our deterministic
algorithm has bounded expected waste. We must simply verify the following two
claims:

Eπ′ [X] ≡
∑

x∈Z∪W
π′(x)X(x) <∞,(4.7)

lim
n→∞

∑

x∈Z∪W
P [I ′n = x] ·X(x) = Eπ′ [X].(4.8)

Claim (4.8) follows from (4.7) and Theorem 14.0.1 of [18], which when specialized
to countable chains goes as follows.

Theorem (Meyn and Tweedie [18]). Suppose {Φk} is an irreducible, aperiodic
Markov chain on a countable state space Z having equilibrium distribution π. Let πn
be the distribution of states at step n for some fixed initial configuration, and suppose
f : Z → [0,∞]. Then if Eπ[f(z)] <∞, we have

lim
n→∞Eπn [f(z)] = Eπ[f(z)].

PERFECT PACKING THEOREMS 399

For (4.7) we first need to bound X(x) for x ∈W . Since X(x) can increase by no
more than k − 1 each time an item is packed, we conclude by (4.1) that

X(w(z, ξ, i)) ≤ X(z) + (k − 1)t(z) < 4k7X(z).(4.9)

Thus

∑

x∈Z∪W
π′(x)X(x) ≤

∑

z∈Z

π(z)X(z)

Eπ[t]
+
∑

z∈Z

t(z)−1∑

i=1

∑

ξ∈{1,2,... ,j}t(z)

π(z)X(w(z, ξ, i))

jt(z)Eπ[t]

≤ 1

Eπ[t]

∑

z∈Z
π(z)t(z)4k7X(z)

≤ 1

Eπ[t]

∑

z∈Z
π(z)16k13X(z)2 =

16k13

Eπ[t]

∑

z∈Z
π(z)X(z)2.

Lemma 10 says that
∑
z∈Z π(z)X(z)2 is bounded. Hence (4.7) holds.

5. Proof of Theorem 3. Recall the theorem statement: If Ln has item sizes
generated according to U(0, u] for 0 < u < 1, and A is any on-line algorithm, then
there exists a constant c > 0 such that E[WA(Ln)] > cn1/2 for infinitely many n.

Proof. Let w(t) denote the amount of empty space in partially filled bins after t
items have been packed. We show that for any n > 0 the expected value of the average
of w(1), . . . , w(n) is Ω(n1/2u3). This implies that E[w(n)] must be Ω(n1/2u3), i.e.,
not o(n1/2).

Consider packing item at+1. Let υ(t) denote the number of nonempty bins that
have a gap of at least u2/8 after the first t items have been packed. There are at most
υ(t) bins into which one can put an item larger than u2/8. Therefore, if at+1 is to
leave a gap of less than δ in its bin, either it must have size less than u2/8 or its size
must be within δ of the empty space in one of these υ(t) bins with gaps larger than
u2/8. The probability of this is at most [u2/8+δυ(t)]/u. By choosing δ = u2n−1/2/8,
conditioning on whether υ(t) is greater or less than n1/2 and noting that the size of
at+1 is distributed as U(0, u] independent of υ(t), we have

P (at+1 leaves gap < δ) ≤ P (υ(t) ≥ n1/2) + u/4.

Now

E[w(t)] ≥ δ
∑t−1
s=0 P (as+1 is last in a bin and leaves gap ≥ δ)

= δ
∑t−1
s=0[P (as+1 is last in a bin)

− P (as+1 is last in a bin and leaves gap < δ)]

≥ δ
∑t−1
s=0[P (as+1 is last in a bin)− P (as+1 leaves gap < δ)]

≥ δ
∑t−1
s=0

[
P (as+1 is last in a bin)−∑t−1

s=0 P (υ(s) ≥ n1/2)−∑t−1
s=0 u/4

]
.

Let St be the sum of the first t item sizes and note that St is a lower bound on
the number of bins and hence on the number of items that are the last item in a bin.
We thus have

E

[
t−1∑

s=0

P (as+1 is last in a bin)

]
≥ E[St] = tu/2.

400 COFFMAN ET AL.

Using the fact that δ = u2n−1/2/8, we then have

E[w(t)] ≥ (u2n−1/2/8)

[
tu/4−

t−1∑

s=0

P (υ(s) ≥ n1/2)

]
.

If
∑n−1
s=0 P (υ(s) ≥ n1/2) ≤ nu/24, we have for all t ≥ n/2,

E[w(t]) ≥ (u2n−1/2/8)[nu/8− nu/24] = u3n1/2/96.

This implies

E

[
1

n

n∑

t=1

w(t)

]
≥ u3n1/2/192.

On the other hand, if
∑n−1
s=0 P (υ(s) ≥ n1/2) ≥ nu/24 then

E

[
1

n

n∑

t=1

w(t)

]
≥ 1

n

n∑

t=1

P (υ(t) ≥ n1/2)n1/2(u2/8)

≥ n1/2(u2/8)(u/24) = u3n1/2/192.

These imply that E[w(n)] is Ω(n1/2).
It should be noted that the above proof relies heavily on the fact that the distri-

bution is continuous, since this is the reason why the union of n1/2 intervals of size
δ cannot cover the full probability space. Our discrete distributions U{j, k} do not
have this failing and for this reason we can obtain significantly better average-case
behavior for them.

6. Concluding remarks. In this paper we have proved a combinatorial theorem
about perfect packings and used it to derive results about the expected behavior
of online bin packing algorithms under the discrete uniform distributions U{j, k},
1 < j ≤ k − 2, in which item sizes are restricted to the finite set {i/k : 1 ≤ i ≤ j},
each item size being equally likely. These results, which imply that for any such
distribution there exist on-line algorithms with bounded expected waste, contrast
distinctly with the result proved in section 5 about the corresponding continuous
uniform distributions U [0, j/k], for which expected waste must grow as n1/2. We
presented both randomized algorithms and deterministic ones, with the price for the
deterministic ones being an apparent increase in both running time and expected
waste. It should be noted, however, that in both cases the upper bounds we have
proved on expected waste are quite large, and even though more careful arguments
might enable us to lower the estimated bounds substantially, it is not clear that the
“constant” waste provided by our algorithms would in practice be better than the
slowly growing waste that other heuristics might provide, especially for large values
of k.

One additional weakness of our results as proved in sections 3 and 4 is that they
require a distinct algorithm for each j, k, rather than yielding a single algorithm that
works and provides bounded expected waste for all U{j, k}, 1 < j ≤ k − 2. It is not
difficult to see, however, that our underlying lemmas and their proofs can be used to
provide general on-line algorithms (both randomized and deterministic) with running
times of the form O(np(k)), where p(k) is a polynomial in k that bounds the time to

PERFECT PACKING THEOREMS 401

pack an individual item. The parameters k and j can either be given as part of the
input or, better yet, derived empirically by observing the first-arriving items.

Given j and k, the general algorithms determine the required set of perfect packing
configurations {�ch : 1 ≤ h ≤ H} by implementing the proof of Lemma 7. The required
values of ri, si,mi and (in the deterministic case) r′i, s

′
i,m

′
i can be determined using

the arguments in the proofs of that lemma and Lemma 8. It is then a simple exercise
in data structures (which we leave to the reader) to verify that the packing operations
for both the randomized and deterministic algorithms can be performed in worst-case
polynomial time (in k), independent of n.

Note, however, that these “generalized” algorithms are still quite limited, in that
they only know how to pack items generated according to the set of probability dis-
tributions U{j, k}. They may not even construct legal packings for other discrete
distributions, even though many such distributions also have on-line algorithms that
yield constant expected waste. This follows from the theorem of Courcoubetis and
Weber [9] cited in section 3, which relates the existence of such algorithms for a dis-
tribution �p to the existence of appropriate perfect packing configurations. Although
as we have remarked it is NP-complete to tell for an arbitrary distribution which
case of the Courcoubetis–Weber theorem applies, it is easy to construct individual
distributions other than the U{j, k} that satisfy the hypotheses of this theorem, and
it is likely that there are other general classes of interesting distributions for which the
needed perfect packing configurations can be proved to exist by appropriate analogues
of our perfect packing theorem. We leave the investigation of such questions to future
research.

One useful tool may be the recent result of [10, 11] that for discrete distributions
with integer item sizes one can determine which case of the Courcoubetis–Weber
theorem applies in pseudopolynomial time (time bounded by a polynomial in the
bin capacity B, rather than polynomial in logB as is required by the definition of
polynomial time). For the integer item size case, these references also show that com-
plicated algorithms such as those presented here will not be necessary when dealing
with distributions for which E[WOPT(Ln)] is sublinear. In [10] it is shown that a
simple deterministic O(nB)-time on-line variant on the Sum-of-Squares algorithm of
[11] has O(1) expected waste for all distributions with E[WOPT(Ln)] = O(1) and
Θ(
√
n) expected waste for all distributions with E[WOPT(Ln)] = Θ(

√
n).

Acknowledgment. We are grateful to a referee for many helpful comments,
including a major simplification to the proof of (4.7).

REFERENCES

[1] J. L. Bentley, D. S. Johnson, F. T. Leighton, C. C. McGeoch, and L. A. McGeoch,
Some unexpected expected behavior results for bin packing, in Proceedings of the 16th
Annual ACM Symposium on Theory of Computing, ACM, New York, 1984, pp. 279–288.

[2] E. G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, L. A. McGeoch,
P. W. Shor, R. R. Weber, and M. Yannakakis, Fundamental discrepancies between
average-case analyses under discrete and continuous distributions, in Proceedings of the
23rd Annual ACM Symposium on Theory of Computing, ACM, New York, 1991, pp. 230–
240.

[3] E. G. Coffman, Jr., D. S. Johnson, L. A. McGeoch, P. W. Shor, and R. R. Weber, Bin
Packing with Discrete Item Sizes, Part III: Average Case Behavior of FFD and BFD, in
preparation.

[4] E. G. Coffman, Jr., D. S. Johnson, P. W. Shor, and R. R. Weber, Bin Packing with Dis-
crete Item Sizes, Part IV: Markov Chains, Computer Proofs, and Average-Case Analysis
of Best Fit Bin Packing, in preparation.

402 COFFMAN ET AL.

[5] E. G. Coffman, Jr., D. S. Johnson, P. W. Shor, and R. R. Weber, Bin Packing with
Discrete Item Sizes, Part V: Tight Bounds on Best Fit, in preparation.

[6] E. G. Coffman, Jr., D. S. Johnson, P. W. Shor, and R. R. Weber, Markov chains, com-
puter proofs, and average-case analysis of best fit bin packing, in Proceedings of the 25th
Annual ACM Symposium on Theory of Computing, ACM, New York, 1993, pp. 412–421.

[7] E. G. Coffman, Jr., D. S. Johnson, P. W. Shor, and R. R. Weber, Bin packing with
discrete item sizes, part II: Tight bounds on first fit, Random Structures Algorithms, 10
(1997), pp. 69–101.

[8] E. G. Coffman, Jr., and G. S. Lueker, An Introduction to the Probabilistic Analysis of
Packing and Partitioning Algorithms, Wiley, New York, 1991.

[9] C. Courcoubetis and R. R. Weber, Stability of on-line bin packing with random arrivals
and long-run average constraints, Probab. Engrg. Inform. Sci., 4 (1990), pp. 447–460.

[10] J. Csirik, D. S. Johnson, C. Kenyon, J. B. Orlin, P. W. Shor, and R. R. Weber, On the
sum-of-squares algorithm for bin packing, in Proceedings of the 32nd ACM Symposium on
Theory of Computing, ACM, New York, 2000, to appear.

[11] J. Csirik, D. S. Johnson, C. Kenyon, P. W. Shor, and R. R. Weber, A self organizing
bin packing heuristic, in Algorithm Engineering and Experimentation, M. Goodrich and
C. C. McGeoch, eds., Lecture Notes in Comput. Sci. 1619, Springer-Verlag, Berlin, 1999,
pp. 246–265.

[12] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 3rd ed., Wiley,
New York, 1968.

[13] S. Floyd and R. M. Karp, FFD bin packing for item sizes with distributions on [0, 1/2],
Algorithmica, 6 (1991), pp. 222–240.

[14] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness, W. H. Freeman, New York, 1979.

[15] C. Kenyon, Y. Rabani, and A. Sinclair, Biased random walks, Lyapunov functions, and
stochastic analysis of best fit bin packing, in Proceedings of the Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, Atlanta, GA, 1996, pp. 351–358.

[16] W. Knödel, A bin packing algorithm with complexity o(nlogn) in the stochastic limit, in
Proceedings of the 10th Symposium on Mathematical Foundations of Computer Science,
J. Gruska and M. Chytil, eds., Lecture Notes in Comput. Sci. 118, Springer-Verlag, Berlin,
1981, pp. 369–378.

[17] G. S. Lueker, An Average-Case Analysis of Bin Packing with Uniformly Distributed Item
Sizes, Tech. Report 181, Dept. of Information and Computer Science, University of Cali-
fornia, Irvine, CA, 1982.

[18] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag,
Berlin, 1993.

[19] P. W. Shor, The average case analysis of some on-line algorithms for bin packing, Combina-
torica, 6 (1986), pp. 179–200.

[20] P. W. Shor, How to pack better than Best Fit: Tight bounds for average-case on-line bin pack-
ing, in Proceedings of the 32nd Annual Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 752–759.

THE CAPACITATED K-CENTER PROBLEM∗

SAMIR KHULLER† AND YORAM J. SUSSMANN‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 3, pp. 403–418

Abstract. The capacitated K-center problem is a basic facility location problem, where we
are asked to locate K facilities in a graph and to assign vertices to facilities, so as to minimize
the maximum distance from a vertex to the facility to which it is assigned. Moreover, each facility
may be assigned at most L vertices. This problem is known to be NP-hard. We give polynomial
time approximation algorithms for two different versions of this problem that achieve approximation
factors of 5 and 6. We also study some generalizations of this problem.

Key words. approximation algorithms, facility location, K-center

AMS subject classifications. 05C85, 68Q20, 68R10, 90C27, 90C35

PII. S0895480197329776

1. Introduction. The K-center problem is a basic facility location problem [18]
and is defined as follows: given an edge-weighted graph G = (V,E), find a subset
S ⊆ V of size at most K such that each vertex in V is “close” to some vertex in S.
More formally, the objective function is defined as follows:

min
S⊆V

max
u∈V

min
v∈S

d(u, v),

where d is the distance function. For example, one may wish to install K fire stations
and minimize the maximum distance (response time) from a location to its closest
fire station. The problem is known to be NP-hard [8].

An approximation algorithm with a factor of ρ, for a minimization problem, is
a polynomial time algorithm that guarantees a solution with cost at most ρ times
the cost of an optimal solution. Approximation algorithms for the basic K-center
problem have been very well studied and are known to be optimal [7, 9, 10, 11].
These schemes present natural methods for obtaining an approximation factor of 2.
Several approximation algorithms are known for interesting generalizations of the
basic K-center problem as well [3, 10, 17]. The generalizations include cases when
each node has an associated “cost” for placing a center on it, and rather than limiting
the number of centers, we have a limited budget [10, 17]. Other generalizations include
cases where the vertices have weights and we consider the weighted distance from a
node to its closest center [3, 17].

Recently, a very interesting generalization that we call the capacitated K-center
problem was studied by Bar-Ilan, Kortsarz, and Peleg [1]. The input specifies an
upper bound on the number of centers K, as well as a maximum load L. We have to
output a set of at most K centers, as well as an assignment of vertices to centers. No

∗Received by the editors November 10, 1997; accepted for publication (in revised form) March
16, 2000; published electronically June 20, 2000. A preliminary version of this paper appeared in the
Proceedings of the Fourth Annual European Symposium on Algorithms, Barcelona, Spain, 1996.

http://www.siam.org/journals/sidma/13-3/32977.html
†Department of Computer Science and UMIACS, University of Maryland, College Park, MD

20742 (samir@cs.umd.edu). The research of this author was supported by NSF research initiation
award CCR-9307462 and NSF CAREER award CCR-9501355.

‡Department of Computer Science, University of Maryland, College Park, MD 20742. Cur-
rent address: Fundtech Corporation, 157 Technology Parkway, Suite 100, Norcross, GA 30092
(yorams@fundtech.com). The research of this author was supported by NSF CAREER award CCR-
9501355 and was performed while the author a Ph.D. student at the University of Maryland.

403

404 SAMIR KHULLER AND YORAM J. SUSSMANN

more than L vertices may be assigned to a single center. Under these constraints, we
wish to minimize the maximum distance between a vertex u and its assigned center
φ(u). Formally, we have

min
S⊆V

max
u∈V

d(u, φ(u))

such that

|{u | φ(u) = v}| ≤ L ∀v ∈ S,

where

φ : V → S.

Bar-Ilan, Kortsarz, and Peleg [1] gave the first polynomial time approximation
algorithm for this problem with an approximation factor of 10. Various applications
for capacitated centers were first mentioned in [14, 15]. A slightly different problem,
where the radius is fixed and where one has to minimize the number of centers, shows
up in the Sloan digital sky survey project [13].

1.1. Our results. In section 2 we discuss a simplification of the problem where
a node may appear multiple times in S (i.e., more than one center can be put at a
node). We will refer to this problem as the capacitated multi-K-center problem. By
introducing some new ideas and using the basic approach proposed in [1], we are able
to give a polynomial time algorithm that achieves an approximation factor of 5. In
section 3 we show how to solve the problem when we are allowed only one center at a
vertex. The high-level structure of the algorithm is the same, but the assignment of
centers to vertices has to be done extremely carefully. This problem will be referred
to as the capacitated K-center problem. For this version of the problem we obtain an
approximation factor of 6. It is worth noting that, in fact, we prove that our solution
is at most 6 times an optimal solution that is allowed to put multiple centers at a
single vertex.

The algorithm can be easily extended to the more general case when each vertex
has a demand di, and multiple centers may be used to satisfy its demand. The total
demand assigned to any center should not exceed L. Using the method in [1], we can
obtain an approximation factor of 13 for the version with costs. (Each vertex has a
cost for placing a center on it, and we are working with a fixed budget.) In section 4
we study some other variants of this problem. Let a (c1K, c2L, c3R) solution denote
a solution using at most c1K centers, each with a load of at most c2L, which assigns
every node to a center at distance at most c3R, where R is the radius of the optimal
solution. For any x ≥ 1, let c = x+1

x . We obtain a
(

2
cK, cL, 2R

)
solution for the

capacitated multi-K-center problem, and a
(

2
cK, cL, 4R

)
solution for the capacitated

K-center problem.

2. Algorithm for capacitated multi-K-centers. We first give a high-level
description of the algorithm. We may assume for simplicity that G is a complete
graph, where the edge weights satisfy the triangle inequality. (We can always replace
any edge by the shortest path between the corresponding pair of vertices.)

High-level description. The algorithm uses the threshold method used for
the K-center problem [4, 9, 10]. Sort all edge weights in nondecreasing order. Let
the (sorted) list of edges be e1, e2, . . . , em. For each i, let the threshold graph Gi

CAPACITATED K-CENTER 405

be the unweighted subgraph obtained from G by including edges of weight at most
w(ei). Run the algorithm below for each i from 1 to m, until a solution is obtained.
(Hochbaum and Shmoys [10] suggest using binary search to speed up the computation.
If running time is not a factor, however, it does appear that to get the best solution
(in practice) we should run the algorithm for all i and take the best solution.) In
each iteration, we work with the unweighted subgraph Gi. Since Gi is an unweighted
graph, when we refer to the distance between two nodes, we refer to the number of
edges on a shortest path between them. In iteration i, we find a solution using some
number of centers. If the number of centers exceeds K, we prove that there is no
solution with cost at most w(ei). If the number of centers is at most K, we show that
the maximum distance in Gi between a vertex and its assigned center is at most 5.
This gives an approximation factor of 5.

Observe that if we select as centers a set of nodes that is sufficiently well separated
in Gi, then no two centers that we select can share the same center in the optimal
solution, if the optimal solution has radius w(ei). This suggests the following initial
approach. First find a maximal independent set I in G2

i . (G2
i is the graph obtained

by adding edges to Gi between nodes that have a common neighbor.) This technique
was introduced by Hochbaum and Shmoys [9, 10] and has been used extensively to
solve K-center problems. We refer to a node in the maximal independent set as a
monarch. The algorithm also constructs a “tree” of monarchs which will be used to
assign vertices to centers. There are two key differences between our algorithm and
the one presented in [1].

1. We use a specific procedure to find a maximal independent set, as opposed
to selecting an arbitrary maximal independent set.

2. We deal with all monarchs uniformly rather than dealing with the light and
heavy1 monarchs separately as in [1].

Each monarch has an empire that consists of a subset of vertices within the imme-
diate neighborhood of the monarch in G2

i . When a monarch is added to the maximal
independent set, all such vertices that do not currently belong to an empire are added
to this monarch’s empire. The algorithm also constructs a tree of monarchs as the
monarchs are selected. This tree has the property that an edge in the tree corresponds
to a pair of monarchs whose distance in Gi is exactly three. Each monarch then tries
to collect a domain of size L—a subset of vertices that are close to the monarch and
assigned to it. In doing so, a monarch may grab vertices from other empires if none
are available in its own empire. After this process is complete there may still be unas-
signed vertices. We then use the tree of monarchs to assign new centers to handle
the unassigned vertices. Nodes that are left unassigned in a particular empire may
be assigned to the parent monarch. Eventually, we will put additional centers at the
monarch vertices (recall that more than one center may be located at a single vertex).

Capacitated-Centers (G = (V,E),K, L).
1. Sort all edges in nondecreasing weight order (e1, . . . , em).
2. for i = 1 to m do
3. Let Gi = (V,Ei) where Ei = {e1, . . . , ei}.
4. Unmark all vertices.
5. if AssignCenters(Gi) then exit.
6. end-proc

1These terms will be explained shortly.

406 SAMIR KHULLER AND YORAM J. SUSSMANN

AssignCenters(Gi).
1. successful = true
2. Let nci be the number of vertices in connected component Gci .

3. if (
∑
c
n

c
i

L �) > K then successful = false
else

4. for each connected component Gci of Gi do
5. AssignMonarchs(Gci).
6. AssignDomains(Gci).
7. ReAssign(Gci).
8. if total centers used > K then successful = false
9. return (successful)
10. end-proc

AssignCenters(Gi) tries to assign centers within each connected component.
Each component is dealt with separately. (This can be done because if there is an
optimal solution with maximum radius w(ei), then no center in the optimal solution
will be assigned vertices that belong to different connected components of Gi.) A
lower bound on the number of centers in each component is
nc

L �, where nc is the
number of vertices in Gci . If the number of allowed centers is smaller than

∑
c
nc

L �,
then there is no solution.

AssignMonarchs(Gci) (described in Appendix A) assigns monarchs (nodes in
the independent set) in a breadth first search (BFS) manner. After putting a vertex
in the independent set, mark all unmarked nodes within distance 2 in Gi. To pick a
new vertex to add to the independent set, pick an unmarked vertex that is adjacent
to a marked vertex. Rather than describing the algorithm in terms of (Gci)

2, we work
with Gci to separate the nodes in a monarch’s empire into level-1 and level-2 nodes.
The level-1 nodes are adjacent to the monarch, and the level-2 nodes are at distance
2 from the monarch. Define E1(v) and E2(v) to be the level-1 and level-2 nodes,
respectively, in v’s empire. Thus the empire of v is E1(v) ∪ E2(v). The algorithm
maintains a queue Q which is initialized by adding one vertex. Neighbors of level-2
nodes, which are unmarked, are candidates to be chosen in the independent set and
are added to Q.

Before discussing the pertinent properties of AssignMonarchs, we show its
execution on the simple example given in Figure 1. The algorithm starts from vertex
1, which is made a monarch. Vertex 2 is added to E1(1) (level 1 in its empire), and
vertices 3 and 4 are added to E2(1). Q currently contains vertices 5, 8, and 10. Vertex
5 is then chosen as a monarch, and vertices 6 and 7 are added to E1(5). Vertices 8
and 9 are both added to E2(5). Q now contains vertices 8, 10, 14, and 16. The next
vertex chosen from Q is 10 since 8 is marked. Vertices 11 and 12 are added to E1(10),
and vertex 13 is added to E2(10). Q now contains vertices 8, 14, and 16. Vertex
14 is now chosen from Q, and vertices 15 and 16 are added to E1(14) and E2(14),
respectively. The algorithm stops since there are no more unmarked vertices in Q.

There are a few important properties of the monarchs produced by algorithm
AssignMonarchs.

Important properties.

1. The distance between any two monarchs is at least 3.
2. The distance between a monarch m (except for the root) and its “parent

monarch” p(m) in the tree is exactly 3.
3. The distance between a monarch and any vertex in its empire is at most 2.
4. Each monarch (except for the root) has at least one edge to a level-2 vertex

CAPACITATED K-CENTER 407

Fig. 1. Example to show execution of AssignMonarchs.

in its parent monarch’s empire. Moreover, each such level-2 vertex has only
one such neighbor that is a monarch. More generally, any vertex can have at
most one neighbor that is a monarch (corollary of property 1).

Procedure AssignDomains (Appendix B) tries to assign a domain of size at most
L to each monarch. The objective is to assign as many vertices as possible to some
domain, subject to the following constraints.

1. A vertex may be assigned to a monarch’s domain only if it is at distance at
most 2 from the monarch.

2. A monarch may include in its domain a vertex from another empire only if
each vertex in its empire belongs to some domain.

This assignment can be viewed as a “b-matching” problem [16]. One way to
implement this procedure is by finding a min-cost maximum flow in an appropriate
graph G′ defined as follows.

Let G′ = (M ∪ V ∪ {s, t}, E′), where M is the set of monarchs in Gci and E′ =
{(m, v) | m ∈M , v ∈ V , distance from m to v is at most 2}. Add edges {(s,m) | m ∈
M} and {(v, t) | v ∈ V }. For m ∈M , v ∈ V , set capacities u(s,m) = L, u(m, v) = 1,
and u(v, t) = 1. Cost of edge c(m, v) = 1 if v is not in m’s empire. Cost of all other
edges is 0. Compute a min-cost maximum integral flow in G′ from s to t. For each
monarch m, set domain(m) = {v | v receives one unit of flow from m in G′}. For
each v, if v ∈ domain(m), then define φ(v) = m.

Definition 2.1. A light monarch is one that has a domain of size < L. A heavy
monarch is one that has unassigned vertices in its empire. A full monarch is one that
is neither heavy nor light.

Lemma 2.2. If m is a heavy monarch, then each vertex in m’s domain belongs
to m’s empire.

408 SAMIR KHULLER AND YORAM J. SUSSMANN

Proof. Assume that there is a vertex u in m’s domain that is not in m’s empire.
Let x be a vertex in m’s empire that is not assigned to any domain. We can change
the flow function in G′ and send one unit of flow from m to x instead of m to u. This
produces a max flow in G′ of lower cost, which is a contradiction.

If there is no heavy monarch, all vertices belong to a domain and the algorithm
halts successfully.

Let KL be the number of light monarchs. Let nL be the number of vertices
belonging to the domains of light monarchs, and let n be the total number of vertices.

Theorem 2.3. The number of centers required is at least KL +
(n− nL)/L�.
The proof is simpler than the proof given in [1]. The following lemmas were

established in [1]. We repeat them for completeness.

Let E be the set of monarchs as defined in [1]. We repeat the definition here.

Let E0 be the set of light monarchs. Iteratively, add to E0 any monarch that
contains a vertex in its domain that could have been assigned to a monarch in E0.

Ej = Ej−1 ∪ {m ∈M |∃v ∈ V,∃m′ ∈ Ej−1, φ(v) = m, and d(v,m′) ≤ 2 in Gi}.

Let E be the largest set Ej obtained in this process. Let F be the set of remaining
monarchs.

Lemma 2.4. The set E does not contain any heavy monarchs.
Proof. Suppose heavy monarch θ was added at iteration j. We can transfer a

node v to a center θ′ in Ej−1. By a sequence of such transfers, we eventually reach a
center in E0 which has at most L − 1 nodes in its domain and can absorb the extra
node. This corresponds to a higher flow, since the heavy monarch can absorb an
unassigned node, which is a contradiction.

Lemma 2.5. Consider a center in an optimal solution that covers a monarch in
E. This center cannot be assigned any nodes that are not in the domains of monarchs
in E.

Proof. Assume for contradiction that θ is a center in the optimal solution that
covers both e ∈ E and u. If u does not belong to any domain, then, since the distance
from u to e in Gi is at most 2, we can perform a sequence of transfers, eventually
reaching a center in E0 which has at most L− 1 nodes in its domain, and can absorb
the extra node, resulting in a higher flow, which is a contradiction. If u belongs to
the domain of monarch f , then, since the distance from e to u in Gi is at most 2, and
the distance from u to f in Gi is at most 2, it must be the case that f ∈ E as required
by the lemma.

Proof of Theorem 2.3. Each monarch in E is covered by a distinct center in the
optimal solution, and these centers of the optimal solution cannot cover any other
nodes in F . Let nE be the number of vertices in the domains of monarchs in E . Then
we need at least |E|+
(n−nE

L)� centers. This is the same as KL+
(n+(|E|−KL)·L−nE
L)�.

Since nE = (|E| −KL) · L + nL, we get KL +
(n−nL

L)�.
We will prove that this is also an upper bound on the number of centers we use.

We now describe procedure ReAssign.

Procedure ReAssign (Appendix C) allocates new centers to cover the nodes left
unassigned after the execution of AssignDomains. It works with one empire at a
time, repeatedly selecting a leaf node from the tree of monarchs and then deleting
that monarch from the tree. Each monarch will cover as many of the unassigned
nodes in its empire as it can, with each new center covering L unassigned nodes. This
will leave $ < L nodes still unassigned. To ensure that nodes can only be passed up

CAPACITATED K-CENTER 409

the tree once, we assign the $ remaining nodes to m, freeing up to $ nodes previously
assigned to m. We then pass these nodes to the parent monarch of m.

In practice, one would pass to the parent monarch p(m) those nodes which are
closest to p(m).

Theorem 2.6. Each vertex is assigned to a center whose distance in Gi is at
most 5. Moreover, we use at most KL +
(n− nL)/L� centers.

Proof. All centers except possibly light monarchs cover L nodes by construction.
The size of the domain of a light monarch does not decrease. Therefore the total
number of centers used is at most KL +
(n− nL)/L�.

A node is either covered by the node from which it receives flow, or by the parent
of its original monarch. In the former case, it is at distance at most 2 from the
center that covers it. In the latter case the passed nodes are always covered by their
monarch’s parent, i.e., they are only passed once. Thus the distance from a node to
the center that covers it is at most 5 (at most 2 to its original monarch, and 3 more
to the parent monarch).

3. Algorithm for K-centers. We now consider the version where we are re-
quired to pick K distinct vertices as centers. We use the same high-level approach as
in the previous case but need to pick the centers carefully. We are able to show that
the algorithm obtains an approximation factor of 6.

The main difficulty lies in allocating centers to cover the vertices left unassigned
by AssignDomains. We first introduce some new notation.

Nodes in a monarch’s empire are called its subjects. In AssignMonarchs, each
level-2 subject w of a monarch is brought in by a node u at distance 1 from the
monarch. We define link(w) = u. Each monarch m (except the root) was placed into
Q by a unique level-2 subject of its parent monarch. This node is called the spouse
s(m) of monarch m (Figure 2). Note that each monarch has a unique spouse, and a
node can be the spouse of at most one monarch (by property 4).

Observe that obtaining a factor of 7 using the previous approach is easy: simply
run the above algorithm and then “shift” all but one of the centers allocated at
monarch m to nodes in its empire (which are at distance at most 2 from m). Since
each child monarch of m is adjacent to a distinct node in m’s empire (its spouse), it
is easy to see that there will be sufficiently many nodes in m’s empire to perform the
shift. Obtaining the bound of 6 requires a more complex algorithm which is described
next.

We need to be careful when allocating new centers to cover unassigned nodes. We
require that: (1) a node can only be allocated as a center once; (2) monarchs have
sufficient available nodes to allocate centers for the nodes passed to them. To ensure
this we enforce the following rule. A monarch may allocate centers of the following
types only:

1. nodes in its empire, or
2. nodes at distance 1 from itself (which may not be in its empire), as long as a

monarch does not allocate its spouse as a center.
We define a tree T (m) of height 2 corresponding to each monarch m. The root

of T (m) is monarch m. The leaves of this tree are all the level-2 subjects of m that
are the spouse of some other monarch. For any leaf w, we make link(w) the parent
of the leaf. These nodes are the children of m in the tree T (m).

In Figure 3 we show a monarch m together with all the level-2 subjects of m that
are the spouse of some other monarch (for example, m′). For each leaf w, we also
show link(w). Notice that link(w) may not be in monarch m’s empire.

410 SAMIR KHULLER AND YORAM J. SUSSMANN

Fig. 2. Example to illustrate links and spouses.

Fig. 3. Example to illustrate tree T (m) of a monarch m.

Observe that nodes that are the spouse of some monarch may belong to two trees.
We therefore specify that a monarch may assign a center to any vertex in its tree T (m)
other than its spouse. This ensures that no vertex is assigned as two centers by two
different monarchs.

Tree T (m) will be used in assigning vertices that are passed to monarch m. Nodes

CAPACITATED K-CENTER 411

passed from monarch m′ to monarch m are covered by one of five nodes: the spouse of
monarch m′, i.e., s(m′), the spouse’s link link(s(m′)), the spouse of a sibling monarch
s(n) (where p(n) = p(m′) = m and link(s(n)) = link(s(m′))), the link of a sibling
monarch’s spouse link(s(n)) (where p(n) = p(m′) = m), or monarch m.

A monarch does not allocate centers at nodes that are passed to it. Because of
this, we may have to allocate centers at vertices that are already assigned to a center.
We therefore specify that in this case the new center does not cover itself but covers L
other vertices. A vertex allocated as a center which is not assigned to a center covers
itself as well as L− 1 other vertices.

The algorithm given in this section differs from that in section 2 in the selection
of new centers to cover the vertices left unassigned by AssignDomains. We give
a high-level description of the new selection scheme below; pseudocode for the new
ReAssign procedure that implements the scheme is given in Appendix D.

High-level description. We repeatedly select a leaf monarch in the tree of
monarchs and allocate centers to cover nodes in its empire as well as nodes passed to
it from its children monarchs. Let m be the monarch currently under consideration.
If m′ is a child monarch of m, we will assume that m′ passes the excess nodes in
its empire to m. Each leaf node s(m′) in T (m) is labeled with the number of excess
nodes that monarch m′ is passing to m.

Nodes passed to m are assigned to centers placed on nodes in T (m). There are
a few important things to note here. (1) When we begin to process monarch m, no
centers are currently placed at any nodes in T (m) (except for m itself). (2) Monarch
m is responsible for allocating centers for all the nodes that are passed to it from its
children monarchs. (3) Monarch m is responsible for the free nodes in its empire.
However, some of the free nodes at distance 2 from m may belong to trees of other
monarchs and may have centers already placed on them, in which case we will assume
they are assigned to their own centers. If a vertex at distance 2 is in monarch m’s
domain and a center is placed on it by the tree it belongs to, then it remains in m’s
domain and does not change its assignment.

Monarch m first assigns the nodes that are passed to it from children monarchs,
using T (m) to place full centers. Any nodes that are left over (at most L − 1) that
were not assigned are assigned to monarch m, displacing vertices that were in m’s
domain, which become unassigned. At this stage there may be many free nodes in
m’s empire—nodes that were never part of a domain, as well as the nodes that were
recently displaced from m’s domain. Note that the nodes that were never part of a
domain do not have a center on them, while the ones that were displaced from m’s
domain could have centers placed on them (since they may belong to other trees and
may have been chosen as centers). However, there are at most L− 1 of these, so any
which do not get assigned within m’s empire can be passed to m’s parent monarch.
We now choose centers from the set of nodes that never belonged to any domain.
In doing so, we may assign some of the displaced nodes as well. The remaining
unassigned vertices, including the displaced nodes, are passed to m’s parent monarch.

We now describe in detail how the passed vertices are handled. Group the leaves
of T (m), placing leaves u and v in the same group iff link(u) = link(v). We process
the groups in turn, processing the group whose common link is s(m) last, if such a
group exists.

We assign passed nodes to centers by processing the groups in order. We process
a leaf node in a group as follows: We start by adding the vertices passed to the leaf
node to a list called pending. Whenever pending has at least L vertices, we create

412 SAMIR KHULLER AND YORAM J. SUSSMANN

a center and assign vertices to it. There are two things we have to be careful about:
If we create a center at a vertex that is free, we have to assign the vertex to its own
center. If a center is going to be assigned vertices from different groups, we move the
center up one level, from a leaf node to the link node. Centers chosen in the last group
are not assigned any vertices from other groups, and so we never assign a center at
s(m) but only at leaf nodes in this group.

To ensure that nodes in T (m) do not have centers placed on them, we process
the monarchs in T in the reverse of the order in which they were placed in T . Note
that if a node v in T (m) belongs to the empire of another monarch m′, then m′ must
have been placed in T before m, otherwise m would have placed v in its own empire.
We thus process m before m′. If a center is placed at v by m, then v is assigned to
itself in case it was free. When we eventually process m′, we are guaranteed that if v
is free, it does not have a center placed on it.

For the last group, we proceed as above, except that any nodes carried over
from the last group are picked up by monarch m, possibly replacing some nodes
already assigned to m. These replaced nodes are either passed or allocated a center in
E1(m) ∪E2(m) by monarch m. (Note that if monarch m is light, then the nodes are
passed; if not, then it does not grab nodes from other empires, so it is safe to allocate
centers at/for them.)

Example. We now discuss the example given in Figure 4 in detail. We process
the leaves from left to right. Each leaf is labeled with the number of vertices that are
passed to it from the corresponding child monarch. Assume that L is 10. After we
process u1, pending(m) has size 4, and no centers are allocated. When we process
u2, pending(m) has size 12. Since we can allocate a full center at u2, we do so. Since
u2 is free, we assign u2 to itself and assign 9 (= L− 1) vertices from pending(m) to
u2. The size of pending(m) is now 3. In processing u3, we add two more vertices
to pending(m). Before we process the leaves in v2’s group, we set X = v1. Observe
that vertices passed to nodes in v1’s group are going to share a center with vertices
passed to nodes in v2’s group; hence we “promote” the center one level up. When we
process u4 and u5, we add 3 more vertices to pending(m), which now has size 8. We
then process u6, adding 8 vertices to pending(m). Since we can allocate a full center,
we allocate a center at v1 (current value of X). Since v1 is currently unassigned, we
assign v1 to itself and assign 9 (= L− 1) vertices from pending(m) to it. The size of
pending(m) is now 7. When we process u7, we add 5 vertices to pending. Since we
can allocate a full center, we create a center at u7. Since u7 is assigned, we assign 10
vertices from pending(m) to it. This leaves 2 vertices in pending(m) that are assigned
to monarch m, possibly displacing other assigned vertices.

Lemma 3.1. Each node is allocated as a center at most once.

Proof. A node v may be allocated as a center either by its monarch, or by the
monarch m whose tree T (m) it belongs to. If v’s monarch allocates v as a center,
then it must be the case that v is unassigned, which means v cannot be currently
allocated as a center. If m allocates v as a center, then since m was processed before
v’s monarch, v could not have already been allocated as a center.

If v belongs to trees T (m) and T (m′) for two different monarchs, then it must be
the case that for one of the monarchs, say m′, v = s(m′). Then m′ will not allocate
v as a center.

Lemma 3.2. Each monarch m has sufficient available nodes in its tree T (m) to
allocate centers for nodes passed to it.

Proof. Each monarch passes at most L− 1 nodes to its parent. If monarch m has

CAPACITATED K-CENTER 413

Fig. 4. Example to illustrate assignment of centers in tree T (m).

N children monarchs, then it must be the case that each child monarch has a unique
spouse in T (m). In addition, all these spouses are level-2 nodes in T (m), so they are
all available to allocate as centers.

Lemma 3.3. Every node is assigned to a center.
Proof. All nodes passed to a monarch m are assigned centers from T (m) ∪ {m}.

Unassigned nodes in m’s empire are either assigned a center or passed. There are at
most L− 1 nodes displaced from domain(m), hence they are either allocated a center
from m’s empire or passed to m’s parent.

Theorem 3.4. Each vertex is assigned to a center whose distance in Gi is at
most 6. Moreover, we use at most KL +
(n− nL)/L� centers.

Proof. All centers except possibly light monarchs cover L nodes by construction.
The size of the domain of a light monarch does not decrease. Therefore the total
number of centers used is at most KL +
(n− nL)/L�.

A node which is not passed is covered either by the monarch from which it receives
flow or by a node in its monarch’s empire. In the former case, it is at distance at
most 2 from the center that covers it, and in the latter case it is at distance at
most 4 from the center that covers it. A node which is passed from monarch m′

to monarch m is covered by one of the following: (1) s(m′), (2) link(s(m′)), (3)
s(n), where p(n) = p(m′) = m and link(s(n)) = link(s(m′)), (4) link(s(n)), where
p(n) = p(m′) = m, or (5) monarch m. The distance bounds are as follows.

Case Distance
Case (1) ≤ 3
Case (2) ≤ 4
Case (3) ≤ 5
Case (4) ≤ 6
Case (5) ≤ 5

In Figure 5 we give an example showing that the factor of 6 is tight for our
algorithm. All edges in the example are edges in Gi. In the example, monarchs m2

and m3 pass 2 and 3 nodes, respectively, to their parent m1. Monarch m2 passes
itself and v4, and monarch m3 passes itself, v5, and v6. The algorithm assigns all 5
passed nodes to a center which it places at v1, leaving v6 at a distance of 6 from its
center. Vertex v3 absorbs the remaining nodes in m1’s empire. It is clear, however,
that OPT covers all nodes within distance 1.

Running time. The bottleneck in the running time of this algorithm is the
flow computation. If we use binary search in Capacitated-Centers, the algorithm
computes O(log n) maximum flows.

414 SAMIR KHULLER AND YORAM J. SUSSMANN

Fig. 5. Example to show that the factor of 6 is tight.

3.1. Capacitated centers with costs. The capacitated K-center problem with
costs is a generalization of the capacitated K-center problem where a cost function
is defined on the vertices and the objective is to pick a set of centers whose total
cost is at most K, such that the radius is minimized. (Note that this is equivalent
to the weighted capacitated K-center problem in [1]. We use cost here to distinguish
from weights as defined in, for example, [3, 17].) More formally, we are given a cost
function c : V → R+, and we add the constraint

∑
v∈S c(v) ≤ K to the statement of

the capacitated K-center problem.

Bar-Ilan, Kortsarz, and Peleg gave the first polynomial time approximation algo-
rithm for this problem with an approximation factor of 21. Their technique, which
involves finding a minimum-cost perfect matching in a bipartite graph, generalizes
to finding a 2ρ + 1 solution given a ρ-approximation algorithm for the capacitated
K-centers problem. It therefore yields an approximation algorithm with an approxi-
mation factor of 13 when combined with our algorithm for capacitated K-centers.

4. Remarks. It is possible to improve the quality of the approximation if one
is willing to allow some slack on the number of centers used and the maximum load.
Let a (c1K, c2L, c3R) solution denote a solution using at most c1K centers, each
with a load of at most c2L, which assigns every node to a center at distance at
most c3R, where R is the radius of the optimal solution. Thus the algorithms given
above obtain a (K,L, 5R) solution to the capacitated multi-K-center problem and a
(K,L, 6R) solution to the capacitated K-center problem.

For the capacitated multi-K-center problem, we can obtain for any x ≥ 1 a(
2
cK, cL, 2R

)
solution, where c = x+1

x . For example, when x = 1, this gives a
(K, 2L, 2R) solution. We can also achieve a (2K,L, 2R) solution to this problem

by always allocating
⌈
unassigned(m)

L

⌉
extra centers in each empire.

The algorithm works as follows. We modify ReAssign to overload centers in some
empires and allocate extra centers in others. Specifically, let unassigned(m) = k′L+$.

CAPACITATED K-CENTER 415

If $ ≤ L
x , then allocate k′ additional centers at monarch m and use the centers at m

to cover all nodes in unassigned(m). Clearly, no center at monarch m has to cover
more than x+1

x L nodes in this case. If $ > L
x , then allocate k′ + 1 additional centers

at monarch m and use them to cover all nodes in unassigned(m). This may cause us
to use more than K centers, since we allocate new lightly loaded centers at the end.
We show below that we use at most 2x

x+1K centers.

Theorem 4.1. For any x ≥ 1, the algorithm gives a
(

2
cK, cL, 2R

)
solution, where

c = x+1
x .

Let the sets E and F be defined as before. Let X be the set of monarchs at which
an extra center was allocated to cover $ > L

x nodes. Let C1 and C2 be the number of
centers used in the optimal solution to cover nodes in empires in E and F , respectively.
Clearly, any extra centers we use must be allocated at monarchs in F . Let SL and
SF denote the sets of nodes in the domains of monarchs in E and F , respectively. Let
f be the number of full centers allocated by the algorithm that cover nodes in SF .

Lemma 4.2. The number of centers allocated by our algorithm is at most C1 +
f + |X |.

Proof. No additional centers are used by the algorithm to cover nodes in SL.
Therefore the algorithm uses |E| + f + |X | centers. Because the monarchs form an
independent set in G2

i , the optimal solution must use at least |E| centers to cover
nodes in SL. Therefore C1 ≥ |E|, implying the lemma.

Lemma 4.3. A lower bound on C2 is given by C2 ≥ f + |X |
x .

Proof. By Lemma 2.5, the centers in the optimal solution which cover nodes
in SL cannot cover any nodes not in SL. Therefore the optimal solution uses at

least |SF |
L centers to cover nodes in SF . Since the lightly loaded centers allocated

by our algorithm to cover nodes in SF each cover at least L
x nodes, it follows that

fL + |X |L
x ≤ |SF |. Therefore C2 ≥ |SF |

L ≥ f + |X |
x .

Proof of Theorem 4.1. By Lemma 4.2, the number of centers used by our algorithm
is at most

C1 + f + |X | ≤ C1 +
1 + x

1 + x
f +

1 + x

1 + x
|X |

≤ C1 +
1 + x

1 + x
f +

x− 1

1 + x
|X |+ 2

1 + x
|X |

≤ C1 +
1 + x

1 + x
f +

x− 1

1 + x
f +

2

1 + x
|X | (since |X | ≤ f)

≤ C1 +
2x

1 + x

(
f +
|X |
x

)

≤ C1 +
2x

1 + x
C2 (by Lemma 4.3)

≤ 2x

x + 1
(C1 + C2) (since x ≥ 1)

≤ 2x

x + 1
K (because the optimal solution

does not overuse centers).

For the capacitated K-center problem, the same approach gives a
(

2
cK, cL, 4R

)

solution.

Results of Lund and Yannakakis [12] and Feige [6] imply that no polynomial time
(c1K, c2L, (2 − ε)R) approximation algorithm is possible unless P = NP , since this

416 SAMIR KHULLER AND YORAM J. SUSSMANN

would imply a constant-factor approximation algorithm for set cover. A sketch of the
reduction is as follows: given an instance of set cover, construct a bipartite graph
with nodes corresponding to the sets in one bipartition and nodes corresponding to
the elements in the other. There is an edge between each set-element node pair such
that the element appears in the set. Add two nodes v and v′; v has an edge to every
node corresponding to a set, and there is an edge between v and v′. All edge lengths
are 1. Set L = the number of nodes. Now any solution of radius less than 2R using
K ′ centers corresponds to a solution to the set cover problem using K ′ − 1 sets.

Appendix A. Pseudocode for AssignMonarchs.
AssignMonarchs(Gci).
1. Pick an arbitrary vertex v ∈ Gci and set Q = {v}.
2. p(v) = nil.
3. while Q has unmarked nodes do
4. Remove an unmarked node v from Q.
5. Make v a monarch and mark it.
6. for all u ∈ Adj(v) do
7. if u is unmarked then
8. Add u to E1(v) and mark u
9. for all u ∈ Adj(v) do
10. for all w ∈ Adj(u) do
11. if w is unmarked then
12. Add w to E2(v) and mark w
13. for all u ∈ E2(v) do
14. for all w ∈ Adj(u) do
15. if w is unmarked and w /∈ Q then
16. Set p(w) = v and add w to Q
17. end-proc

Appendix B. Pseudocode for AssignDomains.
AssignDomains(Gc

i).
1. Construct a bipartite graph G′ = (M,V,E′), where M is the set of monarchs in

Gci and E′ = {(m, v) | m ∈M , v ∈ V , distance from m to v is at most two}.
2. Add vertices s and t. Add edges {(s,m) | m ∈M} and {(v, t) | v ∈ V }.
3. For m ∈M , v ∈ V , set capacities u(s,m) = L, u(m, v) = 1 and u(v, t) = 1.
4. Cost of edge c(m, v) = 1 if v is not in m’s empire.

Cost of all other edges is 0.
5. Compute a min-cost maximum integral flow in G′.
6. For each monarch m, set

domain(m) = {v | v receives one unit of flow from m in G′}.
7. For each v, if v ∈ domain(m) then define φ(v) = m.
8. end-proc

Appendix C. Pseudocode for first version of ReAssign.
ReAssign(Gci).
1. Let M be the set of monarchs in Gci .
2. For each monarch m ∈M , set

unassigned(m) = ({m} ∪ E1(m) ∪ E2(m)) \ (∪u∈Mdomain(u)).
3. Let T be the tree of monarchs in Gci .
4. for all nodes m in T , set passed(m) = ∅.
5. while T is not empty do

CAPACITATED K-CENTER 417

6. Remove a leaf node m from T .
7. Let |unassigned(m)|+ |passed(m)| = k′L + $, 0 ≤ $ < L.
8. Allocate k′ new centers at monarch m and assign k′L of the nodes

to them. For each such node v we define φ(v) = m.
9. Assign the $ remaining nodes to monarch m and for each such

node v define φ(v) = m, freeing up to $ nodes in domain(m).
10. Add the freed nodes to passed(p(m)).
11. Delete m from T .
12. end-proc

Appendix D. Pseudocode for second version of ReAssign.

ReAssign(Gci).
1. Let M be the set of monarchs in Gci .
2. For each monarch m ∈M , set

unassigned(m) = ({m} ∪ E1(m) ∪ E2(m)) \ (∪u∈Mdomain(u)).
3. For each monarch m ∈M , let pending(m) be an ordered list, initially ∅.
4. Let T be the tree of monarchs in Gci .
5. for all nodes m in T do
6. Define T (m) such that the group containing s(m) comes last.
7. for all leaf nodes v in T (m)) do set passed(v) = ∅.
8. for all nodes v in Gci , let χ(v) = {v} iff v is unassigned and ∅ otherwise.
9. for all nodes m in T , process them in reverse order of their insertion into T :
10. Set X = null.
11. for all children v of m in T (m) do
12. for all children u of v in T (m) do
13. Append passed(u) to pending(m).
14. if X = null then set X = u.
15. if |χ(X)|+ |pending(m)| ≥ L then
16. Allocate a center at X and assign χ(X) to it.
17. Assign the first L− |χ(X)| nodes from pending(m) to X and

remove them from pending(m).
18. Set X = null.
19. else if X = u then set X = null.
20. if v �= s(m) and X = null then
21. if |χ(v)|+ |pending(m)| = L then
22. Allocate a center at v and assign χ(v) to it.
23. Remove all nodes from pending(m) and assign them to v.
24. else set X = v.
25. Let displaced(m) = |domain(m)|+ |pending(m)| − L.
26. Assign all nodes in pending(m) to m,

possibly displacing nodes in domain(m).
27. Let |unassigned(m)|+ displaced(m) = k′L + $.
28. Allocate k′ new centers at nodes in unassigned(m).
29. Assign k′L of the nodes to them, assigning nodes in unassigned(m) first.
30. Add the $ remaining nodes to passed(s(m)).
31. Delete m from T .
32. end-proc

Acknowledgments. We thank Robert Pless and Balaji Raghavachari for useful
discussions. We thank the ESA referee for helpful comments.

418 SAMIR KHULLER AND YORAM J. SUSSMANN

REFERENCES

[1] J. Bar-Ilan, G. Kortsarz, and D. Peleg, How to allocate network centers, J. Algorithms, 15
(1993), pp. 385–415.

[2] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, MIT Press, Cambridge,
MA, 1989.

[3] M. Dyer and A. M. Frieze, A simple heuristic for the p-center problem, Oper. Res. Lett., 3
(1985), pp. 285–288.

[4] J. Edmonds and D. R. Fulkerson, Bottleneck extrema, J. Combin. Theory, 8 (1970), pp. 299–
306.

[5] T. Feder and D. H. Greene, Optimal algorithms for approximate clustering, in Proceedings
of the 20th ACM Symposium on the Theory of Computing, Chicago, IL, 1988, pp. 434–444.

[6] U. Feige, A threshold of lnn for approximating set cover, in Proceedings of the 28th ACM
Symposium on the Theory of Computing, Philadelphia, PA, 1996, pp. 314–318.

[7] T. Gonzalez, Clustering to minimize the maximum inter-cluster distance, Theoret. Comput.
Sci., 38 (1985), pp. 293–306.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1978.

[9] D. Hochbaum and D. B. Shmoys, A best possible heuristic for the k-center problem, Math.
Oper. Res., 10 (1985), pp. 180–184.

[10] D. Hochbaum and D. B. Shmoys, A unified approach to approximation algorithms for bottle-
neck problems, J. ACM, 33 (1986), pp. 533–550.

[11] W. L. Hsu and G. L. Nemhauser, Easy and hard bottleneck location problems, Discrete Appl.
Math., 1 (1979), pp. 209–216.

[12] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, J.
ACM, 41 (1994), pp. 960–981.

[13] R. Lupton, F. M. Maley, and N. E. Young, Data collection for the Sloan digital sky survey—
A network-flow heuristic, in Proceedings of the 7th Annual ACM-SIAM Symposium on
Discrete Algorithms, Atlanta, GA, SIAM, Philadelphia, PA, 1996, pp. 296–303.

[14] H. L. Morgan and K. D. Levin, Optimal program and data locations in computer networks,
Communications of the ACM, 20 (1977), pp. 315–322.

[15] K. Murthy and J. Kam, An approximation algorithm to the file allocation problem in com-
puter networks, in Proceedings of 2nd ACM Symposium on Principles of Database Systems,
Atlanta, GA, 1983, pp. 258–266.

[16] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Com-
plexity, Prentice Hall, Englewood Cliffs, NJ, 1982.

[17] J. Plesnik, A heuristic for the p-center problem in graphs, Discrete Appl. Math., 17 (1987),
pp. 263–268.

[18] C. Toregas, R. Swain, C. Revelle, and L. Bergman, The location of emergency service
facilities, Oper. Res., 19 (1971), pp. 1363–1373.

SUBSET-RESTRICTED INTERCHANGE FOR DYNAMIC MIN-MAX
SCHEDULING PROBLEMS∗

GEORGE STEINER† AND PAUL STEPHENSON†‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 4, pp. 419–435

Abstract. The traditional method of pairwise job interchange compares the cost of sequences
which differ only in the interchange of two jobs. It assumes that either there are no intermediate
jobs (adjacent pairwise interchange) or that the interchange can be performed no matter what the
intermediate jobs are (nonadjacent pairwise interchange). We introduce a generalization that permits
the pairwise interchange of jobs provided that the intermediate jobs belong to a restricted subset of
jobs (subset-restricted pairwise interchange).

In general, even if an adjacent interchange relation is a partial order, it need not be a precedence
order. We introduce a unified theory of dominance relations based on subset-restricted interchange.
This yields a precedence order for the class of unconstrained, regular, single machine scheduling prob-
lems 1 /rj /fmax. Thus it applies to 1 /rj /Lmax, 1/rj , dj/Cmax, 1 /rj /maxwjLj , 1 /rj /maxwjCj ,
and other problems. We also show that these problems remain strongly NP-hard for interval-ordered
tasks. The strength of the precedence orders was tested in a large-scale computational experiment for
1 /rj /maxwjCj . The results show that using the precedence orders in branch and bound algorithms
speeds these up on average by about 58 percent.

Key words. scheduling, dominance relations, posets

AMS subject classifications. 06A06, 06A07, 90B36

PII. S0895480198343418

1. Introduction. Interchange arguments, which compare the cost of sequences
that differ only in the interchange of two jobs, are quite common in the scheduling
literature. Some classic results that established the technique are the rules of John-
son [10], Smith [20], and Jackson [9]. If jobs i and j can be interchanged so that i
is before j in an optimal sequence, then we will say that i is preferred to j. If these
preference relations are transitive, then we have a preference order on the jobs. The
above-mentioned rules are examples of problems where the preference order for the
adjacent interchange of jobs (the adjacent interchange order) is a complete order (i.e.,
a sequence). Johnson’s rule establishes such a sequence for the two-machine maximum
completion time flow shop problem, whereas the rules of Smith and Jackson state the
optimality of the weighted shortest processing time and earliest due date sequences
for 1 //

∑
wiCi and 1 //Lmax, respectively. (We use the standard notation to de-

scribe scheduling problems and we refer the reader to [13] or [17] for any terminology
not defined here.) Another classic interchange result due to Emmons [2] provides a
precedence order (a partial ordering of the jobs that must be obeyed by at least one
optimal sequence) for the total tardiness problem 1 //

∑
Ti . In this case, there is a

preference order for the interchange of jobs that permits the interchange of any (not
necessarily adjacent) pair of jobs in a sequence if they do not appear in preference
order. By performing these interchanges in a particular manner, we can restrict our
search space to contain only sequences that obey the preference order.

∗Received by the editors March 15, 1998; accepted for publication (in revised form) July 5, 2000;
published electronically October 6, 2000. This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada under grant OGP0001798.

http://www.siam.org/journals/sidma/13-4/34341.html
†Management Science and Information Systems Area, Michael G. DeGroote School of Business,

McMaster University, Hamilton, ON, Canada L8S 4M4 (steiner@mcmaster.ca).
‡Current address: Department of Mathematics, Acadia University, Wolfville, NS, Canada B0P

IX0 (paul.stephenson@acadiau.ca).

419

420 GEORGE STEINER AND PAUL STEPHENSON

In this paper, we introduce a new technique, a generalization of pairwise inter-
change that takes into consideration the composition of the intermediate sequence.
This yields a preference order which permits the interchange of a pair of jobs provided
that the intermediate jobs belong to a restricted subset. The traditional methods of
pairwise job interchange can be viewed as special cases of this subset-restricted inter-
change, where the subsets are either uniformly the empty set (adjacent interchange)
or the entire job set (nonadjacent interchange). In general, an adjacent interchange
order is not a complete order and therefore it is not a precedence order, as we shall
see for the 1 /rj /Lmax problem, using an example due to Lageweg, Lenstra, and
Rinnooy Kan [11]. We prove, however, that using subset-restricted interchange for
the class of regular, single machine scheduling problems 1 /rj/ fmax, we can derive a
precedence order that is a suborder of the adjacent interchange order. A performance
measure for a scheduling problem is called regular if it is a nondecreasing function
of the job completion times. In such problems, each job i has an associated nonde-
creasing, real valued cost function fi (t), the cost of completing i at time t, and the
objective is to minimize the maximum cost fmax. The precedence orders we derive
have the property that they are defined independently of the processing times. This
makes them especially useful in applications with stochastic or ill-defined processing
times. We use only certain extreme values of the other job parameters that display
a “staircase-like” structure. In addition, the precedence orders derived belong to a
special class of partial orders, the interval orders [5]. This also leads to the complexity
implication that the above problems are strongly NP-hard for interval-ordered tasks.
Our results can be viewed as a unified treatment of job interchange, which generalizes
well-known rules for deriving dominance relations and extends the pyramid precedence
orders of Erschler et al. [3], [4] for 1 /rj /Lmax to the general problem 1 /rj/ fmax.
We generalize the pairwise interchange and insertion operations of Monma [15], and
introduce “pyramid-like” structures of higher dimension than two, extending the two-
dimensional staircases of [3] and [4]. In our unified theory, 1 /rj /Lmax represents the
most special case.

The paper is organized as follows. In the next section, we introduce the pre-
liminary definitions and notation for sequencing problems, partial orders, and inter-
change operators. In section 3, we define the adjacent interchange order <− and the
interchange regions for 1 /rj /fmax. In section 4, we derive a precedence order ≺ for
the problem 1 /rj /fmax, which includes the problems 1 /rj /Lmax, 1

/
rj , dj

/
Cmax,

1 /rj /maxwjCj , and 1 /rj /maxwjLj as special cases. Finally, in section 5 we dis-
cuss the results of a computational experiment for the problem 1 /rj /maxwjCj .

2. Preliminary definitions and notation.

2.1. Sequencing notation. We call a scheduling problem a sequencing prob-
lem if any schedule can be completely specified by the sequence in which jobs are
performed. This is the case for nonpreemptively scheduling a single machine with
a regular performance measure. Let J = {1, 2, . . . , n} be the set of jobs to be se-
quenced on a single machine. Jobs are characterized by a list of parameters (e.g., for
the 1 /rj /Lmax problem each job j possesses a release time rj ≥ 0, a processing time
pj ≥ 0, and a due date dj ≥ 0, the lateness for job j is Lj = Cj − dj , where Cj is its
completion time). A sequence s on J is a function from {1, 2, . . . , n} to J represented
by the n-tuple (s (1) , s (2) , . . . , s (n)), where s (i) is the ith job in sequence s (e.g., for
the maximum lateness problem Lmax(s) = maxi(Cs(i) − ds(i))). For the sequencing
problems that we study, the adjacent interchange order will be a partial order defined
by the parameters of the jobs. Thus we introduce certain definitions for partially

SUBSET-RESTRICTED INTERCHANGE IN SCHEDULING 421

ordered sets (posets).

2.2. Partial orders. By a partially ordered set we mean a pair P = (X,≤P)
consisting of a set X together with a binary relation ≤P on X ×X which is reflexive,
antisymmetric, and transitive. For u, v ∈ X, u ≤P v is interpreted as u is less than
or equal to v in P . Similarly, u <P v means that u ≤P v and u 	= v. The usual
symbols ≤ and < will be reserved for relations between real numbers. A partial order
P = (X,≤P) is a linear order (or complete order) if for every pair (u, v) ∈ X × X,
either u ≤P v or v ≤P u. Given a pair of partial orders P = (X,≤P) and Q = (X,≤Q)
on the same set X, we call Q an extension of P (P a suborder of Q) if u ≤P v
implies u ≤Q v for all u, v ∈ X. A partial order Q = (X,≤Q) is a linear extension
of a partial order P = (X,≤P) if Q is a linear order that extends P . Given two
partial orders P1 = (X,≤P1) and P2 = (X,≤P2), we can define the partial order
P1∩P2 = (X,≤P1∩P2), the intersection of P1 and P2, where u ≤P1∩P2 v if and only if
u ≤P1 v and u ≤P2 v for all u, v ∈ X. The dimension of a partial order P = (X,≤P),
denoted by dim(P), is the smallest l such that there exists a set {Q1, Q2, . . . , Ql} of
linear extensions of P such that P = ∩li=1Qi. A subset I ⊆ X is an ideal of P if for
every v ∈ I and u ∈ X such that u ≤P v we have u ∈ I. Similarly, F ⊆ X is a filter
of P if for every u ∈ F and v ∈ X such that u ≤P v we have v ∈ F . For every v ∈ X
the principal ideal I (v) is defined by I (v) = {u ∈ X |u ≤P v } and the principal filter
F (v) is defined by F (v) = {u ∈ X |v ≤P u}.

2.3. Interchange operators. We follow Monma [15] in defining our interchange
operators. Let s1 be a sequence with job m preceding job k. In general, s1 is of the
form s1 = (AmBkC) , where A, B, and C are subsequences of J . We define three types
of interchanges of jobs k and m that leave k preceding m in the resulting sequence s2.

1. Pairwise interchange (PI):
s2 = (AkBmC),

2. Backward insertion (BI):
s2 = (ABkmC),

3. Forward insertion (FI):
s2 = (AkmBC).

If we let B be the set of jobs in sequence B (we do not distinguish between these),
then each of these interchanges reduces to adjacent pairwise interchange in the case
when B = ∅. This leads to the definition of the adjacent interchange order.

Definition 2.1. A partial order <− is an adjacent interchange order for a se-
quencing function f if for all jobs k, m, and sequences A, C, k<−m implies f (AkmC) ≤
f (AmkC).

Note that all of the above interchanges involve interchanging k, m or both k and
m around sequence B. Intuitively, whether or not an interchange leads to a reduction
in cost (for a given sequencing function f and adjacent interchange order <−) should
depend on the composition of B. This involves placing restrictions on certain of the
parameters of the jobs in B. In the case when interchangeability does not depend on
the composition of B, then <− is a precedence order for the sequencing problem, i.e.,
there exists an optimal sequence that is a linear extension of <−. Such an example is
the precedence order <− defined by

k<−m⇔ pk ≤ pm and dk ≤ dm
for the total tardiness problem on a single machine 1 //

∑
Ti [2]. Note that here <− is

the intersection of the ≤p and ≤d orders. In general, an adjacent interchange order

422 GEORGE STEINER AND PAUL STEPHENSON

<− is not necessarily a precedence order, as it can be demonstrated by the instance
of the maximum lateness problem 1 /rj/Lmax, shown in its equivalent delivery time
form in Example 1 [11]. The delivery time version is defined by triples (rj , pj , qj),
where qj = T − dj is the delivery time for job j ∈ J and T is a constant chosen so

that T ≥ max {dj |j ∈ J }. If we define L′
j = Cj + qj , then L

′
j = Cj +T −dj = Lj +T

and L
′
max = Lmax + T . As we shall see in the next section, the adjacent interchange

order <− for 1 /rj/Lmax is defined by k<−m ⇔ rk ≤ rm and qk ≥ qm. For the 5-
job example specified below we have 4<−2; however, the unique optimal sequence is
(1, 2, 3, 4, 5) with L

′
max = 11. Thus <− is not a precedence order, since the unique

optimal sequence is not a linear extension of <−.
Example 1. A 5-job problem to illustrate that <− is not necessarily a precedence

order.

j 1 2 3 4 5
rj 0 2 3 0 7
pj 2 1 2 2 2
qj 5 2 6 3 2

We consider interchanges that are restricted by conditions on B and define the
subset-restricted interchange conditions as follows.

Definition 2.2. An adjacent interchange order <− together with the collection of
subsets RPI = {RPI

k<−m |k<−m} satisfies the restricted pairwise interchange condition
for a sequencing function f if for all jobs k, m and sequences A, B, C, k<−m and
B ⊆ RPI

k<−m imply f (AkBmC) ≤ f (AmBkC) .
Definition 2.3. An adjacent interchange order <− together with the collection

of subsets RBI = {RBI
k<−m |k<−m} satisfies the restricted backward insertion condition

for a sequencing function f if for all jobs k, m and sequences A, B, C, k<−m and
B ⊆ RBI

k<−m imply f (ABkmC) ≤ f (AmBkC) .
Definition 2.4. An adjacent interchange order <− together with the collection

of subsets RFI = {RFI
k<−m |k<−m} satisfies the restricted forward insertion condition

for a sequencing function f if for all jobs k, m and sequences A, B, C, k<−m and
B ⊆ RFI

k<−m imply f (AkmBC) ≤ f (AmBkC) .
In the following sections, we show how to use subset-restricted interchange and

the above three conditions to derive a precedence order ≺ on the jobs. This precedence
order ≺ is always a suborder of the adjacent interchange order <−.

3. Interchange regions. In this section, we derive the interchange regions (sub-
sets) for the general problem 1 /rj /fmax. In this problem, each job j has an associated
nondecreasing, real valued cost function fj , where fj (t) is the cost of completing job
j at time t, and the objective is to minimize fmax = max1≤j≤n fj (Cj) over all se-
quences. We order the jobs according to ≥f , where fi ≥f fj ⇔ fi (t) ≥ fj (t) for all
t ≥ 0. Note that, in the general case, ≥f does not order every pair i and j, it might be
only a partial order. Two special, linearly ordered cases of ≥f occur for the lateness
objective, where fj (t) = t + qj , and the weighted completion time objective, where
fj (t) = wjt. Hall [8] considered the ≥f order and noticed that the linear ordering
property makes it possible to extend Potts’s [18] approximation algorithm for the
1 /rj /Lmax problem to the 1 /rj /fmax problem when ≥f is a linear order.

The adjacent interchange order and the restricted subsets for 1 /rj /fmax are
defined below. We note that these definitions use no processing time information.
This means that all of the subsequent results are true irrespective of job processing
times.

SUBSET-RESTRICTED INTERCHANGE IN SCHEDULING 423

ps(1)

ps(i)

ps(2)

ps(n-1)

ps(j)

rs(1)

rs(2)

rs(i)

rs(j)

rs(n-1)

rs(n)

G(s)

ps(n)

0

Fig. 3.1. Directed graph G(s) for sequence s.

Definition 3.1. Adjacent interchange order: k<−m⇔ rk ≤ rm and fk ≥f fm.
Simple arguments show that the <− order defined this way is an adjacent inter-

change order indeed. Instead of including these in detail here, we just observe that
this follows as a special case with B = ∅ in the proof of Theorem 3.3 below. Note
also that this order is not complete in general.

Definition 3.2. Given k<−m, define the following subsets of jobs:
(i) RPI

k<−m = {j |rj ≤ rm, fk ≥f fj },
(ii) RBI

k<−m = {j |rj ≤ rm },
(iii) RFI

k<−m = {j |fk ≥f fj }.
Theorem 3.3. Partial order <− together with the collection of subsets RPI =

{RPI
k<−m |k<−m} satisfies the restricted pairwise interchange condition for 1 /rj /fmax.

Proof. Given a sequence s, recall that fmax (s) = max1≤j≤n fs(j)
(
Cs(j)

)
, where

Cs(j) is the completion time of job s(j). We construct a directed graph G (s) to
evaluate fmax (s) (see Figure 3.1). Each job s(j) is represented by two nodes: the
first one has weight rs(j), followed by the second node with weight ps(j). G (s) has
the property that the completion time of job s(j) in sequence s is the length of the
longest “node-weighted” path from 0 to s(j). Each path goes from node 0 to a node
s(i) and ends at a node s(j). Thus we can represent all paths from 0 to s(j) by pairs
(s(i), s(j)), 1 ≤ i ≤ j ≤ n. Then by definition

fmax (s) = max
1≤j≤n

fs(j)

 max
(s(i),s(j))

1≤i≤j

(
rs(i) +

j∑

l=i

ps(l)

)

= max
(s(i),s(j))
1≤i≤j≤n

[
fs(j)

(
rs(i) +

j∑

l=i

ps(l)

)]

and we can evaluate fmax (s) as the maximum over all such pairs (s(i), s(j)) in G (s).
Let s1 = (AmBkC) be a sequence with the property that k<−m and B ⊆ RPI

k<−m.

424 GEORGE STEINER AND PAUL STEPHENSON

Table 3.1

s2 s1
(AkBmC) (AmBkC) Proof

(a, k) (a, k) fk nondecreasing
(a, b) (a, k) fk ≥f fb fk nondecreasing
(a,m) (a, k) fk ≥f fm fk nondecreasing
(a, c) (a, c)
(k, b) (m, k) rk ≤ rm fk ≥f fb fk nondecreasing
(k,m) (m, k) rk ≤ rm fk ≥f fm fk nondecreasing
(k, c) (m, c) rk ≤ rm fc nondecreasing
(b,m) (m, k) rb ≤ rm fk ≥f fm fk nondecreasing
(b, c) (m, c) rb ≤ rm fc nondecreasing
(m, c) (m, c) fc nondecreasing

Table 3.2

s2 s1
(ABkmC) (AmBkC) Proof

(a, b) (a, b) fb nondecreasing
(a, k) (a, k) fk nondecreasing
(a,m) (a, k) fk ≥f fm fk nondecreasing
(a, c) (a, c)
(b, k) (b, k)
(b,m) (m, k) rb ≤ rm fk ≥f fm fk nondecreasing
(b, c) (m, c) rb ≤ rm fc nondecreasing
(k,m) (m, k) rk ≤ rm fk ≥f fm fk nondecreasing
(k, c) (m, c) rk ≤ rm fc nondecreasing
(m, c) (m, c) fc nondecreasing

We apply pairwise interchange to s1 and obtain sequence s2 = (AkBmC). We demon-
strate that s2 is not worse than s1 by showing that for every pair of jobs in s2 there
exists a dominating pair in s1 with a not smaller f value. For example, consider pair
(k,m) in s2, then it has the dominating pair (m, k) in s1 (see Figure 3.2), that is,

fm

(
rk + pk +

∑

b∈B
pb + pm

)
≤ fk

(
rm + pm +

∑

b∈B
pb + pk

)
,

which holds since k<−m implies rk ≤ rm and fk (t) ≥ fm (t) for all t, from which it fol-
lows that fm

(
rk + pk +

∑
b∈B pb + pm

) ≤ fk
(
rk + pm +

∑
b∈B pb + pk

)
, and finally

fk is nondecreasing.
Table 3.1 gives a dominating pair in s1 for each pair in s2. (We use lower case

letters a, b, or c to refer to arbitrary generic elements of the subsequences A, B, or C,
respectively.) The last three columns contain the arguments that they are dominating
pairs.

Theorem 3.4. Partial order <− together with the collection of subsets RBI =
{RBI

k<−m |k<−m} satisfies the restricted backward insertion condition for 1 /rj /fmax.
Proof. The proof is totally analogous to that for pairwise interchange. Table 3.2

gives the corresponding dominating pairs.
Theorem 3.5. Partial order <− together with the collection of subsets RFI =

{RFI
k<−m |k<−m} satisfies the restricted forward insertion condition for 1 /rj /fmax.
Proof. The proof is totally analogous to that for pairwise interchange. Table 3.3

gives the corresponding dominating pairs.

SUBSET-RESTRICTED INTERCHANGE IN SCHEDULING 425

G(s)2 G(s)
1

B

A A

B

C C

r
a

r
a

r
k

r
k

r
b

r
b

r
m

r
m

p
a p

a

p
k

p
k

p
b

p
b

p
m

p
m

p
c

p
c

r
c

r
c

0 0

Fig. 3.2. Directed graphs G(s2) and G(s1).

Table 3.3

s2 s1
(AkmBC) (AmBkC) Proof

(a, k) (a, k) fk nondecreasing
(a,m) (a, k) fk ≥f fm fk nondecreasing
(a, b) (a, k) fk ≥f fb fk nondecreasing
(a, c) (a, c)
(k,m) (m, k) rk ≤ rm fk ≥f fm fk nondecreasing
(k, b) (m, k) rk ≤ rm fk ≥f fb fk nondecreasing
(k, c) (m, c) rk ≤ rm fc nondecreasing
(m, b) (m, b)
(m, c) (m, c) fc nondecreasing
(b, c) (b, c) fc nondecreasing

Remark 1. We observe that for any k<−m, we have RPI
k<−m = RBI

k<−m ∩ RFIk<−m.

Thus if B ⊆ RPI
k<−m, then this implies not only f(AkBmC) ≤ f(AmBkC), but also

f(ABkmC) ≤ f(AmBkC) and f(AkmBC) ≤ f(AmBkC).
The preceding theorems could directly be used in branch and bound (B&B) al-

gorithms for restricting the search space on sequences. This, however, would require
branching on sequences and storing for all pairs k<−m the subsets of Definition 3.2 and
the testing of membership in these, which would be time consuming and inefficient.
In the following sections, we show that there is a much more effective way to restrict
the search space, by proving that there is a precedence order on the jobs.

We also note that by simply modifying release times and processing times, prob-
lems in which the jobs have setup times can be handled as well. Two forms of job
setups can be considered: either a setup ρi is attached to job i, i.e., it cannot be
performed without the job being present, that is, before ri; or it is detached, i.e., it

426 GEORGE STEINER AND PAUL STEPHENSON

can be performed prior to ri, if the machine is idle and waiting to process job i. At-
tached setups can be dealt with by using modified processing times p

′
i = pi+ρi, while

detached setups can be handled using modified release times r
′
i = max {0, ri − ρi}

and processing times p
′
i = pi + ρi. Thus, our theory of precedence constraints applies

to the case with setups too.

4. A general precedence order. In this section, first we use subset-resticted
interchange to derive a precedence order ≺ for the general case of 1 /rj /fmax. We
can represent the adjacent interchange order <− using a 3-dimensional structure. The
axes of the 3-dimensional space correspond to the r, t, and f(t) values (see Figure
4.1). Jobs are represented by their fj(t) curves in this space resting on planes whose
height equals their release times. Recall that k<−m ⇐⇒ rk ≤ rm and fk ≥ fm, that
is, if k is on a lower r-plane than m and fk is above fm, i.e., fk(t) ≥ fm(t) for all
t. The precedence order ≺ is defined in terms of certain “extreme jobs” in <−, or,
more precisely, certain extreme curves of the 3-dimensional structure. (Some of these
extreme curves might not correspond to real jobs.) To identify these jobs, we introduce
the least upper bound in ≤f for a finite set of jobs I ⊆ J , as the nondecreasing function
pmaxj∈Ifj defined as the pointwise maximum of the functions fj , i.e., with values
(pmaxj∈Ifj(t))(t) = maxj∈Ifj(t) for all t. A simple greedy procedure to define the
set of boundary jobs M = {Mi |i = 1, 2, . . . , H + 1} and the set of diagonal jobs
∆ = {D1, D2, . . . , DH} is presented below. Assume that there are K distinct r values
denoted by ri for i = 1, 2, . . . ,K, and r1 > r2 > · · · > rK . Define the function
f i = pmax

{
fj
∣∣rj = ri

}
, this is the least upper bound in ≤f of the jobs on level ri.

Algorithm ∆ for 1 /rj /fmax.
Let (rM1 , fM1) =

(
r1, f1

)
, l = 1

For i = 2 to K
If fMl

≥f f i go to Next i
Else

(rMl +1
, fMl +1

) = (ri,pmax
{
f i, fMl

}
) /* This definesMl+1 and the

function fMl +1

(rDl
, fDl

) = (ri, fMl
) /* This defines Dl and the function fDl

Increase l to l + 1
Next i

The procedure looks at the r-levels ri (i = 1, 2, . . . ,K) and compares the largest f on
this level (f i) with the largest f obtained so far (fMl

). If f i represents a strict increase
compared to fMl

, then (ri, f i) becomes the new boundary pair (rMl +1
, fMl +1

) and
(rDl

, fDl
) is the projection of (rMl

, fMl
) onto level ri. Note that these extreme jobs

are not necessarily real jobs, since they are defined using pointwise maximum. Rather,
they are “artificial jobs” used only for ordering purposes. The sets ∆ and M define
a “staircase-like” structure that contains all of the curves fj for j ∈ J either inside
or on its surface (Figure 4.1 shows an example with |∆| = 4). Later on, we present
a numerical example which demonstrates the application of the algorithm ∆ in the
case when the ≤f order is linear (see Example 2.)

We augment the partial order P = (J,<−) with the diagonal set ∆ and call it
P∆ = (J∆, <−∆), where J∆ = J ∪∆ and <−∆ is the order <− extended to include the
diagonal jobs. Jobs k<−m (k,m ∈ J) are separated by ∆ (are ∆-separated) if there
exists a Di, i ∈ {1, 2, . . . , H}, such that k is in its principal ideal and m is in its
principal filter, i.e., k ∈ I(Di) and m ∈ F (Di) in P∆. ∆ induces a partition of P into
separable and nonseparable pairs that can be used to define ≺.

SUBSET-RESTRICTED INTERCHANGE IN SCHEDULING 427

t

r

f(t)

M 3

M 4

M 5

D 3

D 4

M
1

M 2

D
1

D 2

Fig. 4.1. Staircase structure for the general case.

Definition 4.1. Precedence order ≺: For k<−m (k,m ∈ J), we define k ≺ m if
and only if k and m are separated by ∆.

It is well known that the main source of difficulty in all 1/rj/fmax problems is the
fact that at any time the machine becomes available, it may be better to wait for a yet
unreleased job rather than to schedule one of the jobs available. The partition of P
by ∆ means that the only jobs for which it may be worth waiting are the ones which
are not separated by ∆ from the currently available jobs, that is, ≺ is a precedence
order.

Theorem 4.2. Partial order ≺ is a precedence order for 1 /rj /fmax.
Proof. We use subset-restricted interchange in the proof. The following observa-

tions immediately follow from the construction of ∆:
D1 >−∆ D2 >−∆ · · · >−∆ DH ,

F (D1) ⊂ F (D2) ⊂ · · · ⊂ F (DH) ,
I (D1) ⊃ I (D2) ⊃ · · · ⊃ I (DH) .

Furthermore, for all b ∈ J \ F (Di) and m ∈ F (Di) we have rb ≤ rDi ≤ rm for any i.
This the crucial property used throughout our proof. Let s be any optimal sequence.
If every job in I (D1) is before every job in F (D1) , then all jobs separated by D1

are already in ≺ order, and consider I (D2) and F (D2). Otherwise, let k1 ∈ I (D1)
be the last job in s that is after some job from F (D1), and let m1 be the last such
job from F (D1) before k1. That is, s = (A1m1B1k1C1) , where C1 ∩ I (D1) = ∅

and B1 ⊂ J \ F (D1). By the above property, we have rb1 ≤ rD1 ≤ rm1 for all
b1 ∈ B1, which implies that B1 ⊆ RBIk1<−m1

. Thus, by subset-restricted interchange,
we can insert m1 backward just after k1 to obtain the alternative optimal sequence
(A1B1k1m1C1). Following in this way, inserting the last job in F (D1) backward
after k1 until there are no such jobs, we obtain sequence s1 which is an optimal
sequence with the property that I (D1) is before F (D1). Continuing similarly, if
I (D2) is before F (D2) in s1, then all jobs separated by D2 are already in ≺ order,

428 GEORGE STEINER AND PAUL STEPHENSON

and consider I (D3) and F (D3). Otherwise, let k2 ∈ I (D2) be the last job in s1 after
some job from F (D2) \ F (D1) (since I (D2) ⊂ I (D1) and I (D1) is before F (D1) in
s1, k2 cannot be after any job from F (D1)), and let m2 be the last such job from
F (D2) \ F (D1). Similarly, we have s1 = (A2m2B2k2C2), where C2 ∩ I (D2) = ∅

and B2 ⊆ J \ F (D2). As above, we have that rb2 ≤ rD2 ≤ rm2 for all b2 ∈ B2,
which implies that B2 ⊆ RBIk2<−m2

. Thus we can insert m2 backward just after k2 to

obtain the sequence (A2B2k2m2C2). When all such jobs in F (D2)\F (D1) have been
inserted after k2, we obtain sequence s2, an optimal sequence with the property that
I (D2) is before F (D2) and I (D1) is before F (D1). Continuing similarly, we obtain
si for i = 3, 4, . . . , H. Then sH is an optimal sequence with the property that I (Di)
is before F (Di) for i = 1, 2, . . . , H. Thus sH is a linear extension of ≺, and we have
that ≺ is a precedence order indeed.

Theorem 4.2 also has interesting complexity implications. Let us further augment
P∆ by adding new least and greatest elements 0 and 1, and call it P0,1 = (J0,1, <−0,1),
where J0,1 = J∆ ∪ {0, 1} and <−0,1 = <−∆ ∪ ({0} × J∆) ∪ (J∆ × {1}). Then ≺ admits
an interval representation using intervals Ij = [x(j), y(j)] (j ∈ J) on the set S =
∆ ∪ {0, 1} linearly ordered by <−0,1, where for j ∈ J , x(j) = max {l ∈ S |l<−0,1 j },
and y(j) = min {l ∈ S |j<−0,1 l}. Partial orders (P,≤P) that possess such an interval
representation on a linearly ordered set (where k ≤P m ⇔ Ik lies to the left of Im)
are called interval orders [5]. This leads to the following corollary for 1 /rj /fmax.

Corollary 4.3. Problem 1 /rj , prec /fmax remains NP-hard in the strong sense
even with interval-order precedence constraints.

4.1. Linearly ordered ≥f . In this section, we consider separately the special
case where ≥f is a linear order. This means that for each pair of jobs i and j either
fi (t) ≥ fj (t) for all t or fj (t) ≥ fi (t) for all t. That is, we can completely arrange the
jobs in nonincreasing f order according to ≥f . We examine an equivalent pyramid
representation for ≺ (see [3], [4], [14], and [6]) and show how this representation does
not extend to the nonlinearly ordered general case.

For the linearly ordered case, we are able to represent the adjacent interchange
order in the plane using the r and f orders as the x and y axes, respectively. Here
jobs are represented by points with preferences toward the origin, i.e., k<−m if k is
closer to the origin than m in both the r and f orders. The principal ideals and
filters in <− are represented by quadrants through these points. That is, let job i be
represented by the point (ri, fi). If we divide the plane into quadrants using the lines
r = ri and f = fi, then the SW and NE quadrants correspond to I (i) and F (i), the
principal ideal and filter in <− for job i (see Figure 4.2).

This planar representation was used by Merce [14] to derive a precedence order for
the problem of minimizing the makespan in the presence of release times and deadlines
(1
/
rj , dj /Cmax). Fontan [6] noted that if we consider due dates instead of deadlines,

then the same order is a precedence order for the lateness model 1 /rj /Lmax. They
did not consider the adjacent interchange order explicitly (see [3] and [4]); rather, they
defined their order using certain extreme points in the plane, called summits. These
summits, represented by Si (i = 1 to N), are the jobs that form a staircase boundary
in the plane and satisfy the property that their SE quadrant minus the boundary
is empty. The summits are completely ordered S1<−S2<− · · ·<−SN . For each summit
Si, Merce and Fontan define a pyramid P (Si), which is its NW quadrant without
its boundary lines but including Si. Jobs are classified using pairs that represent
their membership in pyramids. For j ∈ J, they define u(j) = min {i |j ∈ P (Si)}
and v(j) = max {i |j ∈ P (Si)} . With these, they define their partial order ≺′

by

SUBSET-RESTRICTED INTERCHANGE IN SCHEDULING 429

Fig. 4.2. Ideals and filters for <−.

k ≺′
m⇔ v (k) < u (m). The planar representation for the 5-job problem of Example

1 is shown in Figure 4.3. Jobs 3 and 5 are the summits S1 and S2, respectively.
P (S1) = {1, 2, 3, 4} and P (S2) = {5}. We have v(i) = 1 for i = 1, 2, 3, 4 and u(5) = 2,
which implies by definition of ≺′

that jobs 1, 2, 3, and 4 must precede job 5. Notice
that the unique optimal sequence (1, 2, 3, 4, 5) is a linear extension of ≺′

(as we would
expect), but not a linear extension of <− (as we saw earlier). Example 2 is another
instance of 1 /rj/L

′
max, this time with N = 9 summits. For this instance, the optimal

L
′
max = 114 and the sequence (1,S1,k,S2,S3,S4,S5,3,S6,S7,m,2,S8,S9,4) is an optimal

sequence, which is also a linear extension of ≺′
. To further illustrate how ≺′

is defined,
consider jobs k and m in Figure 4.4. Here k ≺′

m, since v (k) = 5 < 6 = u (m).

Example 2. A 15-job instance of 1 /rj/L
′
max with N = 9 summits.

j S1 S2 S3 S4 S5 S6 S7 S8 S9 k m 1 2 3 4
rj 15 26 34 40 48 57 65 65 73 19 51 8 22 30 38
pj 6 8 8 7 6 10 2 5 7 5 3 5 8 8 10
qj 53 46 40 36 36 27 19 13 9 32 17 43 16 22 6

Let us now apply our general precedence order ≺ to this special linearly or-
dered case: Starting Algorithm ∆, r1 = 73 and M1 = S9. Note that fj(t) =
t + qj in this case, meaning that i ≥f j ⇐⇒ qi ≥ qj . Thus f

1(t) = fS9(t) =
t + 9. Continuing, we have r2 = 65, with both jobs S7 and S8 having this release
time. f2(t) =pmax{fs7(t), fs8(t)} = t + max{qs7 , qs8} = t + 19. This defines M2 by
(rM2 , fM2) = (65, t + 19), and D1 by (rD1 , fD1) = (r2, fM1) = (65, t + 9). Continu-
ing with the algorithm in this fashion, we obtain the set of corner point boundary
jobs M = {Mi |i = 1, 2, . . . , H + 1}, and the set of artificial jobs on their inscribed
diagonal ∆ = {D1, D2, . . . , DH} (see Figure 4.4). The set M ⊆ S is the subset of
boundary jobs with empty SE quadrants, and again we call ∆ the set of diagonal
jobs. We augment the partial order P = (J,<−) by these diagonal jobs and call it
P∆ = (J∆, <−∆), where J∆ = J ∪ ∆ and <−∆ is the planar order with these diago-
nal jobs included. Jobs k<−m (k,m ∈ J) are separated by ∆ (are ∆-separated) if
there exists a Di (i = 1, 2, . . . , H) such that k ∈ I(Di) and m ∈ F (Di). Notice
that v(k) < u(m) when k and m are ∆-separated. It can be easily verified for k<−m
(k,m ∈ J) that k ≺′

m if and only if k and m are separated by ∆, i.e., k ≺ m. As

430 GEORGE STEINER AND PAUL STEPHENSON

an example of this equivalence, consider again Example 1 in Figure 4.3: we see that
diagonal job D1 separates job 5 and jobs 1, 2, 3, and 4, and this is the only separation
present. Thus, by the diagonal representation of ≺, jobs 1, 2, 3, and 4 must precede
job 5, and ≺ and ≺′

define the same precedence orders indeed.

Fig. 4.3. Planar representation for 5-job problem.

Fig. 4.4. Planar representation for the 15-job problem.

The pyramid representation used for ≺′
can be reinterpreted in partial order

terminology to explain why it does not extend to the nonlinearly ordered higher di-
mensional case. The summits Si (i = 1, 2, . . . , N) are maximal elements of a related
partial order <−c, which is defined by k<−cm⇔ rk < rm and fk <f fm, the conjugate
of <−. Two partial orders on the same set are conjugate if every pair of distinct ele-
ments is comparable in exactly one of these partial orders. This is clearly the case if
we compare the principal ideals and filters for <− and <−c, using the planar represen-
tation. For <−, these are the SW and NE quadrants, respectively, with the boundary

SUBSET-RESTRICTED INTERCHANGE IN SCHEDULING 431

lines included. For <−c, these are the NW and SE quadrants minus the boundary
lines (compare Figures 4.2 and 4.5). By a well-known theorem of Dushnik and Miller
[1] from partial order theory, <−c exists if and only if dim(<−) ≤ 2. In this context, the
pyramids are just the principal ideals of <−c. The u(j) and v(j) defined in [4] implicitly
use the fact that <−c has an interval containment order representation, i.e., there exist
intervals {Ij |j ∈ J} such that i<−cj if and only if Ii ⊂ Ij for i, j ∈ J. In the pyramid
representation of 1/rj/Lmax, these intervals are just Ij = [rj , dj]. On the other hand,
by the same theorem of Dushnik and Miller [1], a poset has an interval containment
representation if and only if its dimension is 2. Thus, the u(j) and v(j) can be defined
for any problem for which dim(<−)≤ 2, but it can be defined only for such problems.
Of course, dim(<−)≤ 2 is equivalent to ≥f being a linear order, so the u(j) and v(j)
can be defined only in this case. Thus we see that the diagonal representation for ≺
has the advantage that it does not require that <− possess a conjugate <−c, and thus
is not restricted by the dimension of ≥f .

Fig. 4.5. Ideals and filters for <−c.

It is interesting to note that the original proof due to Erschler et al. [4], for
1 /rj /Lmax , used pairwise interchange. This proof can also be modified to carry over
to other cost functions f when ≥f is a linear order. We chose to present a proof
using backward insertion, however, because this extends to the (nonlinearly ordered)
general case. A proof using forward insertion can also be obtained by proceeding in
the opposite direction. This is due to the duality of the operations and regions for the
linearly ordered case. However, the proof based on forward insertion is not extendable
to the general case either, as the duality of regions no longer holds.

Although this section deals only with linearly ordered ≥f , it covers a number of
well-studied scheduling problems. In addition to the ones studied in [3] and [4], we
mention one further example.

Corollary 4.4. Partial order ≺ is a precedence order for 1 /rj/maxwjCj and,
in this case, ≥f is the order which orders the jobs in nonincreasing wj order.

Theorem 4.2 and Corollary 4.3 also have interesting complexity implications; they
yield the following tightening of previously known complexity results [8], [13].

Corollary 4.5. Problems 1 /rj , prec/Lmax and 1 /rj , prec/maxwjCj remain
NP-hard in the strong sense even with interval-order precedence constraints.

Corollary 4.5 is interesting, as interval orders have a very special restricted struc-
ture [5], which does not seem to help in reducing the complexity of the scheduling

432 GEORGE STEINER AND PAUL STEPHENSON

problems mentioned. This is in contrast with the result of [16] which shows that
Pm /pj = 1, prec/Cmax is polynomially solvable for interval-ordered precedence con-
straints.

Recall that when the adjacent interchange order<− itself is a linear order, it defines
an optimal sequence. It can easily be seen that ≺ is equivalent to <− in this case, and so
it also defines an optimal sequence. This means that ≺ also solves some well-known
special cases solved by Jackson’s rule [9] or Lawler’s method [12]: for 1 /rj/L

′
max,

fi(t) = t+ qi and the jobs are linearly ordered by fi ≥f fj ⇔ qi ≥ qj . Therefore both
<− and ≺ are linear orders and define an optimal sequence, for example, when the f
order is the same as the r order (the agreeably ordered case of 1 /rj/L

′
max in which

ri ≤ rj ⇔ qi ≥ qj), or one of the orders is trivial (i.e., the f order is linear and all the
jobs have the same release time 1//Lmax), or all the jobs have the same cost function
(1 /rj , dj = d/Lmax). Similar comments apply to the corresponding special cases of
1 /rj/maxwjCj and 1/rj/fmax.

4.2. Weighted maximum lateness. For this problem the≥f order is no longer
linear ; thus we proceed as in the general case. For the weighted maximum lateness
problem, fj (t) = wj(t − dj) for all j ∈ J. Let gj (t) = fj (t) + L, where the constant
L is chosen so that L ≥ max {wjdj |j ∈ J } . That is, gj (t) = wjt + qj , where qj =
L − wjdj ≥ 0. We see that fk ≥f fm ⇐⇒ (wk ≥ wm) and (qk ≥ qm). Thus, we
can represent the adjacent interchange order <− and the interchange regions using this
2-dimensional representation of ≥f . This means that our general definitions from
before reduce to the following for 1 /rj /maxwjLj .

k<−m ⇔ (rk ≤ rm) and (wk ≥ wm) and (qk ≥ qm),

RPI
k<−m = {j |rj ≤ rm, wj ≤ wk, qj ≤ qk } ,
RFI
k<−m = {j |wj ≤ wk, qj ≤ qk } ,
RBI
k<−m = {j |rj ≤ rm } .

We derive the ∆ boundary by modifying the greedy procedure presented earlier.
Once again, we assume that there are K distinct r values r1 > r2 > · · · > rK and let
wi = max

{
wj
∣∣rj = ri

}
and qi = max

{
qj
∣∣rj = ri

}
for i = 1, 2, . . . ,K. We use the

same notation as before for the boundary jobs Mi and the diagonal jobs Di.
Algorithm ∆ for 1 /rj /maxwjLj .

Let (rM1
, qM1

, wM1
) = (r1, q1, w1), l = 1

For i = 2 to K
If qMl

≥ qi and wMl
≥ wi then go to Next i /*i.e. (qMl

, wMl
) ≥f

(qi, wi)
Else

(rMl+1
, qMl+1

, wMl+1
) = (ri,max

{
qi, qMl

}
,max

{
wi, wMl

}
) /* This

defines Ml+1

(rDl
, qDl

, wDl
) = (ri, qMl

, wMl
) /* This defines Dl

Increase l to l + 1
Next i.

If we represent <− in 3 dimensions with q, w, and r as the x, y, and z axes, respec-
tively, then (qi, wi) is the least upper bound according to ≤f of the jobs on the
plane r = ri. (This is well defined by the finiteness of J .) Symbolically, (qi, wi) =
max2

{
(qj , wj)

∣∣rj = ri
}
, where we define max2 {(qj , wj) |j ∈ I } = (maxj∈I qj ,maxj∈I wj).

Taking least upper bounds, we greedily construct the sets of possibly artificial jobs
∆ and M . These jobs are on the boundary of a step pyramid, which contains all of
the original jobs inside or on its surface (see Figure 4.6 for an example with H = 6).

SUBSET-RESTRICTED INTERCHANGE IN SCHEDULING 433

r

w q

M
2

M
3

M
4

M
5

M
6

M
7

D
1

D
2

D
3

D
4

D
5

D
6

M
1

Fig. 4.6. Staircase structure for weighted maximum lateness.

The definition of ≺ is analogous to the general case: k ≺ m if k and m are ∆-
separated. From Theorem 4.2 we then have the following corollary for the problem
1 /rj /maxwjLj .

Corollary 4.6. Partial order ≺ is a precedence order for 1 /rj /maxwjLj .

5. Computational experiment. We consider a B&B algorithm for 1/rj/maxwjCj
that follows Potts’s implementation [19]. Potts uses an “adaptive” branching tech-
nique to fix jobs at both ends of the schedule. More precisely, each node of the search
tree is represented by a pair (σ1, σ2), where σ1 and σ2 are the initial and final par-
tial sequences, respectively. The immediate successor of (σ1, σ2) is either of the form
(σ1i, σ2) for a type 1 branching, or (σ1, iσ2) for a type 2 branching, where i is an
unfixed job i ∈ J \ (σ1 ∪ σ2). The types of the branchings of the tree are all the same
within a level, but in general they will differ between levels. The type for a given
level k is fixed on the very first visit to level k according to the following rule: branch
in the direction of the fewest number of ties at the minimum lower bound. Let n1

and n2 be the number of ties at the minimum lower bound for type 1 and type 2
branchings, at level k. If n1 < n2, the next branching is of type 1, while if n2 < n1,
then the branching is of type 2. If n1 = n2, then the branching is the same as on
the previous level. Finally, the search strategy is to branch to the newest active node
with the smallest lower bound.

The B&B algorithm was coded in Pascal and run on a Sun Sparc5 workstation.
The experiment consisted of 24 groups with 100 problems in each group. For each
problem, with n = 100 or 500 jobs, 3n integer data (ri, pi, wi) were generated. Pro-
cessing times pi and weights wi were uniformly distributed between [1, 100] and [1,W]
for W = 10 and 100, respectively, while release times were uniformly distributed in
[0, n · 50.5 ·R] for R ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 2.0}, following the data generation tech-
nique used by Hariri and Potts [7]. Several versions of the algorithm were tested both

434 GEORGE STEINER AND PAUL STEPHENSON

Table 5.1
Results of computational experiment.

n = 100
W = 10 CPU time Solved

R with ≺ without ≺ with ≺ without ≺
0.2 00:01 00:05 100 100
0.4 12:07 43:17 100 98
0.6 00:18 00:34 100 100
0.8 00:19 40:21 100 99
1.0 00:17 00:27 100 100
2.0 00:09 00:14 100 100

W = 100 CPU time Solved
R with ≺ without ≺ with ≺ without ≺
0.2 0:00:42 0:01:01 100 100
0.4 3:16:27 4:32:02 90 89
0.6 0:02:31 0:07:16 100 99
0.8 0:42:20 0:56:56 92 92
1.0 0:00:22 0:00:32 100 100
2.0 0:00:11 0:00:14 100 100

n = 500
W = 10 CPU time Solved

R with ≺ without ≺ with ≺ without ≺
0.2 00:44 00:35 100 100
0.4 20:33 35:19 100 100
0.6 12:51 26:59 100 100
0.8 13:08 28:09 100 100
1.0 12:51 33:52 100 100
2.0 09:07 27:02 100 100

W = 100 CPU time Solved
R with ≺ without ≺ with ≺ without ≺
0.2 0:00:27 0:00:35 100 100
0.4 0:57:54 7:50:25 99 98
0.6 0:49:48 1:26:49 100 99
0.8 0:39:46 0:57:51 100 100
1.0 0:39:44 0:56:32 100 100
2.0 0:22:08 0:31:32 100 100

with and without the precedence order ≺; for each group we present only the best
results. An upper limit of 1,000,000 was used for the maximum number of nodes in
the B&B tree. The data in Table 5.1 shows that this limit was exceeded only for a
few problems, i.e., very few problems remained unsolved. Most of these seem to be
concentrated in the groups defined by n = 100, W = 100, and R = 0.4 or 0.8. In-
spection of the results reveals that the number of problems solved is roughly the same
in each case. Nonetheless, the precedence order seems to significantly improve the
running time of the algorithm. The times shown in Table 5.1 are the total times used
for solving the 100 problems in the group, using the format (min:sec) or (hrs:min:sec).
The average CPU time for the version with the precedence order is 42 percent of that
for its counterpart without it, resulting in a savings of 58 percent. This saving from
using ≺ appears to be due to the reduction in the number of branchings and lower
bounds that need to be computed at each node. Note that if the precedence order ≺
is used, then lower bounds for type 1 and type 2 branchings need only be calculated
for the minimal and maximal jobs in ≺, and not all unfixed jobs. In summary, the
B&B algorithm with the precedence order ≺ appears to be a very effective and fast

SUBSET-RESTRICTED INTERCHANGE IN SCHEDULING 435

solution method for large problems.

REFERENCES

[1] B. Dushnik and E.W. Miller, Partially ordered sets, Amer. J. Math., 63 (1941), pp. 600–610.
[2] H. Emmons, One machine sequencing to minimize certain functions of job tardiness, Oper.

Res., 17 (1969), pp. 701–715.
[3] J. Erschler, G. Fontan, C. Merce, and F. Roubellat, Applying new dominance concepts

to job schedule optimization, European J. Oper. Res., 11 (1982), pp. 60–66.
[4] J. Erschler, G. Fontan, C. Merce, and F. Roubellat, A new dominance concept in

scheduling n jobs on a single machine with ready times and due dates, Oper. Res., 31
(1983), pp. 114–127.

[5] P.C. Fishburn, Interval Orders and Interval Graphs, John Wiley, New York, 1985.
[6] G. Fontan, Notion de dominance et son application à l’étude de certains problèmes

d’ordonnancement, Thèse de Doctorat ès Sciences, Université Paul Sabatier, Toulouse,
France, 1980.

[7] A.M. Hariri and C.N. Potts, An algorithm for single machine sequencing with release dates
to minimize total weighted completion time, Discrete Appl. Math., 5 (1983), pp. 99–109.

[8] L.A. Hall, A note on generalizing the maximum lateness criterion for scheduling, Discrete
Appl. Math., 47 (1993), pp. 129–137.

[9] J.R. Jackson, Scheduling a Production Line to Minimize Maximum Tardiness, Research Re-
port 43, Management Science Research Project, University of California, Los Angeles,
1955.

[10] S.M. Johnson, Optimal two- and three-stage production schedules with setup times included,
Naval Res. Logist. Quart., 1 (1954), pp. 61–68.

[11] B.J. Lageweg, J.K. Lenstra, and A.H.G. Rinnooy Kan, Minimizing maximum lateness on
one machine: Computuational experience and some applications, Statistica Neerlandica,
30 (1976), pp. 25–41.

[12] E.L. Lawler, Optimal sequencing of a single machine subject to precedence constraints, Man-
agement Science, 19 (1973), pp. 544–546.

[13] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, Sequencing and
Scheduling: Algorithms and Complexity, in Handbooks in Operations Research and Man-
agement Science, Vol. 4, S.C. Graves et al., eds., North-Holland, Amsterdam, 1993.

[14] C. Merce, Etude de l’existence de solutions pour certains problèmes d’ordonnancement, Thèse
de Doctorat Ingénieur, Université Paul Sabatier, Toulouse, France, 1979.

[15] C.L. Monma, Properties and Efficient Algorithms for Certain Classes of Sequencing Problems,
Ph.D. thesis, Cornell University, Ithaca, NY, 1978.

[16] C.H. Papadimitriu and M. Yannakakis, Scheduling interval-ordered tasks, SIAM J. Comput.,
8 (1979), pp. 405–409.

[17] M. Pinedo, SCHEDULING: Theory, Algorithms and Systems, Prentice-Hall, Englewood Cliffs,
NJ, 1995.

[18] C.N. Potts, Analysis of a heuristic for one machine sequencing with release dates and delivery
times, Oper. Res., 28 (1980), pp. 1436–1441.

[19] C.N. Potts, An adaptive branching rule for the permutation flow-shop problem, European J.
Oper. Res., 5 (1980), pp. 19–25.

[20] W.E. Smith, Various optimizers for single-stage production, Naval Res. Logist. Quart., 3
(1956), pp. 59–66.

EXACT ANALYSIS OF EXACT CHANGE:
THE k-PAYMENT PROBLEM∗

BOAZ PATT-SHAMIR† , YIANNIS TSIOUNIS‡ , AND YAIR FRANKEL§

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 4, pp. 436–453

Abstract. We introduce the k-payment problem: given a total budget of N units, the problem
is to represent this budget as a set of coins, so that any k exact payments of total value at most
N can be made using k disjoint subsets of the coins. The goal is to minimize the number of coins
for any given N and k, while allowing the actual payments to be made on-line, namely without
the need to know all payment requests in advance. The problem is motivated by the electronic cash
model, where each coin is a long bit sequence, and typical electronic wallets have only limited storage
capacity. The k-payment problem has additional applications in other resource-sharing scenarios.

Our results include a complete characterization of the k-payment problem as follows. First, we
prove a necessary and sufficient condition for a given set of coins to solve the problem. Using this
characterization, we prove that the number of coins in any solution to the k-payment problem is
at least kHN/k, where Hn denotes the nth element in the harmonic series. This condition can also
be used to efficiently determine k (the maximal number of exact payments) which a given set of
coins allows in the worst case. Secondly, we give an algorithm which produces, for any N and k,
a solution with a minimal number of coins. In the case that all denominations are available, the
algorithm finds a coin allocation with at most (k+1)HN/(k+1) coins. (Both upper and lower bounds
are the best possible.) Finally, we show how to generalize the algorithm to the case where some of
the denominations are not available.

Key words. k-payment problem, electronic cash, exact change, coin allocation, change-making

AMS subject classifications. 05A17, 05B40, 11P81, 68R05

PII. S0895480197318118

1. Introduction. Consider the following everyday scenario. You want to with-
draw N units of money from your bank. The teller asks you, “How would you like to
have it?” Let us assume that you need to have “exact change,” i.e., given any payment
request P ≤ N , you should be able to choose a subset of your “coins” whose sum
is precisely P . Let us further assume that you would like to withdraw your N units
with the least possible number of coins. In this case, your answer depends on your
estimate of how many payments you are going to make. In the worst case, you may
be making N payments of 1 unit each, forcing you to take N coins of denomination 1.
On the other extreme, you may need to make only a single payment P . In this case,
even if you don’t know P in advance, log2(N+1) coins are sometimes sufficient (as we
explain later). In this article, we provide a complete analysis of the general question,
which we call the k-payment problem: what is the smallest set of coins which enables
one to satisfy any k exact payment requests of total value up to N?

Motivation. In any payment system, be it physical or electronic, some transac-
tions require payments of exact amounts. Forcing shops to provide change to a cus-
tomer, if she does not possess the exact change, simply shifts the problem from the
customers to the shops. The number of coins is particularly important in electronic
cash (see, e.g., [2, 3, 12]), because electronic coins are inherently long bit sequences

∗Received by the editors March 10, 1997; accepted for publication (in revised form) May 19, 2000;
published electronically October 6, 2000.

http://www.siam.org/journals/sidma/13-4/31811.html
†Department of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel (boaz@eng.

tau.ac.il).
‡InternetCash Corp., 90 William St., New York, NY 10038 (yiannis@internetcash.com).
§ECash.com, 3600 S. Harbor Blvd., Oxnard, CA 93035 (yfrankel@cryptographers.com).

436

EXACT ANALYSIS OF EXACT CHANGE 437

and their handling is computationally intensive, while the typical “smart-card” used
to store them has small memory space and computational power [7].

Another interesting application of the problem arises in the context of resource
sharing. For concreteness, consider a communication link whose total bandwidth is
N . When the link is shared by time-multiplexing, there is a fixed schedule which
assigns the time-slots (say, cells in ATM lines) to the different connections. Typical
schedules have small time-slots, since assigning big slots to small requests entails
underutilization. It is important to note, however, that there is an inherent fixed
overhead associated with each time-slot (e.g., the header of an ATM cell). Therefore,
it would be desirable to have a multiplexing schedule (with time-slots of various sizes)
which can accommodate any set of requests with the least number of slots. Similarly
to the withdrawal scenario, an improvement upon the trivial N unit-slot solution can
be achieved if we know how many connections might be running in parallel. When we
know a bound k on this number, and if we restrict ourselves to long-lived connections,
the problem of designing a schedule naturally reduces to the k-payment problem.

The k-payment problem: Definition. Formally, the problem is as follows. There
are two parameters: the budget, denoted N , and the number of payments, denoted
k. The problem is to find, for each i ≥ 1, the number of i-coins (also called coins of
denomination i), denoted ci, such that the following two requirements are satisfied.

Budget compliance: N =
∑∞
i=1 ici and k-partition. For any sequence of k payment

requests, denoted P1, P2, . . . , Pk, with
∑k
j=1 Pj ≤ N , there exists a way to exactly

satisfy these payments using the coins. That is, there exist nonnegative integers pij
(where pij represents the number of i-coins used in the jth payment), such that

• ∑i ipij = Pj for each 1 ≤ j ≤ k, and
• ∑j pij ≤ ci for each i ≥ 1.

The problem can thus be broken into two parts as follows. The coin allocation problem
is to partition N into coins given N and k, i.e., determining the ci’s. The coin
dispensing problem is how to actually make a payment, i.e., given the ci’s and a Pj
as input, produce the pij values.

There are a few possible variants of the k-payment problem. First, in many
systems, not all denominations are available. (For example, we do not know of any
system with 3-coins.) Even in the electronic cash realm, denominations may be an
expensive resource. (This is because each denomination requires a distinct pair of
secret/public keys of the central authority; see, e.g., [1, 8].) Thus an interesting
variant of the allocation problem is the restricted denominations version, where the
set of possible solutions is restricted to only those in which ci = 0 if i /∈ D for a given
allowed denomination set D.

Also, one may consider the on-line coin dispensing problem, where the algorithm
is required to dispense coins after each payment request, without knowledge of future
requests, or the off-line version, where the value of all k payments is assumed to be
known before the first coin is dispensed.

Results. It turns out that the coin dispensing problem is easy: the greedy strategy
works (in the worst-case sense), even in the on-line setting. Henceforth we consider
only the on-line problem. Most of our results concern the coin allocation problem,
and we sometimes refer to this part of the problem as the k-payment problem. Our
basic result is a simple necessary and sufficient condition for a sequence c1, c2, . . . of
coins to solve the allocation problem (Theorem 3.1). Using this characterization, we
prove (in Theorem 3.6) a lower bound of kHN/k ≈ k ln(N/k) on the number of coins
in any solution for all N and k, where Hn denotes the nth element of the harmonic

438 B. PATT-SHAMIR, Y. TSIOUNIS, AND Y. FRANKEL

series. The lower bound is the best possible in the sense that it is met with equality
for infinitely many N ’s and k’s (Theorem 3.8). The characterization can be used
to efficiently determine the maximal number k for which a given collection of coins
solves the k payment problem (Corollary 3.9). Our next major result is an efficient
algorithm which finds a solution for any N and k using the least possible number
of coins. We first deal with the case where all denominations are allowed (Theorem
4.1). In this case, the number of coins is never more than (k + 1)HN/(k+1) (Theorem
4.7). Similarly to our lower bound, the upper bound is the best possible in general
(Theorem 4.8). Finally, using the same ideas in a slightly more refined way, we extend
the algorithm to the general case of restricted denomination sets (Theorem 5.1).

Related work. To the best of our knowledge, the current work is the first to
formulate the general k-payment problem, and hence the first to analyze it. One
related classic combinatorial problem is k-partition, where the question is in how many
ways a natural number N can be represented as a sum of k positive integers. This
problem is less structured than the k-payment problem and can be used to derive lower
bounds. (However, these bounds are suboptimal; see section 2.) The postage-stamp
problem is also closely related. Cast in our terms, the postage-stamp problem is to find
a set of denominations which will allow one to pay any request of value 1, 2, 3, . . . , N
using at most h coins, so that N is maximized. The postage-stamp problem can
be viewed as an inverse of the 1-payment problem: there is one payment to make,
the number of coins is given, and the goal is to find a denomination set of a given
size which will maximize the budget. We remark that the postage-stamp problem is
considered a difficult problem even for a very small number of denominations. See,
e.g., [10, 11, 4]. Another related question is change-making [6], which is the problem
of how to represent a given budget with the least number of coins from a given allowed
denomination set. General change-making is (weakly) NP-hard. Kozen and Zaks [5],
Verma and Xu [14], and Pearson [9] study the question of which denomination sets
allow one to use the greedy strategy for optimal change-making.

Organization. In section 2 we introduce notation, give some preliminary obser-
vations, and briefly discuss a few suboptimal results. In section 3 we prove a char-
acterization of the k-payment problem and a lower bound on the number of coins
in any solution. In section 4 we present and analyze an optimal algorithm for the
unrestricted denomination case. In section 5 we extend the algorithm for the case of
restricted denominations. We conclude in section 6 with a few open problems.

2. Notation and simple results. In this section we develop some intuition
for the k-payment problem by presenting a few simple upper and lower bounds on
the number of coins required. The notation we shall use throughout this article is
summarized in Figure 2.1. The solution S to which the ci, Ti, and m symbols refer
should be clear from the context.

For the remainder of this article, fix N and k to be arbitrary given positive
integers. Note that we may assume without loss of generality that k ≤ N , since
payment requests of value 0 can be ignored.

Let us now do some rough analysis of the k-payment problem. As already men-
tioned above, the case k = N is trivial to solve. Take c1 = k and ci = 0 for i �= 1.
Clearly, no better solution is possible since c1 < k would not satisfy k payments of
value 1 each. The case of k = 1 is also quite simple, at least when N = 2g − 1
for an integer g ≥ 1; we can solve it with g = log2(N + 1) coins of denominations
1, 2, 4, . . . , 2g−1. Given any request P , we can satisfy it by using the coins which
correspond to the ones in the binary representation of P .

EXACT ANALYSIS OF EXACT CHANGE 439

Parameters of problem specification:
• N : the total budget.
• k: the number of payments.
• D: the set of allowed denominations. In the unrestricted case, D = N.

Quantities related to solution specification S:
• ci (i ≥ 0): the number of coins of denomination i (a.k.a. i-coins) in S. By
convention, c0 = 0.
• m: the largest denomination of a coin in S. Formally, m = max {i | ci > 0}.
• Ti (i ≥ 0): the budget allocated in S using coins of denomination i or less.

Formally, Ti =
∑i
j=1 jcj .

• It is required that Tm = N .
Quantities related to making a payment:

• c′i, T ′
i ,m

′: refer to the respective quantities after a payment has been made.
Standard quantities:

• Hn =
∑n
i=1

1
i . By convention, H0 = 0.

Fig. 2.1. Glossary of notation.

However, it is not immediately clear how can one generalize this solution to arbi-
trary N and k. For an arbitrary N , the usual technique of “rounding up” to the next
power of 2 does not seem appropriate in the k-payment problem: can we ask the teller
of the bank to round up the amount we withdraw just because it is more convenient
for us? But let us ignore this point for the moment, and consider the problem of
general k. If we were allowed to make the dubious assumption that we may enlarge
N , then one simple solution would be to duplicate the solution for 1-payment k times,
and let each payment use its dedicated set of coins. Specifically, this means that we
allocate k 1-coins, k 2-coins, k 4-coins, and so on, up to k 2�log2(N+1)�−1-coins. The
result is approximately k log2N coins, and the guarantee we have based on this sim-
plistic construction is that we can pay k payments, but for all we know each of these
payments must be of value at most N . However, the total budget allocated in this
solution is in fact kN , and thus it does not seem to solve the k-payment problem as
stated, where the only limit on the value of payments is placed on their sum, rather
than on individual values.

As an aside, we remark that one corollary of our work (specifically, Theorem 3.1)
is that if coin dispensing is done using the greedy strategy (see below), then the above
“binary” construction for coin allocation indeed solves the general k-payment problem.
More precisely, assume that (N/k) + 1 is a power of 2. Then the coin allocation
algorithm allocates k coins of each denomination 1, 2, 4, . . . , 2log2((N/k)+1)−1. Clearly,
the number of coins is k log2((N/k)+1), and their sum is N . Coin dispensing is made
greedily: at each point, the largest possible coin is used. (A formal description of the
greedy dispensing algorithm is presented in Figure 2.2.) However, one should note
that, perhaps surprisingly, our results also indicate that the binary algorithm is not
the right generalization for k > 1: the best algorithm (described in section 4) yields
a factor of about (1− ln 2) improvement, i.e., roughly 30% fewer coins.

Let us now reconsider the question of a general N . Once we have an algorithm
for infinitely many values of k and N , generalizing to arbitrary N and k is easy: find
a solution for N ′ and k′, with N ′ ≥ N and k′ ≥ k+1, and then dispense a payment of
value N ′−N . The remaining set of coins is a coin allocation of total budget N , and it
can be used for k additional payments since the original set solved the (k+1)-payment

440 B. PATT-SHAMIR, Y. TSIOUNIS, AND Y. FRANKEL

GreedyDispense(P)

1 while P > 0

2 do i← max {l | l ≤ P, cl > 0} ✄ i is highest possible denomination

3 j ← min(�P/i� , ci) ✄ use as many i-coins as possible

4 dispense j i-coins

5 ci ← ci − j
6 P ← P − j · i

Fig. 2.2. The greedy algorithm for coin dispensing. P is the amount to be paid.

problem.

We close this section with a simple lower bound on the number of coins required
in any solution to the k-payment problem. The bound is based on a counting argu-
ment, and we only sketch it here. For k = 1, the number of distinct possible payment
requests is N +1 (0 is allowed). Observe that the algorithm must dispense a different
set of coins in response to each request. It follows that the number of coins in any
solution must be at least log2(N + 1). This argument can be extended to a general
k, using the observation that the number of distinct responses of the algorithm (dis-
regarding order), is at least pk(N), the number of ways to represent N as a sum of k
positive integers. Using standard bounds for partitions (see, e.g., [13]), and since the
number of responses is exponential in the number of coins, one can conclude that the
number of coins is Ω(k log(N/k2)).

3. Problem characterization. In this section we first prove a simple condition
to be necessary and sufficient for a set of coins to correctly solve the k-payment
problem. Using this result, we obtain a sharp lower bound on the number of coins
in any solution to the k-payment problem. Finally, we outline an efficient algorithm
which, given a set of coins S, determines the maximal k for which S is a solution of
the k-payment problem. Please refer to Figure 2.1 for notation.

3.1. A necessary and sufficient condition.

Theorem 3.1. Let S be a solution as in Figure 2.1. Then S solves the k-
payment problem if and only if Ti ≥ ki for all 0 ≤ i < m. The theorem is proven
by a series of lemmas below. The necessity proof is not hard; the intuition is that
the “hardest” cases are when all payment requests are equal. The more interesting
part is the sufficiency proof. We start by proving an upper bound on m, the largest
denomination in a solution.

Lemma 3.2. If S solves the k-payment problem, then m ≤ �N/k� .
Proof. Suppose, for contradiction, that m > �N/k�, and consider k payments

of values �N/k� and �N/k� such that their total sum is N . Clearly, none of these
payments can use m-coins, and since cm ≥ 1 by definition, the total budget available
for these payments is at most N −m, which is a contradiction.

The following lemma is slightly stronger than the condition in Theorem 3.1. We
use this version in the proof of Theorem 3.6.

Lemma 3.3. If S solves the k-payment problem, then Ti ≥ ki for all 0 ≤ i ≤
�N/k�.

Proof. Let i ≤ �N/k�. Then ki ≤ N . Consider k payments of value i each.
Each such payment can be done only with coins of denomination at most i, and hence
Ti ≥ ki.

EXACT ANALYSIS OF EXACT CHANGE 441

We now turn to sufficiency. We start by showing that if the condition of Theorem
3.1 holds for k = 1, then any single payment of value up to N can be satisfied by S
under the greedy algorithm.

Lemma 3.4. Let P be a payment request, and suppose that in S we have that for
some j,

(1) P ≤ Tj, and
(2) Ti ≥ i for all 0 ≤ i < j.

Then P can be satisfied by the greedy algorithm using only coins of denomination j
or less.

Proof. We prove, by induction on j, that the claim holds for j and any P . The
base case is j = 1; then, by (1), T1 ≥ P and hence there are at least P 1-coins, which
can be used to pay any amount up to their total sum. For the inductive step, assume
that the claim holds for j and all P , and consider j + 1. Let a be the number of
(j + 1)-coins dispensed by the greedy algorithm, namely,

a = min

(⌊
P

j + 1

⌋
, cj+1

)
.

Let R denote the remainder of the payment after the algorithm dispenses the (j+1)-
coins, i.e., R = P − a(j + 1). Note that (2) trivially holds after dispensing the
(j + 1)-coins; we need to show that (1) holds as well. We consider two cases. If
a = cj+1, then using (1) we get

Tj = Tj+1 − cj+1(j + 1)
= Tj+1 − a(j + 1)
≥ P − a(j + 1)
= R ,

and we are done for this case.
If a < cj+1, then since the algorithm is greedy, it must be the case that R < j+1.

On the other hand, by (2) we have that Tj ≥ j, and hence Tj ≥ R and we are done
in this case too.

The following lemma is the key invariant preserved by the greedy algorithm. It is
interesting to note that while the algorithm proceeds from larger coins to smaller ones,
the inductive proof goes in the opposite direction. Recall that “primed” quantities
refer to the value after a payment is done.

Lemma 3.5. If Ti ≥ ki holds for all 0 ≤ i < m, then, after the greedy algorithm
dispenses any amount up to Tm, T

′
i ≥ (k − 1)i holds for all 0 ≤ i < m′.

Proof. We use induction on i. For i = 0 the claim is trivial. Assume that the
claim holds for all l < i, and consider i. Let Si = Ti−T ′

i (Si is the amount dispensed
using coins of denomination at most i).

Define j = min
{
j | j > i, c′j > 0

}
; namely, j is the smallest remaining denomi-

nation which is larger than i. Note that j is well defined since i < m′; namely, i is
not the largest remaining coin. Next, note that since all the coins of denomination
i + 1, i + 2, . . . , j − 1 (whose sum is Tj−1 − Ti) were used by the algorithm, we have
that

Sj−1 = Tj−1 − Ti + Si.(3.1)

Now, observe that since the algorithm is greedy, and since at least one j-coin was
not used by the algorithm, it must be the case that the total amount dispensed using

442 B. PATT-SHAMIR, Y. TSIOUNIS, AND Y. FRANKEL

coins of denomination smaller than j is less than j, i.e., Sj−1 ≤ j − 1. Using (3.1),
we get that Ti ≥ Tj−1 − j + 1 + Si. Finally, using the assumption applied to j − 1,
we obtain

T ′
i = Ti − Si
≥ Tj−1 − j + 1

≥ (j − 1)k − j + 1

= (j − 1)(k − 1)
≥ i(k − 1) .

We now complete the proof of the characterization.
Proof of Theorem 3.1. The necessity of the condition follows directly from Lemmas

3.2 and 3.3. For the sufficiency, assume that Ti ≥ ik for all 0 ≤ i < m, and consider
a sequence of up to k requests of total value at most N . After the lth request is
served by the greedy algorithm, we have, by inductive application of Lemma 3.5, that
T ′
i ≥ (k− l)i for all 0 ≤ i < m. Moreover, by Lemma 3.4, any amount up to the total
remainder can be paid from S, so long as k− l > 0, which completes the proof.

3.2. A lower bound on the number of coins. Using Theorem 3.1, we derive
a lower bound on the number of coins in any solution to the k-payment problem.

Theorem 3.6. The number of coins in any solution to the k-payment problem is
at least kH�N/k	 ≈ k ln N

k . We first prove a little lemma we use again in Theorem
4.7.

Lemma 3.7. For any number j,
∑j
i=1 ci =

∑j−1
i=1

Ti

i(i+1) +
Tj

j .

Proof.

j∑

i=1

ci =

j∑

i=1

Ti − Ti−1

i

=

j−1∑

i=1

(
Ti
i
− Ti
i+ 1

)
+
Tj
j

=

j−1∑

i=1

Ti
i(i+ 1)

+
Tj
j
.

Proof of Theorem 3.6. By Lemmas 3.7 and 3.3,

�N/k	∑

i=0

ci =

�N/k	−1∑

i=1

Ti
i(i+ 1)

+
T�N/k	
�N/k�

≥
�N/k	−1∑

i=1

ki

i(i+ 1)
+ k

= k

�N/k	−1∑

i=1

1

i+ 1
+ k

= k(H�N/k	 − 1) + k

= kH�N/k	 .

EXACT ANALYSIS OF EXACT CHANGE 443

Alloc(N, k)

1 ci ← 0 for all i ✄ initialize

2 t← 0

3 i← 0

4 while N − t > i ✄ consider denominations in increasing order

5 do i← i+ 1

6 if t < ki

7 then ci ← min
(⌈
ki−t
i

⌉
,
⌊
N−t
i

⌋)
✄ add i-coins but don’t overflow

8 t← t+ ici
9 if N > t ✄ add remainder

10 then cN−t ← cN−t + 1

Fig. 4.1. Algorithm for optimal solution of the k-payment problem with unrestricted denomi-
nations.

The lower bound of Theorem 3.6 is the best possible in general, as shown in the
following theorem.

Theorem 3.8. For any natural numbers n1, n2, there are infinitely many N >
n1, k > n2, such that there exists a solution for the k-payment problem with budget N
with exactly kH�N/k	 coins.

Proof. Choose a natural number m such that m! > n2 and m ·m! > n1, and set
k = m! and N = km. In this case the solution with ci = k/i for 1 ≤ i ≤ N/k solves
the k-payment problem by Theorem 3.1, and its total number of coins is precisely
kH�N/k	.

3.3. Determining k for a given set. Consider the “inverse problem,” in which
we are given a set of coins, with ci coins of denomination i for each i, and the question
is how many payments we can make using these coins, i.e., find k. Note that k is well
defined: We say that k is 0 if there is a payment request which cannot be satisfied by
the set, and k is never more than the total budget. Theorem 3.1 can be directly applied
to answer such a question efficiently, as implied by the following simple corollary.

Corollary 3.9. Let S be a given coin allocation. Then S solves the k-payment
problem if and only if k ≤ min {�Ti/i� | 1 ≤ i < m}.

4. An optimal algorithm for unrestricted denominations. We now present
a coin allocation algorithm which finds a minimal solution to the k-payment for ar-
bitrary N and k, assuming that all denominations are available. We first prove the
optimality of the algorithm, and then we give an upper bound on the number of coins
it allocates. In section 5 we generalize the algorithm to handle a restricted set of
denominations.

The algorithm. Given arbitrary integers N ≥ k > 0, the algorithm presented
in Figure 4.1 finds an optimal coin allocation. Intuitively, the algorithm works by
scanning all possible denominations i = 1, 2, 3, . . . and adding, for each i, the least
number of i-coins which suffices to make Ti ≥ ki. The number of coins ci is thus
an approximation of the ith harmonic element multiplied by k. When the budget is
exhausted, the remainder is added simply as a single additional coin.

4.1. Optimality of Alloc.
Theorem 4.1. Let S denote the solution produced by Alloc. Then S solves the

k-payment problem using the least possible number of coins.

444 B. PATT-SHAMIR, Y. TSIOUNIS, AND Y. FRANKEL

Proof. The result follows from Lemmas 4.3 and 4.5, below.
The important properties of the algorithm are stated in the following loop invariant.

Lemma 4.2. Whenever Alloc executes line 4, the following assertions hold.
(i) t =

∑i
j=1 jcj ≤ N .

(ii) If N − t > i, then t ≥ ik.
(iii) If i > 0, then t < i(k + 1).
Proof. Line 4 can be reached after executing lines 1–3 or after executing the loop

of lines 5–8. In the former case, we have t = i = 0, and the lemma holds trivially.
Suppose now that line 4 is reached after an iteration of the loop. We denote by

t0 the value of the variable t before the last execution of the loop. If lines 7 and 8
are not executed, then (4.2) holds trivially. If they are executed, then we have that
t = t0 + ici, and t ≤ ⌊N−t0

i

⌋ · i + t0 ≤ N , and hence (4.2) holds after the loop is

executed. Also note that t ≤ t0 +
⌈
ki−t0
i

⌉ · i < t0 + (ki − t0 + i) = i(k + 1), and
therefore (4.2) holds true after the execution of the loop.

Finally, we prove that (4.2) holds after executing the loop. If lines 7–8 are not
executed, (4.2) holds trivially. Suppose that lines 7–8 are executed and that i < N−t.
In this case, by line 8, i < N − t0 − ici, which means that

ci <
N − t0
i
− 1 <

⌊
N − t0
i

⌋
.

Therefore, by line 7, ci =
⌈
ki−t
i

⌉
, and hence t = t0 +

⌈
ki−t0
i

⌉ · i ≥ t0 + ki − t0 = ki,
and we are done.

Using Lemma 4.2 and Theorem 3.1, correctness is easily proven. We introduce
some notation to facilitate separate handling of the remainder.

• c∗i , for all i, is the value of the ci variable when line 9 is executed.
• T ∗

i =
∑i
j=1 jc

∗
j .

Lemma 4.3. S solves the k-payment problem.
Proof. By (4.2) of Lemma 4.2, in conjunction with lines 9–10 of the code, we

have that upon completion of the algorithm,
∑
i ici = N . By (4.2) of Lemma 4.2,

and since (by lines 4 and 10) the largest denomination is m ≤ N − T ∗
m, we have that

Ti ≥ T ∗
i ≥ ki for all denominations i < m, and therefore, by Theorem 3.1, S solves

the k-payment problem.
Proving optimality takes more work. We first deal with the the coins allocated

before line 9 is reached, and then we show that even if the remainder was nonzero
(and an additional coin was allocated in line 10), the solution S produced by Alloc
is still optimal. To this end, we fix an arbitrary solution T for the k-payment problem
and use the following additional notation.

• di is the number of i-coins in T .
• Ui is the budget allocated in T using coins of denomination i or less: Ui =∑i

j=1 idi.
• n is the largest denomination of a coin in T . Formally, n = max {i | di > 0}.
• ∆0 = 0 and ∆i = ∆i−1 + di − c∗i for i > 0.

Note that by the definitions, the following holds for all i ≥ 0:

∆i =

i∑

j=1

dj −
i∑

j=1

c∗j ,(4.1)

di = c∗i +∆i −∆i−1.(4.2)

The lemma shows that Alloc is optimal—ignoring the remainder.

EXACT ANALYSIS OF EXACT CHANGE 445

Lemma 4.4.
∑j
i=1 di ≥

∑j
i=1 c

∗
i for all 1 ≤ j < n.

Proof. We proceed by contradiction. Suppose
∑l
i=1 di <

∑l
i=1 c

∗
i for l < n, and

suppose that l is the smallest such index, i.e., using (4.1), ∆l < 0, and ∆j ≥ 0 for all
0 ≤ j < l. Hence, by (4.2), we have that dl < c∗l −∆l−1, which implies, by integrality,
that dl ≤ c∗l − ∆l−1 − 1. Therefore, since T ∗

l < (k + 1)l by (4.2) of Lemma 4.2, we
have

Ul = Ul−1 + ldl

≤
l−1∑

i=1

idi + lc∗l − l∆l−1 − l

=

l−1∑

i=1

i (c∗i +∆i −∆i−1) + lc∗l − l∆l−1 − l

=

l−1∑

i=1

ic∗i +
l−2∑

i=0

(i∆i − (i+ 1)∆i)

+ (l − 1)∆l−1 + lc∗l − l∆l−1 − l

= T ∗
l −

l−1∑

i=1

∆i − l

≤ T ∗
l − l

< (k + 1)l − l
= kl ,

i.e., Ul < kl, which is a contradiction to Theorem 3.1, since l < n.

We now prove that S is optimal even when considering the remainder.
Lemma 4.5.

∑m
i=1 ci ≤

∑n
i=1 di.

Proof. We consider two cases. If n > m, then, using Lemma 4.4 and the fact that
dn ≥ 1 by definition of n, we get

m∑

i=1

ci ≤
m∑

i=1

c∗i + 1 ≤
n−1∑

i=1

di + 1 ≤
n∑

i=1

di ,

and we are done for this case.

So suppose n ≤ m. Let b =
∑m
i=n ci − dn. We prove the lemma by showing that∑n−1

i=1 (di− ci) ≥ b. First, note that since by Lemma 4.4 we have ∆i ≥ 0 for i ≤ n−1,
and using (4.2) we get

Un−1 − T ∗
n−1 =

n−1∑

i=1

i(di − c∗i)

=

n−1∑

i=1

i(∆i −∆i−1)

= (n− 1)∆n−1 −
n−2∑

i=0

∆i

≤ (n− 1)∆n−1 .

446 B. PATT-SHAMIR, Y. TSIOUNIS, AND Y. FRANKEL

On the other hand, since Un = N = Tm, we get

Un−1 = Un − ndn

= Tm − n
(

m∑

i=n

ci − b
)

≥ Tm −
m∑

i=n

ici + bn

= Tn−1 + bn .

Therefore, it follows from (4.1) that

n−1∑

i=1

(di − c∗i) = ∆n−1

≥
⌈
Un−1 − T ∗

n−1

n− 1
⌉

≥
⌈
Tn−1 + bn− T ∗

n−1

n− 1
⌉
.(4.3)

We now consider two subcases. If Tn−1 = T ∗
n−1, then ci = c∗i for 1 ≤ i ≤ n − 1, and

(4.3) reduces to

n−1∑

i=1

(di − ci) ≥
⌈

nb

n− 1
⌉
≥ b ,

and we are done for this subcase.
Otherwise, Tn−1 − T ∗

n−1 ≥ 1, and therefore

n−1∑

i=1

(di − ci) ≥
n−1∑

i=1

(di − c∗i)− 1

≥
⌈
Tn−1 + bn− T ∗

n−1

n− 1
⌉
− 1

≥
⌈
bn+ 1

n− 1
⌉
− 1

≥ b ,
and the proof of Lemma 4.5 is complete.

4.2. The number of coins allocated by Alloc. Theorem 4.1 proved that
the number of coins in the solution produced by Alloc is optimal. We now give a
tight bound on that number in terms of N and k. There is a simple interpretation to
the bound: the worst penalty for having N and k which are not “nice” is equivalent
to requiring an extra payment (i.e., solving the (k + 1)-payment problem) for “nice”
N and k. We remark that we do not know of any direct reduction which proves this
result.

First, we prove an upper bound on m, which is slightly sharper than the general
bound of Lemma 3.2.

Lemma 4.6. The largest denomination of a coin generated by Alloc satisfies
m ≤ � N

k+1�.

EXACT ANALYSIS OF EXACT CHANGE 447

Proof. By (4.2) of Lemma 4.2 we have T ∗
i < (k + 1)i, and, in particular,

m >
T ∗
m

k + 1
.(4.4)

By (4.2) of Lemma 4.2 we have that T ∗
m−1 ≥ k(m− 1), or that m ≤ T∗

m−1

k + 1. Since
cm ≥ 1, we have that T ∗

m−1 ≤ T ∗
m −m. Also using (4.4), we get that

m ≤ T ∗
m−1

k
+ 1

≤ T ∗
m −m
k

+ 1

<
T ∗
m − T∗

m

k+1

k
+ 1

=
T ∗
m

k + 1
+ 1

≤ N

k + 1
+ 1 ,

i.e., m < N
k+1 + 1, and by integrality, m ≤ � N

k+1�.
Theorem 4.7. The number of coins in the solution produced by Alloc is at

most (k + 1)H�N/(k+1)� ≈ (k + 1) ln N
k+1 .

Proof. By (4.2) of Lemma 4.2, and by integrality, T ∗
i ≤ (k + 1)i − 1 for all

1 ≤ i ≤ m. This, in conjunction with Lemmas 3.7 and 4.6, implies that
m∑

i=1

c∗i =
m−1∑

i=1

T ∗
i

i(i+ 1)
+
T ∗
m

m

≤
m−1∑

i=1

i(k + 1)− 1
i(i+ 1)

+ k + 1− 1

m

=
m−1∑

i=1

i(k + 1)

i(i+ 1)
−
m−1∑

i=1

1

i(i+ 1)
+ k + 1− 1

m

= (k + 1)(Hm − 1) + k

≤ (k + 1)H�N/(k+1)� − 1 ,
and therefore,

∑
i ci ≤

∑
i c

∗
i + 1 ≤ (k + 1)H�N/(k+1)�, as required.

The upper bound given by Theorem 4.7 is the best possible in general, as proven
in the following theorem.

Theorem 4.8. For any natural numbers n1, n2, there are infinitely many N >
n1, k > n2, such that any solution for the k-payment problem for budget N requires
at least (k + 1)H�N/(k+1)� coins.

Proof. Choose a natural number m such that m!−1 > n2 and m ·m > n1, and set
k = m!− 1 and N = 1+

∑m
i=1 �k/i� · i = m(k + 1). For these N and k, we have that

the algorithm produces the largest denomination m = �N/(k + 1)�, and ci = (k+1)/i
for 1 ≤ i ≤ m, and ci = 0 otherwise. It follows that the number of coins in this case
is precisely (k + 1)H�N/(k+1)�.

5. Generalization to a restricted set of denominations. We now turn our
attention to the restricted denomination case. In this setting, we are given a set D of
natural numbers, and the requirement is that in any solution, ci = 0 if i /∈ D.

448 B. PATT-SHAMIR, Y. TSIOUNIS, AND Y. FRANKEL

GAlloc(N, k,D)
1 ci ← 0 for all i

2 t← 0

3 i← 0

4 while N − t ≥ i
5 do i← i

6 j ← i− 1 ✄ j is the largest den. smaller than the next one in D
7 if t < kj ✄ ensure Tl ≥ kl for all l up to j
8 then if

⌊
N−t
i

⌋ ≥
⌈
kj−t
i

⌉
✄ check if budget is exhausted

9 then ci ←
⌈
kj−t
i

⌉
✄ if not, add coins

10 t← t+ ici
11 else goto 12

12 if N > t

13 then D′ ← {d | d ∈ D, d ≤ i}
14 add MakeChange(N − t,D′)

Fig. 5.1. Algorithm for optimal solution of the k-payment problem with allowed denominations
D.

To get an optimal algorithm for an arbitrary set of denominations which allows
for a solution,1 we follow the idea of Algorithm Alloc. Ensure, with the least num-
ber of coins, that Ti ≥ ik for all 1 ≤ i < m. The treatment of the remainder is
more complicated here but has the same motivation: add the remainder with the
least possible number of coins. We also have to make sure that the invariant main-
tained by the main loop is not broken, so we restrict the remainder allocation to use
only denominations which were already considered. In fact, remainder allocation is
precisely the change-making problem, solvable by dynamic programming. (For some
allowed denomination sets [5, 14], the greedy strategy works too.) The main algo-
rithm, GAlloc, is given in Figure 5.1. For completeness, we also include, in Figure
5.2, a description of a dynamic programming algorithm for optimal change-making.
In GAlloc, and in the analysis, we use the following additional notation.

• i = maxj∈D {j | j < i}, the largest allowed denomination smaller than i.
• i = minj∈D {j | j > i}, the smallest denomination larger than i.

We now prove that GAlloc is correct and that the number of coins it allo-
cates is optimal. We remark that the general arguments are similar to those for the
unrestricted case but are somewhat more refined here.

Theorem 5.1. Let S denote the solution produced by GAlloc. Then S solves
the k-payment problem with allowed denominations D using the least possible number
of coins.

Proof. The result follows from Lemmas 5.3 and 5.8.
We again use a loop invariant to capture the important properties of the algorithm.

Lemma 5.2. Whenever GAlloc executes line 4, the following assertions hold.
(i) t =

∑i
j=1 jcj ≤ N .

1Observe that the problem is solvable if and only if 1 ∈ D. If there are no 1-coins, then certainly
we cannot satisfy any payment request of value 1, and if 1 is allowed, then the trivial solution of N
1-coins works for all k.

EXACT ANALYSIS OF EXACT CHANGE 449

MakeChange(R,D)
1 for i← 1 to R

2 do if i ∈ D
3 then M [i]← {i}
4 else M [i]← ∅
5 while M [R] = ∅
6 do for i← R downto 1

7 do if M [i] = ∅
8 then for all j ∈ D s.t. j < i

9 do if M [i− j] �= ∅
10 then M [i]←M [i− j] ∪ {j}
11 return M [R]

Fig. 5.2. Dynamic programming algorithm for finding the least number of coins whose sum is
R units using denomination set D. M is an array of multisets.

(ii) If N − t ≥ i, then t ≥ jk, where j = i− 1.
(iii) If i > 0, then t < jk + i.

Proof. Line 4 can be reached after executing lines 1–3 or after executing the loop
of lines 5–10. In the former case t = i = 0 and the lemma holds trivially.

In the latter case, let t0 denote the value of the variable t before the last execution
of the loop. If lines 9 and 10 are not executed, then (5.2) holds trivially. If they are
executed, then t = t0+ici and t ≤ �N−t0

i �·i+t0 ≤ N ; hence (5.2) holds after the loop
is executed. Then, whether or not lines 9 and 10 are executed, t ≤ t0 + �kj−t0i � · i <
t0 + (kj − t0 + i) = jk + i, and thus (5.2) is true after the execution of the loop.

Finally, we show (5.2) holds after executing the loop. If line 8 is not executed,
or if line 11 is executed, then (5.2) holds trivially. Otherwise lines 9–10 are executed,
and ci = �kj−ti �, hence t = t0 + �kj−t0i � · i ≥ t0 + kj − t0 = kj, as required.

The correctness of GAlloc is proven in the next lemma. Following the conven-
tions of section 4, we denote by S∗ the allocation produced by GAlloc before line 12.
We denote by c∗i and T

∗
i the values in S∗ corresponding to ci and Ti in S, respectively.

Lemma 5.3. S solves the k-payment problem with allowed denominations D.
Proof. By (5.2) of Lemma 5.2, in conjunction with lines 12–14 of the code, we

have that upon completion of the algorithm,
∑
i ici = N . Let m be the highest

denomination allocated by the algorithm. Then, by (5.2) of Lemma 5.2, and the fact
that MakeChange does not use coins with higher denominations (line 13), we have
that for all 1 ≤ i < m, Ti ≥ T ∗

i ≥ k(i− 1) ≥ ki. Therefore, by Theorem 3.1, S solves
the k-payment problem.

We now turn to prove optimality of the algorithm. The analysis proceeds similarly
to that of section 4: We first show that the allocation of the coins up to the remainder
(i.e., just before line 12 is executed) is optimal. We then prove that the handling of the
remainder is optimal as well. The proof here is complicated by the fact that in order
to ensure correctness, GAlloc allocates the remainder by using only denominations
which were already considered in the main loop, and hence it is not immediately clear
that the remainder is allocated optimally.

For the remainder of this section, fix an arbitrary “competitor” solution T . We de-
fine for T notions analogous to those defined for the solution S produced by GAlloc.

• di is the number of i-coins in T .

450 B. PATT-SHAMIR, Y. TSIOUNIS, AND Y. FRANKEL

• Ui is the budget allocated in T using coins of denomination i or less: Ui =∑i
j=1 idi.

• n is the largest denomination of a coin in T . Formally, n = max {i | di > 0}.
To facilitate treatment of the remainder, we fix an arbitrary subsolution T ∗ of T

which solves the k-payment problem for budget T ∗
m. (This is possible since a solution

for budget N is also a solution for any budget smaller than N .) We use the following
additional definitions.

• U∗
i =

i∑

j=1

jd∗j . (This is analogous to T
∗
i in S).

• n∗ is the largest denomination in T ∗.
• m∗ is the largest denomination allocated up to line 12 by GAlloc. Hence,
T ∗
m∗ = T ∗

m.
Finally, we define ∆0 = 0 and ∆i = ∆i−1 + d∗i − c∗i for i > 0. As before, by the

definitions, for all i ≥ 0 we have

∆i =

i∑

j=1

d∗j −
i∑

j=1

c∗j ,(5.1)

d∗i = c∗i +∆i −∆i−1(5.2)

We start by proving that GAlloc produces an optimal solution—ignoring the
remainder.

Lemma 5.4. For all 1 ≤ j < n∗,
∑j
i=1 d

∗
i ≥

∑j
i=1 c

∗
i .

Proof. Suppose
∑l
i=1 d

∗
i <

∑l
i=1 c

∗
i for l < n∗, and that l is the smallest such

index, i.e., using (5.1), ∆l < 0 and ∆j ≥ 0 for all 0 ≤ j < l. Hence, by (5.2), we have
that d∗l < c∗l −∆l−1, which implies, by integrality, that d

∗
l ≤ c∗l −∆l−1 − 1. Also,

T ∗
l < k(l − 1) + l by (5.2) of Lemma 5.2. Therefore, since l − 1 < n∗, we get

U∗
l−1

= U∗
l−1 + ld∗l

≤
l−1∑

i=1

id∗i + lc∗l − l∆l−1 − l

=

l−1∑

i=1

i (c∗i +∆i −∆i−1) + lc∗l − l∆l−1 − l

=

l−1∑

i=1

ic∗i +
l−2∑

i=0

(i∆i − (i+ 1)∆i)

+ (l − 1)∆l−1 + lc∗l − l∆l−1 − l

= T ∗
l −

l−1∑

i=1

∆i − l

≤ T ∗
l − l

< k(l − 1) + l − l
= k(l − 1) ,

or U∗
l−1

< k(l − 1), a contradiction to Theorem 3.1, since l − 1 < n∗.
Corollary 5.5. n∗ ≤ m∗.
Proof. Suppose n∗ > m∗. Then, by Lemma 5.4, U∗

n∗ =
∑n∗

i=1 id
∗
i >

∑m∗

i=1 id
∗
i ≥∑m∗

i=1 ic
∗
i = T ∗

m∗ , which is a contradiction to the fact that U∗
n∗ = T ∗

m = T ∗
m∗ .

EXACT ANALYSIS OF EXACT CHANGE 451

Next, we prove that no solution can use a denomination larger than the largest
one used by S.

Lemma 5.6. n ≤ m.
Proof. We consider two cases. Suppose first that line 12 is reached after testing the

condition on line 4. Thenm∗ = m, and hence the remainder allocated by the dynamic
algorithm is N − T ∗

m < m; hence N − T ∗
m ≤ m. Note that n ≤ max(n∗, N − T ∗

m). By
Corollary 5.5, n∗ ≤ m∗, and therefore, n ≤ max(m∗,m) = m, and we are done for
this case.

Suppose next that line 12 is reached from line 11. In this case we have

⌊
N − T ∗

m∗

m

⌋
<

⌈
k(m− 1)− T ∗

m∗

m

⌉
,

and since T ∗
m∗ = U∗

n∗ , we get

⌊
N − U∗

n∗

m

⌋
<

⌈
k(m− 1)− U∗

n∗

m

⌉
,

and hence

N − U∗
n∗ −m
m

=
N − U∗

n∗

m
− 1

<
k(m− 1)− U∗

n∗

m
,

or

N −m < k(m− 1) .(5.3)

Now suppose for contradiction that n > m. Then at least one coin of denomination
n > m is allocated by T ; hence N ≥ n + Um > m + Um, or Um < N − m. Since
Um−1 = Um, we get from (5.3) that Um−1 < k(m−1), a contradiction to Theorem 3.1
since m− 1 < m ≤ n.

It follows that the remainder is allocated optimally (for any choice of a subsolution
T ∗).

Corollary 5.7.
∑n
i=1 di −

∑n
i=1 d

∗
i ≥

∑m
i=1 ci −

∑m
i=1 c

∗
i .

Proof. By Lemma 5.6, the amount of N − T ∗
m must be allocated in T using only

denominations used in S. The statement therefore follows from the optimality of
dynamic programming used in MakeChange.

We can now prove optimality of the full solution S.
Lemma 5.8.

∑m
i=1 ci ≤

∑n
i=1 di.

Proof. By Corollary 5.7, it is sufficient to prove that the number of coins in
T ∗ is at least as much as in S∗. If n∗ ≥ m∗, then we are done by Lemma 5.4. It
remains to consider the case of n∗ < m∗. We do it similarly to Lemma 4.5. Define

b =
∑m∗

i=n∗ c∗i −d∗n∗ . With this notation, it is sufficient to show that
∑n∗

i=1(d
∗
i −c∗i) ≥ b.

By Lemma 5.4 we have ∆i ≥ 0 for i ≤ n∗, and using (5.2) we get

452 B. PATT-SHAMIR, Y. TSIOUNIS, AND Y. FRANKEL

U∗
n∗ − T ∗

n∗ =

n∗
∑

i=1

i(d∗i − c∗i)

=

n∗
∑

i=1

i(∆i −∆i−1)

= n∗∆n∗ −
n∗−1∑

i=0

∆i

≤ n∗∆n∗ .

Also, since U∗
n∗ = T ∗

m∗ , we have

U∗
n∗ = U∗

n∗ − n∗dn∗

= T ∗
m∗ − n∗

(
m∗∑

i=n∗
c∗i − b

)

≥ T ∗
m∗ −

m∗∑

i=n∗
ic∗i + bn∗

= T ∗
n∗ + bn∗ .

Hence, n∗∆n∗ ≥ n∗∆n∗ ≥ U∗
n∗ − T ∗

n∗ ≥ bn∗, i.e., ∆n∗ ≥ b. Thus, from (5.1) we get

n∗
∑

i=1

(d∗i − c∗i) = ∆n∗ ≥ b ,

as required.

6. Conclusion. Motivated by electronic cash, we have specified and analyzed
the k-payment problem in this paper. It is obvious that the problem is valid in
conventional cash models as well. The main requirement is that the payments are
made exactly, with no change given back (i.e., no cash given back from the vendor to
the customer). We have given a simple “binary” solution, where the denominations
used are powers of 2, and an exact optimal solution for the general case, where the set
of allowed denominations is arbitrary. If all denominations are allowed, the number
of coins is about k ln(N/k).

We close this paper with a few open problems we find interesting.
• In the course of the analysis we have used a special kind of an approximation
of the harmonic series, in which the sum of the first i elements, for each i,
is the smallest possible value above k · i. Are there other applications of the
harmonic approximation used in this paper?
• Can the results be extended to the case where denominations may be nega-
tive?
• It is easy to see that the running time of Algorithms Alloc and GAlloc—
without the invocation of MakeChange—is proportional to the largest de-
nomination they allocate, and hence it is O(N/k) by Lemma 3.2. For Al-
gorithm MakeChange, it is not difficult to see that its running time is
bounded by O(N2/k). Can the computational complexity of the algorithms
in this paper be improved?
• Is there a direct reduction proving the results of section 4.2?

EXACT ANALYSIS OF EXACT CHANGE 453

Acknowledgments. We thank Mike Saks, Richard Stanley, and Yishay Man-
sour for helpful discussions, Eric Bach for bringing the postage-stamp problem to our
attention, Rakesh Verma for providing us with a copy of [14], and Agnes Chan and
the anonymous referees for valuable suggestions and comments.

REFERENCES

[1] S. Brands, Untraceable off-line cash in wallets with observers, in Advances in Cryptology:
CRYPTO. ’93, Lecture Notes in Comput. Sci. 773, Springer-Verlag, Berlin, 1994, pp. 302–
318.

[2] D. Chaum, Blind signatures for untraceable payments, in Advances in Cryptology: CRYPTO.
’82, Plenum Press, New York, 1983, pp. 199–203.

[3] D. Chaum, A. Fiat, and M. Naor, Untraceable electronic cash, in Advances in Cryptology:
CRYPTO. ’88, Springer-Verlag, Berlin, 1990, pp. 319–327.

[4] D. F. Hsu and X.-D. Jia, External problems in the construction of distributed loop networks,
SIAM J. Disc. Math., 7 (1994), pp. 57–71.

[5] D. Kozen and S. Zaks, Optimal bounds for the change-making problem, Theoret. Comput.
Sci., 123 (1994), pp. 377–388.

[6] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations,
Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley and Sons, New York, 1990.

[7] D. Naccache and D. M’Räıhi, Cryptographic smart cards, IEEE Micro., 16 (1996), pp. 14–23.
[8] T. Okamoto, An efficient divisible electronic cash scheme, in Advances in Cryptology:

CRYPTO. ’95, Lecture Notes in Comput. Sci. 963, Springer-Verlag, Berlin, 1995, pp. 438–
451.

[9] D. Pearson, A Polynomial-Time Algorithm for the Change-Making Problem, Technical report
TR94-1493, Cornell University, Ithaca, NY, 1994.

[10] E. S. Selmer, On the postage stamp problem with 3 denominations, Math. Scand., 56 (1985),
pp. 105–116.

[11] E. S. Selmer, Associate bases in the postage stamp problem, J. Number Theory, 42 (1992),
pp. 320–336.

[12] Y. Tsiounis, Efficient Electronic Cash: New Notions and Techniques, Ph.D. the-
sis, College of Computer Science, Northeastern University, Boston, MA, 1997. See
http://www.ccs.neu.edu/home/yiannis for information on availability.

[13] J. van Lint and R. Wilson, A Course in Combinatorics, Cambridge University Press, Cam-
bridge, UK, 1992.

[14] R. Verma and J. Xu, On Optimal Greedy Change Making, Technical report UH-CS-94-03,
Department of Computer Science, University of Houston, Houston, TX, 1994.

GRAPH SEARCHING AND INTERVAL COMPLETION∗

FEDOR V. FOMIN† AND PETR A. GOLOVACH‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 4, pp. 454–464

Abstract. In the early studies on graph searching a graph was considered as a system of tunnels
in which a fast and clever fugitive is hidden. The “classical” search problem is to find a search plan
using the minimal number of searchers. In this paper, we consider a new criterion of optimization,
namely, the search cost. First, we prove monotone properties of searching with the smallest cost.
Then, making use of monotone properties, we prove that for any graph G the search cost of G is
equal to the smallest number of edges of all interval supergraphs of G. Finally, we show how to
compute the search cost of a cograph and the corresponding search strategy in linear time.

Key words. graph searching, search cost, vertex separation, interval graph completion, linear
layout, profile, cograph

AMS subject classifications. 05C78, 05C50, 68R10

PII. S0895480199350477

1. Introduction. Search problems on graphs were introduced by Parsons [29]
and Petrov [30, 31] (see also [27]). These problems attract the attention of researchers
from different fields of mathematics and computer science for a variety of reasons. In
the first place, this is the resemblance of graph searching to certain pebble games [21]
which model sequential computation. The second motivation of the interest to graph
searching arises from VLSI theory. The use of game-theoretic approaches to some
important parameters of graph layouts such as cutwidth [26], topological bandwidth
[25], and vertex separation number [13] is very useful for constructions of efficient
algorithms. Yet another reason is connections between graph searching, pathwidth,
and treewidth. These parameters play a very important role in the theory of graph
minors developed by Robertson and Seymour (see [1, 12, 33]). Also, graph searching
has applications in motion coordinations of multiple robots [34] and in problems of
privacy in distributed environments with mobile eavesdroppers (“bugs”) [15]. One
can find more information on graph searching and related problems in the surveys
[1, 4, 14, 28, 32].

In the “classical” node-search version of searching (see, e.g., [21]), at every move
of searching a searcher is placed at a vertex or is removed from a vertex. Initially all
edges are contaminated (uncleared). A contaminated edge is cleared once both its
endpoints are occupied by searchers. A clear edge e is recontaminated if there is a
path without searchers leading from e to a contaminated edge. The “classical” search
problem is to find the search program such that the maximal number of searchers
used at any move is minimized. In this paper we introduce an alternative criterion
of optimization. We are looking for node-search programs with the minimal sum of
numbers of searchers (the sum is taken over all moves of the search program). We
call this criterion the search cost of a graph. Loosely speaking, the cost of a search

∗Received by the editors December 30, 1998; accepted for publication (in revised form) July 5,
2000; published electronically October 6, 2000.

http://www.siam.org/journals/sidma/13-4/35047.html
†Faculty of Mathematics and Mechanics, St. Petersburg State University, Bibliotechnaya sq.2, St.

Petersburg, 198904, Russia (fomin@gamma.math.spbu.ru). The research of this author was partially
supported by the RFBR grant N98-01-00934.

‡Department of Applied Mathematics, Faculty of Mathematics, Syktyvkar State University, Ok-
tyabrsky pr., 55, Syktyvkar, 167001, Russia (golovach@ssu.komi.com). The research of this author
was partially supported by the RFBR grant N96-00-00285.

454

GRAPH SEARCHING AND INTERVAL COMPLETION 455

program is the total number of “man-steps” used in this program, and the search
cost is the cost of an optimal program. The reader is referred to section 2 for formal
definitions of searching and its cost.

One of the most important issues concerning searching is that of recontamination.
In some search problems (see [2, 23]) recontamination does not help to search a graph,
i.e., if searchers can clear the graph, then they can do it without recontamination of
previously cleared edges. We establish the monotonicity of search programs of the
smallest cost. To prove the monotonicity we use special constructions called clews.
Clews are closely related to crusades used by Bienstock and Seymour in [2] and the
notion of measure of clew is related to the notion of linear width introduced by Thomas
in [35].

This paper is organized as follows. In section 2 we give necessary definitions.
In section 3 we introduce clews and prove the monotonicity of graph searching. In
section 4 it is proved that for any graph G the search cost of G is equal to the smallest
number of edges of an interval supergraph of G. In section 5 it is shown that for any
graph G the search cost of G is equal to the vertex separation sum and profile of G.
In section 6 we show how to compute the search cost of the product of graphs. In
section 7 we prove that the search cost of a cograph and the corresponding search
program can be obtained in linear time.

2. Statement of the problem. We use the standard graph-theoretic terminol-
ogy compatible with [7], to which we refer the reader for basic definitions. Unless
otherwise specified, G is an undirected, simple (without loops and multiple edges),
and finite graph with the vertex set V (G) and the edge set E(G); n denotes the order
of G, i.e., |V (G)| = n.

A search program Π on a graph G is the sequence of pairs

(A1
0, Z

1
0), (A

2
0, Z

2
0), (A

1
1, Z

1
1), (A

2
1, Z

2
1), . . . , (A

1
m, Z

1
m), (A2

m, Z
2
m)

such that the following hold.
I. For i ∈ {0, . . . ,m}, j ∈ {1, 2}, Aji ⊆ E(G), and Zji ⊆ V (G).

II. For i ∈ {0, . . . ,m}, j ∈ {1, 2}, any vertex incident to an edge in Aji and to an

edge in E(G)−Aji is in Zji .

III. For j ∈ {1, 2}, Aj0 = ∅, and Ajm = E(G).
IV (placing new searchers and clearing edges). For i ∈ {1, . . . ,m}, there is v ∈

V (G) \Z2
i−1 such that Z1

i = Z2
i−1 ∪{v} and A1

i = A2
i−1 ∪Ev, where Ev is the

set of all incident to v edges having one end in Z2
i−1.

V (removing searchers and possible recontamination). For i ∈ {1, . . . ,m}, Z2
i ⊆

Z1
i and A2

i is the set of all edges e ∈ A1
i such that every path containing e

and an edge of E(G)−A1
i has an internal vertex in Z2

i .
We call these the search axioms. It is useful to treat Z1

i as the set of vertices occupied
by searchers immediately after placing a new searcher at the ith step, Z2

i as the set
of vertices occupied by searchers immediately before making the (i + 1)th step, and
A1
i , A

2
i as the sets of cleared edges.

The well-known node search problem [21] is to find Π with the smallest maxi∈{0,...,m}
|Z1
i |. (This maximum can be treated as the maximum number of searchers used in

one step.) Let us suggest an alternative measure of search. We define the cost of Π
to be

∑m
i=0 |Z2

i |. One can interpret the cost of a search program as the total number
of “man-steps” used for the search or as the total sum that searchers earn for doing
their job. The search cost of a graph G, denoted by γ(G), is the minimum cost of a
search program where the minimum is taken over all search programs on G.

456 FEDOR V. FOMIN AND PETR A. GOLOVACH

A search program (A1
0, Z

1
0), (A

2
0, Z

2
0), . . . , (A

1
m, Z

1
m), (A2

m, Z
2
m) is monotone if, for

each i ∈ {0, . . . ,m}, A1
i = A2

i . (Recontamination does not occur when searchers are
removed at the ith step.) The monotone search cost of G, γm(G), is the cost of the
minimal (over all monotone search programs) search program on G.

Notice that search programs can be defined not only for simple graphs but for
graphs with loops and multiple edges as well. Adding loops and multiple edges does
not change the search cost. (We suppose that a loop edge is cleared once a searcher
is placed on its endpoint.)

3. Monotone programs and clews. Let G be a graph. For X ⊆ E(G) we
define V (X) to be the set of vertices which are endpoints of X, and we let δ(X) =
V (X) ∩ V (E(G)−X).

We consider only clews in graphs of a special structure. Let G0 be obtained
by adding a loop at each vertex of a graph G. A clew in G0 is the sequence
(X0, X1, . . . , Xm) of subsets of E(G0) such that the following hold.

1. X0 = ∅ and Xm = E(G0).
2. For i ∈ {1, . . . ,m}, |V (Xi)− V (Xi−1)| ≤ 1.
3. For i ∈ {1, . . . ,m}, if v ∈ V (Xi), then the loop at v also belongs to Xi.

The measure of the clew is
∑m
i=0 |δ(Xi)|. A clew (X0, X1, . . . , Xm) is progressive if

X0 ⊆ X1 ⊆ · · · ⊆ Xm and for any i ∈ {1, . . . ,m}, |V (Xi) − V (Xi−1)| = 1. Notice
that if a clew (X0, X1, . . . , Xm) is progressive, then m = n.

Theorem 3.1. For any graph G and k ≥ 0 the following assertions are equivalent.
(i) γ(G) ≤ k.
(ii) Let G0 be obtained by adding a loop at each vertex of G. There is a clew in

G0 of measure ≤ k.
(iii) Let G0 be obtained by adding a loop at each vertex of G. There is a progressive

clew in G0 of measure ≤ k.
(iv) γm(G) ≤ k.
Proof. (i) ⇒ (ii). As mentioned above, γ(G) = γ(G0). Let

(A1
0, Z

1
0), (A

2
0, Z

2
0), (A

1
1, Z

1
1), (A

2
1, Z

2
1), . . . , (A

1
m, Z

1
m), (A2

m, Z
2
m)

be a search program on G0 with the cost ≤ k. We prove that A2
0, A

2
1, . . . , A

2
m is the

clew of measure ≤ k in G0. The third search axiom implies A2
0 = ∅, A2

m = E(G).
The second search axiom says that for every i ∈ {0, . . . ,m}, δ(A2

i) ⊆ Z2
i , and hence∑m

i=1 |δ(A2
i)| ≤ k. Thus A2

0, A
2
1, . . . , A

2
m is the clew if |V (A2

i)−V (A2
i−1)| ≤ 1 for every

i ∈ {1, . . . ,m}. Suppose that for some i ∈ {1, . . . ,m} this inequality does not hold.
Then there are vertices u �= v of V (A2

i) − V (A2
i−1). Notice that the loops eu, ev at

u and v belong to A2
i − A2

i−1. From the fifth search axiom A1
i ⊇ A2

i it follows that
eu, ev ∈ A1

i −A2
i−1. The latter is in contradiction with the fourth axiom.

(ii)⇒ (iii). The proof of this implication is closely related to the crusades mono-
tonicity proof by Bienstock and Seymour [2]. Let us choose a clew (X0, X1, . . . , Xm)
in G0 such that

m∑

i=0

|δ(Xi)| is minimum(3.1)

and, subject to (3.1),

m∑

i=0

(|Xi|+ 1) is minimum.(3.2)

GRAPH SEARCHING AND INTERVAL COMPLETION 457

First we prove that Xi−1 ⊆ Xi for i ∈ {1, . . . ,m}.
Because V (Xi−1 ∪Xi)− V (Xi−1) = V (Xi)− V (Xi−1) and V (Xi+1)− V (Xi−1 ∪

Xi) ⊆ V (Xi+1)− V (Xi), it follows that (X0, X1, . . . , Xi−1, Xi−1 ∪Xi, Xi+1, . . . , Xm)
is the clew. Using (3.1), we obtain

|δ(Xi−1 ∪Xi)| ≥ |δ(Xi)|.(3.3)

It is easy to check that |δ| satisfies the submodular inequality

|δ(Xi−1 ∪Xi)|+ |δ(Xi−1 ∩Xi)| ≤ |δ(Xi−1)|+ |δ(Xi)|.(3.4)

Combining (3.3) and (3.4), we obtain

|δ(Xi−1 ∩Xi)| ≤ |δ(Xi−1)|.(3.5)

If v ∈ V (Xi−1) ∩ V (Xi), then the loop at v belongs to Xi−1 ∩ Xi by the third
search axiom; therefore, v ∈ V (Xi−1 ∩ Xi) and, consequently, V (Xi) − V (Xi−1 ∩
Xi) ⊆ V (Xi)−V (Xi−1). Thus, V (Xi−1 ∩Xi)−V (Xi−2) ⊆ V (Xi−1)−V (Xi−2), and
(X0, X1, . . . , Xi−2, Xi−1 ∩Xi, Xi, Xi+1, . . . , Xm) is a clew. Taking into account (3.5),
(3.1), and (3.2), we get |Xi−1 ∩Xi| ≥ |Xi−1|. Thus we have Xi−1 ⊆ Xi.

If |V (Xi) − V (Xi−1)| = 0, then (X0, X1, . . . , Xi−1, Xi+1, . . . , Xm) is the clew
contradicting (3.2). Hence, (X0, X1, . . . , Xm) is progressive.

(iii)⇒ (iv). Let (X0, X1, . . . , Xn) be a progressive clew of measure ≤ k in G0. We
define the search program on G0 setting Z1

0 = Z2
0 = ∅ and Z1

i = δ(Xi) ∪ {V (Xi) −
V (Xi−1)}, Z2

i = δ(Xi) for i ∈ {1, . . . , n}. Suppose that at the ith step searchers
are placed at vertices of Z1

i and that all edges of Xi are cleaned. Obviously, no
recontamination occurs by removing all searchers from vertices of Z1

i − Z2
i .

Define v = V (Xi+1)− V (Xi). Every edge of Xi+1 −Xi either is the loop at v, or
is incident to v and to a vertex of δ(Xi) = Z2

i . Then at the (i+1)th step the searcher
placed at v cleans all edges of Xi+1−Xi. Finally, X0 = ∅, Xn = E(G) with the result
that γm(G) = γm(G0) ≤ k.

(iv)⇒ (i). This part of the proof is obvious.

4. Interval graphs. A graph G is an interval graph if and only if one can
associate with each vertex v ∈ V (G) an open interval Iv = (lv, rv) on the real line,
such that for all v, w ∈ V (G), v �= w: (v, w) ∈ E(G) if and only if Iv ∩ Iw �= ∅. The
set of intervals I = {Iv}v∈V is called an (interval) representation of G.

It is easy to check that every interval graph has an interval representation in
which the left endpoints are distinct integers 1, 2, . . . , n. Such a representation is said
to be canonical.

A graph G is a supergraph of the graph G′ if V (G′) = V (G) and E(G′) ⊆ E(G).
Let G be an interval graph, and let I = {Iv}v∈V (G) be a canonical representation of
G. The length of G with respect to I, denoted by l(G, I), is

∑

v∈V
�rv − lv�.

We define the length l(G) of an interval graph G as the minimum length over all
canonical representations of G. For any graph G we define the interval length of G,
denoted by il(G), as the smallest length over all interval supergraphs of G.

In the proof of Theorem 4.2, we shall use the following property of canonical
representation.

458 FEDOR V. FOMIN AND PETR A. GOLOVACH

Lemma 4.1. Let I be an interval graph of n vertices and I = {Iv = (lv, rv)}v∈V (G),
lv < rv, be its canonical representation such that

∑

v∈V
�rv − lv� is minimum.(4.1)

For i ∈ {1, . . . , n} let P (i) be the set of intervals Iv, v ∈ V (I), containing i. Then

n∑

i=1

|P (i)| =
∑

v∈V
�rv − lv� = |E(I)|.

Proof. (4.1) implies that every interval Iv = (lv, rv), v ∈ V (I), contains �rv − lv�
integers. Every i ∈ {1, . . . , n} belongs to |P (i)| intervals of I; therefore,

n∑

i=1

|P (i)| =
∑

v∈V
�rv − lv�.(4.2)

Let deg(v) be the degree of a vertex v in I. Then for every v ∈ V (I)

deg(v) = |P (lv)|+ �rv − lv�(4.3)

(the number of intervals Iu = (lu, ru) such that lu < lv < ru plus the number of
intervals Iw = (lw, rw) such that lv < lw < rv). By (4.3),

2|E(I)| =
∑

v∈V (I)

deg(v) =

n∑

i=1

|P (i)|+
∑

v∈V (I)

�rv − lv�,

which, combined with (4.2), proves Lemma 4.1.
Theorem 4.2. For any graph G and k > 0 the following assertions are equivalent.
(i) γ(G) ≤ k.
(ii) il(G) ≤ k.
(iii) There is an interval supergraph I of G such that |E(I)| ≤ k.
Proof. (i)⇒ (ii). If γ(G) ≤ k, then by Theorem 3.1 there is a monotone search

program

(A1
0, Z

1
0), (A

2
0, Z

2
0), (A

1
1, Z

1
1), (A

2
1, Z

2
1), . . . , (A

1
n, Z

1
n), (A

2
n, Z

2
n)

on G with cost ≤ k. We choose ε < 1 and assign to each vertex v of G the interval
(lv, rv + ε), where a searcher is placed on v at the lvth step and this searcher is
removed from v at the rvth step, i.e., lv = min{i ∈ {1, . . . , n}|v ∈ Z1

i } and rv =
max{i ∈ {1, . . . , n}|v ∈ Z1

i }. After the nth step of the search program all edges of
G are cleared, and hence for every edge e of G there is a step such that both ends
of e are occupied by searchers. Therefore, the interval graph I with the canonical
representation I = {Iv = (lv, rv + ε)}v∈V (G) is the supergraph of G. Because for
sufficiently small ε

∑

v∈V
�rv + ε− lv� =

∑

v∈V
�rv − lv� =

n∑

i=0

|Z2
i |

(in the left-hand side equality each vertex v is counted �rv − lv� times), we see that
il(G) ≤ l(I) ≤ k.

GRAPH SEARCHING AND INTERVAL COMPLETION 459

(ii)⇒ (iii). This part of the proof follows immediately from Lemma 4.1.
(iii)⇒ (i). Let I = {Iv = (lv, rv)}v∈V (G), lv < rv, be a canonical representation

of the minimal length of an interval supergraph I of G. It is clear that rv < n + 1,
v ∈ V (G).

Let us describe the following search program on G.
• Z1

0 = ∅.
• For i ∈ {1, . . . , n}, we put Z1

i = Z2
i−1 ∪ {v}, where v is the vertex assigned to

the interval with the left endpoint i.
• For i ∈ {0, . . . , n− 1}, Z2

i = P (i+ 1).
• Z2

n = ∅.
Such actions of searchers do not imply recontamination because each path in I (and
hence in G) from a vertex w, lw > i+ 1 to a vertex u, lu < i+ 1 contains a vertex of
P (i+ 1). For each edge e of I (and hence for each edge of G) there is i ∈ {1, . . . , n}
such that both ends of e belong to Z1

i . Then at the nth step all edges are cleared.
The cost of the program is

n∑

i=0

|Z2
i | =

n∑

i=1

|P (i)|.

By Lemma 4.1 γ(G) ≤ |E(I)|.
Notice that by Theorem 4.2 for any graph G on n vertices and e edges

e ≤ γ(G) ≤ 1

2
n(n− 1).

Also, γ(G) = e if and only if G is an interval graph, and γ(G) = 1
2n(n − 1) if and

only if G is a complete graph.

5. Linear layouts. A linear layout of a graph G is a one-to-one mapping
f :V (G)→ {1, . . . , n}. There are various interesting parameters associated with linear
layouts like Bandwidth, Sum Bandwidth, Cutwidth, etc. (see [10] and [26] for
further references).

Define the profile [10] of a symmetric n × n matrix A = (aij) as the minimum
value of the sum

n∑

i=1

(i−min{j: aij �= 0})

taken over all symmetric permutations of A, it being assumed that aii = 1, i ∈
{1, . . . , n}. Profile reduction is relevant to the speedup of matrix computations; see
[10] for further references on profile. The profile may be redefined as a graph invariant
p(G) by finding a linear layout f of G which minimizes the sum

∑

u∈V (G)

(f(u)−min{f(v): v ∈ V (G), v ∼= u}),

where ∼= stands for “is adjacent or equal to.”
For U ⊆ V (G) we define

∂U = {u:u ∈ U and there exists v ∈ V (G) \ U such that (u, v) ∈ E(G)}.
Ellis, Sudborough, and Turner [13] (see also [24]) introduced the following graph
parameter. Let f be a linear layout of a graph G. Denote by Si(G, f), i ∈ {1, . . . , n},

460 FEDOR V. FOMIN AND PETR A. GOLOVACH

the set of vertices {v: v ∈ V (G), f(v) ≤ i}. The vertex separation with respect to
layout f is

vs(G, f) = max
i∈{1,...,n−1}

|∂Si(G, f)|,

and the vertex separation vs(G) of a graph G is the minimum vertex separation over
all linear layouts of G. Let us define an alternative “average norm” (“cost version”)
of vertex separation. The vertex separation sum with respect to layout f is

vssum(G, f) =

n−1∑

i=1

|∂Si(G, f)|,

and the vertex separation sum vssum(G) of a graph G [18] is the minimum vertex
separation sum over all linear layouts of G.

The following result is due to Billionnet [3].

Theorem 5.1 (Billionnet). For any graph G the profile of G is equal to the
smallest number of edges, where minimum is taken over all interval supergraphs of
G.

The next theorem is related to the theorem of Kirousis and Papadimitriou [20]
about node search number and interval width.

Theorem 5.2. For any graph G and k > 0, the following assertions are equiva-
lent.

(i) γ(G) ≤ k.
(ii) vssum(G) ≤ k.
(iii) p(G) ≤ k.

Proof. Because the application of Theorems 4.2 and 5.1 yields (i)⇔ (iii), it remains
to prove (i)⇔ (ii).

(i)⇒ (ii). Let

(A1
0, Z

1
0), (A

2
0, Z

2
0), (A

1
1, Z

1
1), (A

2
1, Z

2
1), . . . , (A

1
n, Z

1
n), (A

2
n, Z

2
n)

be a monotone search program on G with cost ≤ k. Define a layout f :V (G) →
{1, . . . , n} so that f(u) < f(v) if and only if u accepts a searcher before v does. By
the second search axiom |Z2

i | ≤ |∂Si(G, f)| for each i ∈ {1, . . . , n}, and we conclude
that vssum(G, f) ≤ k.

(ii)⇒ (i). Let f :V (G)→ {1, . . . , n} be a linear layout such that vssum(G, f) ≤ k.
We define the following subsets of V (G).

• Z1
0 = Z2

0 = ∅.
• For i ∈ {1, . . . , n}, we put Z1

i = Z2
i−1 ∪ {v}, where v = f−1(i).

• For i ∈ {1, . . . , n}, Z2
i = ∂Si(G, f).

For i ∈ {0, . . . , n} and j = 1, 2, let Aji be the set of edges induced by ∪ik=0Z
1
k .

We observe that for each edge (u, v) ∈ E(G) there is i ∈ {1, . . . , n− 1} such that
u, v ∈ Z1

i . (If f(u) < f(v), then i = f−1(v).) On this basis it is straightforward to
prove (as in Theorem 4.2) that the sequence

(A1
0, Z

1
0), (A

2
0, Z

2
0), (A

1
1, Z

1
1), (A

2
1, Z

2
1), . . . , (A

1
n, Z

1
n), (A

2
n, Z

2
n)

is the (monotone) search program of cost ≤ k on G.

GRAPH SEARCHING AND INTERVAL COMPLETION 461

5.1. Complexity remark. The problem of Interval Graph Completion is
as follows.
Instance: A graph G and an integer k.
Question: Is there an interval supergraph I of G such that |E(I)− E(G)| ≤ k?

This problem is NP-complete even when G is stipulated to be an edge graph (see [16,
Problem GT35]). Interval Graph Completion arises in computational biology
(see, e.g., [5]) and is known to be fixed parameter tractable (FPT) [9, 19].

From Theorem 4.2 it follows immediately that the problem of Search Cost,
deciding given a graph G and an integer k whether γ(G) ≤ k or not, is NP-complete
even for edge graphs and that finding the search cost is FPT for a fixed k.

An O(n1.722) time algorithm was given in [22] for the profile problem for the case
that G is a tree with n vertices.

6. Product of graphs. Let G and H be disjoint graphs, i.e., V (G)∩V (H) = ∅.
The disjoint union of disjoint graphs G and H is the graph G∪̇H with the vertex set
V (G) ∪ V (H) and the edge set E(G) ∪ E(H).

We use G × H to denote the following type of “product” of disjoint graphs G
and H: G × H is the graph with the vertex set V (G) ∪ V (G) and the edge set
E(G) ∪ E(H) ∪ {(u,w): v ∈ V (G), w ∈ V (H)}).

The following theorem is similar to results on edge-search and node-search num-
bers [17, 28] and on the pathwidth and the treewidth of a graph [6].

Theorem 6.1. Let G1, G2 be disjoint graphs, |V (G1)| = n1, |V (G2)| = n2. Then
(i) γ(G1∪̇G2) = γ(G1) + γ(G2).
(ii) γ(G1 ×G2) = min{ 1

2n1(n1 − 1) + γ(G2),
1
2n2(n2 − 1) + γ(G1)}+ n1n2.

Proof.
(i) This part of the proof is trivial.
(ii) Let f be an optimal layout of G1 ×G2, i.e.,

vssum(G1 ×G2) =

n1+n2−1∑

i=1

|∂Si(G1 ×G2, f)|.

Let k be the smallest number ensuring that V (G1) ⊆ Sk(G1 × G2, f) or V (G2) ⊆
Sk(G1×G2, f). For clarity’s sake, without loss of generality we suppose that V (G1) ⊆
Sk(G1 × G2, f). Obviously, k ≥ n1. Let g:V (G2) → n2 be the “restriction” of f to
V (G2), i.e., for any u, v ∈ V (G2), g(u) < g(v) if and only if f(u) < f(v).

Putting S0(G2, g) = ∅, we see that |∂Si(G1 × G2, f)| = i for i ∈ {1, . . . , k − 1}
and |∂Si(G1×G2, f)| = n1+ |∂Si−n1(G2, g)| for i ∈ {k, . . . , n1 + n2 − 1}. In addition,
for any i ∈ {1, . . . , n2}, |∂Si(G2, g)| ≤ i. Consequently,

vssum(G1 ×G2) =

n1+n2−1∑

i=1

|∂Si(G1 ×G2, f)|

=

k−1∑

i=1

i+

n1+n2−1∑

i=k

(n1 + |∂Si−n1(G2, g)|)

=

n1∑

i=1

i+

k−n1−1∑

i=1

i+

n1+n2−1∑

i=k

|∂Si−n1(G2, g)|+ n1(n2 − 1)

=
1

2
n1(n1 − 1) +

k−n1−1∑

i=1

i+

n2−1∑

i=k−n1

|∂Si(G2, g)|+ n1n2

462 FEDOR V. FOMIN AND PETR A. GOLOVACH

≥1

2
n1(n1 − 1) +

n2−1∑

i=1

|∂Si(G2, g)|+ n1n2

≥1

2
n1(n1 − 1) + vssum(G2) + n1n2.

Finally,

vssum(G1×G2) ≥ min

{
1

2
n1(n1 − 1) + vssum(G2),

1

2
n2(n2 − 1) + vssum(G1)

}
+n1n2.

For the other direction, let f be an arbitrary layout of G1 and let g be a layout
of G2 such that vssum(G2) =

∑n2−1
i=1 |∂Si(G2, g)|. Define the layout h of G1 ×G2 by

the rule

h(v) =

{
f(v), if v ∈ V (G1),
n1 + g(v), if v ∈ V (G2).

It follows easily that |∂Si(G1×G2, h)| = i whenever i ∈ {1, . . . , n1} and that |∂Si(G1×
G2, h)| = n1 + |∂Si−n1(G2, g)| if i ∈ {n1 + 1, . . . , n1 + n2 − 1}. We conclude that

vssum(G1 ×G2) ≤
n1+n2−1∑

i=1

|∂Si(G1 ×G2, h)|

=

n1∑

i=1

i+

n1+n2−1∑

i=n1+1

(n1 + |∂Si−n1(G2, g)|)

=
1

2
n1(n1 + 1) + n1(n2 − 1) +

n2−1∑

i=1

|∂Si(G2, g)|

=
1

2
n1(n1 − 1) + vssum(G2) + n1n2.

Similarly,

vssum(G1 ×G2) ≤ 1

2
n2(n2 − 1) + vssum(G1) + n1n2.

7. Cographs. Theorem 6.1 can be used for obtaining linear time algorithms for
the search cost and the corresponding search strategy on cographs. Recall that a
graph G is a cograph if and only if one of the following conditions is fulfilled:

1. |V (G)| = 1.
2. There are cographs G1, . . . , Gk and G = G1∪̇G2∪̇ · · · ∪̇Gk.
3. There are cographs G1, . . . , Gk and G = G1 ×G2 × · · · ×Gk.

(See [8] for references on cographs and different graph classes.)
Linear time algorithms computing the search cost and optimal search program on

cographs follow rather straightforwardly from the theory developed in the preceding
sections. A similar algorithm for the treewidth and the pathwidth of cographs was
described in [6]. The main idea of the algorithms is in constructing a sequence of
operations ∪̇ and × producing the cograph G. With each cograph G one can associate
a binary labeled tree which is called the cotree TG. TG has the following properties.

1. Each internal vertex v of TG has label(v)∈ {0, 1}.
2. There is a bijection τ between the set of leaves of TG and V (G).

GRAPH SEARCHING AND INTERVAL COMPLETION 463

3. To each vertex v ∈ (TG) we assign the subgraph Gv of G as follows.
(a) If v is a leaf, then Gv = τ(v).
(b) If v is an internal vertex and label(v)= 0, then Gv = Gu∪̇Gw, where

u,w are the sons of v.
(c) If v is an internal vertex and label(v)= 1, then Gv = Gu × Gw, where

u,w are the sons of v.
Notice that if r is the root of TG, then Gr = G. Corneil, Perl, and Stewart [11]
gave an O(|V (G)|+ |E(G)|) algorithm for determining whether a given graph G is a
cograph and, if so, for constructing the corresponding cotree.

We omit the detailed proofs of the following theorems.
Theorem 7.1. The search cost of a cograph given with a corresponding cotree

can be computed in O(n) time.
Theorem 7.2. Let G be a cograph of n vertices and e edges. The optimal search

program on G can be constructed in O(n+ e) time.

8. Concluding remarks. In this paper, we have introduced a game-theoretic
approach to the problem of interval completion with the smallest number of edges.
There are similar approaches to the pathwidth and treewidth parameters. The in-
teresting problem is whether there is a graph-searching “interpretation” of the fill-in
problem (see also [36] for monotonicity proofs of another variant of graph searching).

REFERENCES

[1] D. Bienstock, Graph searching, path-width, tree-width and related problems (a survey), DI-
MACS Ser. Discrete Mathematics and Theoretical Computer Science 5, Amer. Math. Soc.,
Providence, RI, 1991, pp. 33–49.

[2] D. Bienstock and P. Seymour, Monotonicity in graph searching, J. Algorithms, 12 (1991),
pp. 239–245.

[3] A. Billionnet, On interval graphs and matrice profiles, RAIRO Rech. Opér., 20 (1986),
pp. 245–256.

[4] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput.
Sci., 209 (1998), pp. 1–45.

[5] H. L. Bodlaender, R. G. Downey, M. R. Fellows, M. T. Hallett, and H. T. Wareham,
Parameterized complexity analysis in computational biology, Computer Applications in the
Biosciences, 11 (1995), pp. 49–57.

[6] H. L. Bodlaender and R. H. Möhring, The pathwidth and treewidth of cographs, SIAM J.
Discrete Math., 6 (1993), pp. 181–188.

[7] J. A. Bondy, Basic graph theory: Paths and circuits, in Handbook of Combinatorics, 1, R. L.
Graham, M. Grötschel, and L. Lovász, eds., Elsevier, Amsterdam, 1995, pp. 3–110.

[8] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph classes: A survey, SIAM Monogr.
Discrete Math. Appl., SIAM, Philadelphia, PA, 1999.

[9] L. Cai, Fixed-parameter tractability of graph modification problems for hereditary properties,
Technical report, Department of Computer Science, The Chinese University of Hong Kong,
Shatin New Territories, Hong Kong, 1995.

[10] P. Z. Chinn, J. Chvátalová, A. K. Dewdney, and N. E. Gibbs, The bandwidth problem for
graphs and matrices—a survey, J. Graph Theory, 6 (1982), pp. 223–254.

[11] D. G. Corneil, Y. Perl, and L. K. Stewart, A linear recognition algorithm for cographs,
SIAM J. Comput., 14 (1985), pp. 926–934.

[12] N. D. Dendris, L. M. Kirousis, and D. M. Thilikos, Fugitive-search games on graphs and
related parameters, Theoret. Comput. Sci., 172 (1997), pp. 233–254.

[13] J. A. Ellis, I. H. Sudborough, and J. Turner, The vertex separation and search number of
a graph, Inform. and Comput., 113 (1994), pp. 50–79.

[14] F. V. Fomin and N. N. Petrov, Pursuit-evasion and search problems on graphs, Congr.
Numer., 122 (1996), pp. 47–58.

[15] M. Franklin, Z. Galil, and M. Yung, Eavesdropping games: A graph-theoretic approach to
privacy in distributed systems, in Proceedings of the 34th Annual IEEE Symposium on
Foundations of Computer Science, Palo Alto, CA, 1993, pp. 670–679.

464 FEDOR V. FOMIN AND PETR A. GOLOVACH

[16] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, New York, 1979.

[17] P. A. Golovach, Node-search and search number of a combination of graphs, Vestnik
Leningrad. Univ. Math. Mekh. Astronom., 1990, OVYR vyp. 2, 90–91, 122 (in Russian);
translation in Vestnik Leningrad. Univ. Math., 23 (1990), pp. 53–55.

[18] P. A. Golovach, Vertex separation sum of a graph, Diskret. Mat., 9 (1997), pp. 86–91 (in
Russian).

[19] H. Kaplan, R. Shamir, and R. E. Tarjan, Tractability of parameterized completion problems
on chordal and interval graphs: Minimum fill-in and physical mapping, in Proceedings of
the 35th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, Los Alamitos, CA, 1994, pp. 780–791.

[20] L. M. Kirousis and C. H. Papadimitriou, Interval graphs and searching, Discrete Math., 55
(1985), pp. 181–184.

[21] L. M. Kirousis and C. H. Papadimitriou, Searching and pebbling, Theoret. Comput. Sci., 47
(1986), pp. 205–218.

[22] D. Kuo and G. J. Chang, The profile minimization problem in trees, SIAM J. Comput., 23
(1994), pp. 71–81.

[23] A. S. LaPaugh, Recontamination does not help to search a graph, J. ACM, 40 (1993), pp. 224–
245.

[24] T. Lengauer, Black-white pebbles and graph separation, Acta Inform., 16 (1981), pp. 465–475.
[25] F. S. Makedon, C. H. Papadimitriou, and I. H. Sudborough, Topological bandwidth, SIAM

J. Algebraic Discrete Methods, 6 (1985), pp. 418–444.
[26] F. S. Makedon and I. H. Sudborough, On minimizing width in linear layouts, Discrete Appl.

Math., 23 (1989), pp. 243–265.
[27] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou, The

complexity of searching a graph, J. ACM, 35 (1988), pp. 18–44.
[28] R. H. Möhring, Graph problems related to gate matrix layout and PLA folding, in Compu-

tational Graph Theory, Computing Suppl. 7, E. Mayr, H. Noltemeier, and M. SysMlo, eds.,
Springer-Verlag, Berlin, 1990, pp. 17–51.

[29] T. D. Parsons, Pursuit-evasion in a graph, in Theory and Application of Graphs, Y. Alavi
and D. R. Lick, eds., Springer Verlag, Berlin, 1976, pp. 426–441.

[30] N. N. Petrov, Some extremal search problems on graphs, Differential Equations, 18 (1982),
pp. 591–595. Translation from Differ. Uravn 18, (1982) pp. 821–827.

[31] N. N. Petrov, Pursuit problems with no information concerning the evader, Differential Equa-
tions, 18 (1983), pp. 944–948. Translation from Differ. Uravn., 18 (1982), pp. 1345–1352.

[32] B. Reed, Treewidth and tangles: A new connectivity measure and some applications, in Surveys
in Combinatorics, R. A. Bailey, ed., Cambridge University Press, Cambridge, UK, 1997,
pp. 87–162.

[33] N. Robertson and P. D. Seymour, Graph minors—a survey, in Surveys in Combinatorics,
I. Anderson, ed., Cambridge University Press, Cambridge, UK, 1985, pp. 153–171.

[34] K. Sugihara and I. Suzuki, Optimal algorithms for a pursuit-evasion problem in grids, SIAM
J. Discrete Math., 2 (1989), pp. 126–143.

[35] R. Thomas, Tree decompositions of graphs, Lecture notes, Georgia Institute of Technology,
Atlanta, GA, 1996.

[36] Y. S. Stamatiou and D. M. Thilikos, Monotonocity and Inert Fugitive Search Games, Tech-
nical Report LSI-99-35-R, Departament de Llenguatges i Sistemes Informátics, Universitat
Politécnica de Catalunya, Spain, 1999.

LEARNING DETERMINISTIC FINITE AUTOMATA
FROM SMALLEST COUNTEREXAMPLES∗

ANDREAS BIRKENDORF† , ANDREAS BÖKER‡ , AND HANS ULRICH SIMON†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 4, pp. 465–491

Abstract. We show in this paper (which appeared in a preliminary form as an extended abstract
in [Proceedings of the 9th International ACM–SIAM Symposium on Discrete Algorithms, ACM,
1998]) that deterministic finite automata (DFAs) with n states and input alphabet Σ can efficiently
be learned from less than |Σ|n2 smallest counterexamples. This improves on an earlier result of Ibarra
and Jiang who required |Σ|n3 smallest counterexamples. We present a general strategy which learns
a finite concept class F from �logF� smallest counterexamples (but not necessarily efficiently). An
application to DFAs with at most n states shows that (1 + o(1))|Σ|n logn smallest counterexamples
are sufficient (if efficiency is not an issue). We show next that the special DFAs operating on
input words of an arbitrary but fixed length (the so-called leveled DFAs) are efficiently learnable
from (1 + o(1))|Σ|n logn smallest counterexamples. This improves on an earlier result of Ibarra
and Jiang who required |Σ|n2 smallest counterexamples. Furthermore, we present a general lower
bound on the number of smallest counterexamples (required by any learning algorithm). This bound
can be stated in terms of a (new) combinatorial dimension associated with the target class. A
computation of this dimension for leveled or arbitrary DFAs leads to a lower bound of the form
(1
4
+ o(1))|Σ|n logn. This bound matches the aforementioned upper bounds modulo a constant

of approximately 4. Finally, we present a general conversion of algorithms learning from smallest
counterexamples into algorithms performing self-directed learning. For the particular classes of
leveled or arbitrary DFAs, this conversion leads to self-directed learners making the smallest possible
number of mistakes (modulo a constant of approximately 4). A similar remark is valid for the class
of multiplicity automata (MAs).

Key words. learning from smallest counterexamples, self-directed learning, deterministic finite
automata, multiplicity automata

AMS subject classification. 68Q32

PII. S0895480198340943

1. Introduction. In section 1.1, we define the model of learning from smallest
counterexamples and some related models. Section 1.2 recalls earlier results on the
learning complexity of deterministic finite automata. We mention, in particular, the
work of Ibarra and Jiang [16], which is closely related to our work. The main re-
sults of this paper, including our improvements on the work of Ibarra and Jiang, are
summarized in section 1.3. A detailed outline of the paper is given in section 1.4.

1.1. The learning model. Let F be a concept class over domain X, i.e., a
class containing functions of the form f : X → {0, 1}. In what follows, the elements
of F are called concepts, and the elements of X are called instances. In this paper,
we are concerned with the problem of “learning” an unknown target concept f∗ ∈ F .
The learning model we consider is related to the query-learning model of Angluin
(see [3]). In this model, the learning algorithm A gathers information about f∗ by
asking a teacher queries. The most popular queries are equivalence-queries (EQs)
and membership-queries (MQs). An EQ is issued by A along with a hypothesis

∗Received by the editors June 19, 1998; accepted for publication (in revised form) February
28, 2000; published electronically October 6, 2000. This research was supported by the Deutsche
Forschungsgemeinschaft, grant Si 498/3-2, and by the German–Israeli Foundation for Scientific Re-
search and Development, grant I-403-001.06/95.

http://www.siam.org/journals/sidma/13-4/34094.html
†Department of Mathematics, Ruhr-University Bochum, D-44780 Bochum, Germany (birkendo@

lmi.ruhr-uni-bochum.de, simon@lmi.ruhr-uni-bochum.de).
‡Department of Computer Science, University of Dortmund, D-44221 Dortmund, Germany.

465

466 A. BIRKENDORF, A. BÖKER, AND H. U. SIMON

f . If f is correct, the teacher answers “YES.” Otherwise, the teacher presents a
counterexample, that is, an instance x ∈ X on which f and f∗ disagree. An MQ is
issued by A along with an instance x ∈ X and answered with f∗(x). If A has written
a description of hypothesis f or instance x on a special query tape, the corresponding
answer is given in one time step. We say that A learns F from m queries if, for
each target concept f∗ ∈ F , A asks at most m queries to the teacher and finally
comes up with a description of f∗. In addition, A is called a polynomial (or efficient)
learning algorithm when m and the run time of A are both bounded by a polynomial
depending on parameters1 describing the complexity of f∗ and on the length of the
longest counterexample ever presented by the teacher.2 If only EQs are used, we
speak of learning from counterexamples. If both EQs and MQs are used, we speak of
learning from a minimum adequate teacher.

In this paper, we focus on a special variant of learning from counterexamples,
where each EQ is answered deterministically. We speak of learning from smallest
counterexamples (SC-learning, for short), if the teacher always presents the “small-
est” instance x ∈ X where hypothesis f and target function f∗ disagree. The word
“smallest” refers to some given linear ordering on domain X, known by the learning
algorithm.

The following linear orderings on the set Σ� of words over a finite alphabet Σ are
relevant in this paper. For notational convenience, we assume that Σ = {0, . . . , |Σ| −
1}. The letters (digits) have their natural ordering. We denote the empty word by
λ. Word x ∈ Σ� is called a prefix of word w ∈ Σ� if w can be written as xz for some
z ∈ Σ�. If additionally z �= λ, x is called a proper prefix of w. Two words v, w can
always be written as v = xv′ and w = xw′, where x ∈ Σ� is the greatest common
prefix of v and w. We say that v is lexicographically smaller than w (denoted as
v <LEX w) if either v is a proper prefix of w or v′ starts with a smaller letter than w′

in the above decomposition. (That’s the ordering used in a lexicon.) We say that v is
canonically smaller than w (denoted as v < w) if v is shorter than w or, in the case
of equal length, v is lexicographically smaller than w. We note that the canonical
ordering is more natural for learning applications, because short counterexamples are
likely to be more helpful than long ones.

1.2. Learnability of deterministic finite automata. A particular class F
that was intensively studied in the past is the class of concepts representable by de-
terministic finite automata (DFAs), i.e., the class of characteristic functions of regular
languages. The complexity of the target DFA is measured by two parameters: the
number n of its states and the size of input alphabet Σ. As shown in [3], DFAs cannot
be learned polynomially from MQs alone. It was furthermore shown in [4] (using the
technique of “approximate fingerprints”) that also EQs alone are not sufficient. How-
ever, Angluin has presented an efficient algorithm that learns DFAs with a minimum
adequate teacher (see [2]). This algorithm was later improved by Rivest and Schapire
whose algorithm is simpler and needs fewer MQs (see [21]).

DFAs are also polynomially SC-learnable: In [16], Ibarra and Jiang develop an
algorithm, which efficiently learns DFAs with at most n states and input alphabet
Σ from Θ(|Σ|n3) smallest counterexamples. Ibarra and Jiang’s algorithm contains a

1These parameters will be formally specified for the concrete learning problem that we consider.
2If the teacher always presents a counterexample of shortest length, this additional parameter is

not needed.

LEARNING DETERMINISTIC FINITE AUTOMATA 467

subroutine that SC-learns so-called leveled DFAs, 3 which operate on input words of an
arbitrary but fixed length. This subroutine requires |Σ|n2 smallest counterexamples.

1.3. Main results. In this paper (which appeared in a preliminary form as
extended abstract in [9]), we improve on the results of Ibarra and Jiang as follows.

• We show that general DFAs are efficiently SC-learnable from less than |Σ|n2

smallest counterexamples. The progress is achieved mainly by avoiding the
inefficient reduction of Ibarra and Jiang, who use the procedure for leveled
DFAs as a subroutine to solve the general case. We introduce the concept of
Nerode diagrams which allows us to solve the general case directly.
• We show that leveled DFAs are efficiently SC-learnable from (1 + o(1)) · |Σ| ·
n log n smallest counterexamples. This is accomplished by a new method
(dealing with so-called selection and elimination operators) which makes the
binary search paradigm applicable to SC-learners.

These results are complemented by various other new results.

• We present a general strategy which learns a finite concept class F from
�logF� smallest counterexamples (but not necessarily efficiently). An appli-
cation to DFAs with at most n states shows that (1 + o(1))|Σ|n log n smallest
counterexamples are sufficient (if efficiency is not an issue).
• We present a general lower bound on the number of smallest counterexamples

(required by any learning algorithm). This bound can be stated in terms of a
(new) combinatorial dimension associated with the target class. A computa-
tion of this dimension for leveled or arbitrary DFAs leads to a lower bound of
the form (1

4 + o(1))|Σ|n log n. This bound matches the aforementioned upper
bounds modulo a constant of approximately 4.
• We present a general conversion of algorithms learning from smallest coun-

terexamples into algorithms performing self-directed learning (SD-learning).
For the particular classes of leveled or arbitrary DFAs, this conversion leads
to SD-learners making the smallest possible number of mistakes (modulo a
constant of approximately 4). A similar remark is valid for the class of mul-
tiplicity automata (MAs).

1.4. Outline of the paper. The first part of the paper, comprising sections 2,
3, and 4, is devoted to the aforementioned improvements on the work of Ibarra and
Jiang.

In section 3, we present a new algorithm REDIRECT which efficiently learns arbi-
trary DFAs with at most n states and input alphabet Σ from less than |Σ|n2 smallest
counterexamples.

Furthermore, we present in section 4 a new algorithm LEVELED-REDIRECT for
SC-learning leveled DFAs. LEVELED-REDIRECT requires (1 + o(1))|Σ|n log n smallest
counterexamples.

In order to design REDIRECT and LEVELED-REDIRECT, we introduce in section 2
a new data structure for regular languages: Nerode diagrams and partially correct
subdiagrams. It is a very efficient and useful tool when dealing with smallest coun-
terexamples. REDIRECT will “grow” an (initially trivial) partially correct subdiagram
until it is isomorphic to the full transition diagram of the target DFA. The correct
edges in the diagram are found by a sort of exhaustive search in the case of arbitrary

3Leveled DFAs, as defined in section 4, are basically equivalent to a data structure known as
ordered binary decision diagrams (OBDDs) in the literature (see [19, 1, 11]). In this paper, it is more
convenient to use the same terminology as for DFAs.

468 A. BIRKENDORF, A. BÖKER, AND H. U. SIMON

DFAs, and by a sort of binary search in the case of leveled DFAs. In order to prove
the correctness of our algorithms, we present a series of structural results concerning
Nerode diagrams and their partially correct subdiagrams. The new data structure
and the structural insights gained by its analysis may be of independent interest.

In the second part of the paper, comprising sections 5, 6, 7, and 8, the results of
the first part are complemented in many ways.

We present in section 5 a general lower bound on the number of smallest coun-
terexamples (required by any learning algorithm). This bound can be stated in terms
of a (new) combinatorial dimension associated with the target class. A computation
of this dimension for leveled or arbitrary DFAs leads to a lower bound of the form
(1
4 − o(1))|Σ|n log n. The new dimension may be of interest beyond its application to

DFAs.

In section 6, we present a general strategy which learns a finite concept class F
from �logF� smallest counterexamples (but not necessarily efficiently). The idea of
this strategy is to perform a clever majority vote on the instance space, tailored to
the conditions valid in the SC-learning scenario. In contrast to the well-known halv-
ing strategy in the model of learning from (arbitrary) counterexamples, our strategy
realizes proper learning (i.e., all hypotheses are members of F). An application to
leveled or arbitrary DFAs with at most n states and input alphabet Σ shows that
(1 + o(1))|Σ|n log n smallest counterexamples are sufficient (if efficiency is not an is-
sue). This upper bound matches the aforementioned lower bound modulo a constant
of approximately 4.

In section 7, we describe a general conversion of SC-learning algorithms into
algorithms performing SD-learning.4 For the particular classes of leveled or arbitrary
DFAs, this conversion leads to SD-learners making the smallest possible number of
mistakes (modulo a constant of approximately 4).

Recently (and building on our results from [9]), Forster presented an efficient
algorithm which SC-learns the class of MAs with at most n states and alphabet Σ
from 2 + |Σ|n(n + 1) smallest counterexamples [18]. As outlined in section 8, we
can convert this algorithm into an SD-learner for MAs making the smallest possible
number of mistakes (up to a constant factor).

2. Nerode diagrams and partially correct subdiagrams. We assume some
familiarity with basic concepts in formal language theory as given by any standard
book (e.g., [15]). In what follows, we recall some classical notions concerning DFAs
and define a new data structure for their representation.

Let M = (Q,Σ, δ, q0, Q+) be a DFA, where Q denotes the set of states, Σ the
finite input alphabet, δ the transition function, q0 the designated initial state, and Q+

the set of accepting states. We will represent M by its state diagram which visualizes
the states as nodes and the transitions as edges. An example is shown in Figure 2.1.
As usual, we say that M accepts a word w if the path PM (w), which starts in the
initial state and follows the edges labeled by the letters of w, ends at an accepting
state of M . Let L(M) denote the language of words accepted by M . We associate
with M the indicator function M(w) with value 1 if w ∈ L(M), and value 0 otherwise.

Two DFAs are called equivalent if they accept the same language. Let M be a
minimum DFA for L, i.e., L = L(M) and no other DFA with this property has fewer
states than M . Then M is uniquely determined (up to isomorphism), and its states
are in a one-to-one correspondence to the classes given by the following equivalence

4A brief definition of this learning model is given in section 7.

LEARNING DETERMINISTIC FINITE AUTOMATA 469

3

2

q

qq 41q0q
0

1

0

1

1

0

1
0

0
1

Fig. 2.1. State diagram of a DFA M = ({q0, q1, . . . , q4}, {0, 1}, δ, q0, {q2, q3}) accepting lan-
guage L = ({0, 1}·{00, 1·{0, 1}})∗ ·{0, 1}·{0, 1}. Accepting states are drawn darker than nonaccepting
states. The initial state is encircled with a thick line.

relation ≡L, called the Nerode relation:

∀s, t ∈ Σ� : [s ≡L t ⇐⇒ (∀ z ∈ Σ� : sz ∈ L ⇐⇒ tz ∈ L)] .

We call a word r ∈ Σ� the minimum representative of its Nerode class [r]L = {s ∈
Σ� | s ≡L r} if r is the smallest word in [r]L. The set of all minimum representatives
is denoted by R(L).

It is easy to see that ra ∈ R(L), where r ∈ Σ� and a ∈ Σ, implies that r ∈ R(L).
Inductively, we get the following lemma.

Lemma 2.1. R(L) is prefix-closed, i.e., if r ∈ R(L), then r′ ∈ R(L) for each
prefix r′ of r.

The Nerode diagram DL of L is defined as follows. Its nodes are in one-to-one
correspondence to the words in R(L) and denoted by qr for r ∈ R(L). We call qr
“accepting” if r ∈ L and “nonaccepting” otherwise. The edge is directed from qr
and labeled by a points to qs, where s is the minimum representative of [ra]L. It is

denoted by qr
a→ qs in what follows. An example is shown in Figure 2.2(a).

q

0

110

0

1

010

1

1

0

1

0

(a) (b)

1

00q 01q

0q 0

q

q

0

01

q q

001

Fig. 2.2. (a) The Nerode diagram of language L from Figure 2.1. R(L) = {λ, 0, 00, 01, 001}.
F -edges are drawn thick, and B-edges are drawn thin. (b) Partially correct subdiagram of the Nerode
diagram in (a).

Obviously, DL represents the minimum DFA for L. The edges of DL decompose
according to the following definition. Edge qr

a→ qs is called backward edge (or B-
edge) if s < ra. Otherwise, it is called forward edge (or F -edge). In the latter case,

470 A. BIRKENDORF, A. BÖKER, AND H. U. SIMON

s = ra. Since R(L) is prefix-closed, it follows that the F -edges form the prefix-tree
of R(L) (as illustrated in Figure 2.2(a)). Formally, the prefix-tree associated with a
prefix-closed set R ⊆ Σ∗ is the tree with node set R and an edge directed from r to s
and labeled by a ∈ Σ if s = ra.

Given a prefix-closed subset R ⊆ R(L), a partially correct subdiagram of DL with
respect to R consists of the prefix-tree of R and additional B-edges not necessarily
identical to the B-edges of DL. The partitioning of nodes qr into “accepting” and
“nonaccepting” nodes is done as for DL. Figure 2.2(b) shows an example.

A DFA M , represented by a partially correct subdiagram of DL with respect to
R, is called partially correct for L with respect to R.5 (In particular, M is correct for
each r ∈ R, i.e., M(r) = 1 iff r ∈ L.)

If path PM (w) ends in state qr, we say that qr is visited by w and call w a visitor
of qr. We close this section with the following obvious result.

Lemma 2.2 (visitor lemma). All visitors w of qr satisfy r ≤ w with equality iff
PM (w) contains F -edges exclusively.

3. The SC-learning algorithm for DFAs. Let M∗ be the unknown target
DFA, accepting language L∗ = L(M∗). Throughout the remainder of this section, let
M be a DFA, partially correct for L∗ with respect to a prefix-closed subset R ⊆ R(L∗),
but L(M) �= L∗. We denote the smallest counterexample for M by mincex(M,M∗).
In order to convert the state diagram of M into the correct Nerode diagram of L∗,
one has to overcome two difficulties.

1. The prefix-tree of R has to be extended to the complete prefix-tree of R(L∗).

2. Wrong B-edges, i.e., B-edges of the form qr
a→ qs, r, s ∈ R, s < ra, s �≡L∗ ra

must be redirected such as to point to the correct node qs′ with s′ ≡L∗ ra.
The remainder of this section is organized as follows. We first present two aux-

iliary results (Lemmas 3.1 and 3.2) describing how wrong B-edges can be detected.
A description of the SC-learning algorithm REDIRECT follows. Finally, we prove that
REDIRECT is correct and analyze its time complexity, where the more troublesome de-
tails of the correctness proof and of the time analysis are encapsulated in sections 3.1
and 3.2, respectively. The reader who is already satisfied with the high-level analysis
may decide to skip these two subsections without loss of continuity.

Lemma 3.1. Let c = mincex(M,M∗). Then the following holds.
(i) PM (c) contains at least one B-edge.

(ii) The first B-edge qr
a→ qs on PM (c) is wrong, i.e., s �≡L∗ ra.

Proof.
(i) If PM (r) contains F -edges exclusively, then r ∈ R. Because M is correct on

R, r cannot be a counterexample. Thus, PM (c) must contain at least one B-edge.

(ii) If qr
a→ qs is the first B-edge on PM (c), c can be written as c = raz for

some z ∈ Σ�. By the definition of B-edges, s < ra. Thus sz < raz, and sz (being
smaller than the smallest counterexample) cannot be a counterexample itself. Thus,
M∗(sz) = M(sz). Since M does not distinguish between ra and s, M(sz) = M(raz).
Since raz is a counterexample, M(raz) �= M∗(raz). Thus, M∗(sz) = M(sz) =
M(raz) �= M∗(raz), which implies that ra �≡L∗ s.

Let c be the counterexample which (by means of Lemma 3.1) showed that the
B-edge directed from qr to qs and labeled by a is wrong. It is a straightforward
idea to redirect this B-edge (by way of trial and error) to another state qs′ , where

5We will sometimes omit the expression “for L with respect to R” when the sets L and R are
clear from context.

LEARNING DETERMINISTIC FINITE AUTOMATA 471

s′ ∈ R, s′ < ra. We call the resulting DFA the TEST-DFA for B-edge qr
a→ qs′ and

denote it by M(r, a, s′). Note that the state diagrams of M and M(r, a, s′) share
the same prefix-tree structure and differ only on a single B-edge. Thus, the partial
correctness of M carries over to M(r, a, s′). The following result shows that the
redirected B-edge is still wrong unless the TEST-DFA receives a counterexample c′

that is greater than c.

Lemma 3.2. Let c = mincex(M,M∗), qr
a→ qs be the first B-edge on PM (c), qs′

be a state of M with s′ < ra, M ′ = M(r, a, s′) be the TEST-DFA for B-edge qr
a→ qs′ ,

and c′ = mincex(M ′,M∗). If c′ ≤ c, then qr
a→ qs′ is the first B-edge on PM ′(c′) and

s′ �≡L∗ ra.

Proof. If c′ = c, then qr
a→ qs′ is certainly the first B-edge on PM ′(c′). If

c′ < c = mincex(M,M∗), then M(c′) = M∗(c′) �= M ′(c′). PM ′(c′) must therefore

contain B-edge qr
a→ qs′ . (Otherwise, M and M ′ would coincide on c′.) The following

considerations are illustrated in Figure 3.1.

q

qrsq qs’

M(c)

r

s
s’

M M’

r’

z
z’

M’(c’)

a a

Fig. 3.1. Illustration for the proof of Lemma 3.2.

Let us assume for the sake of contradiction that qr
a→ qs′ is not the first B-edge

on PM ′(c′). Hence, c′ can be written as c′ = r′az′, where r′ > r is a visitor of qr. Let

c = raz be the corresponding decomposition of c along the first B-edge qr
a→ qs on

PM (c). From r′ > r and r′az′ = c′ < c = raz, we obtain z′ < z. We consider the
word raz′. Since raz′ < r′az′ < raz, M and M ′ are correct on raz′, and M is correct
on r′az′. On the other hand, we obtain

M(raz′) = M(r′az′) = M∗(r′az′) �= M ′(r′az′) = M ′(raz′),

because neither M nor M ′ can distinguish between r and r′. It follows that either M
or M ′ must be wrong on raz′—a contradiction. An application of Lemma 3.1 yields
s′ �≡L∗ ra.

472 A. BIRKENDORF, A. BÖKER, AND H. U. SIMON

Table 3.1
Round k of Algorithm REDIRECT.

Step 1 Find the first B-edge on PMk
(ck), say qr

a→ qs.

Step 2 Eliminate s from C(r, a). (* cf. Lemma 3.1 *)

Step 3 SAMEROUND←TRUE.

Step 4 while C(r, a)
= ∅ and SAMEROUND do

Step 4.1 s′ ←next element in C(r, a)

Step 4.2 M ′
k ←Mk(r, a, s

′).
Step 4.3 c′k ← mincex(M ′

k,M∗).
Step 4.4 if c′k ≤ ck then eliminate s′ from C(r, a). (* cf. Lemma 3.2 *)

else SAMEROUND←FALSE.

Step 5 if SAMEROUND then

Step 5.1 Mk+1 ← EXTEND(Mk, ra).

Step 5.2 Rk+1 ← Rk ∪ {ra}.
Step 5.3 ck+1 = mincex(Mk+1,M∗).
Step 5.4 ∀b ∈ Σ : C(ra, b)← {t ∈ Rk+1| t < rab}.
Step 5.5 ∀t ∈ Rk, ∀b ∈ Σ : if ra < tb then insert ra into C(t, b).

else Mk+1 ←M ′
k, Rk+1 ← Rk, ck+1 = c′k.

Procedure EXTEND(Mk, ra):

Step E1 Insert the new state qra into the state diagram of Mk+1.

Step E2 Replace B-edge qr
a→ qs by F -edge qr

a→ qra.

Step E3 For each b ∈ Σ, create the B-edge directed from qra and labeled by b.
Let it point to the same node as the edge directed from qs and labeled by b.

Step E4 if ck = ra then declare qra as “accepting” iff qs is “nonaccepting”
else declare qra as “accepting” iff qs is “accepting”.

Let DFAΣ,n denote the class of DFAs with at most n states and input alphabet Σ.
We are now prepared to describe the algorithm REDIRECT6 which learns an unknown
DFA M∗ ∈ DFAΣ,n from less than n2 smallest counterexamples. We assume without
loss of generality that M∗ has exactly n states. (DFAs in DFAΣ,n with n states
represent the worst case within the analysis of REDIRECT.)

REDIRECT proceeds in rounds. In one round, the following is achieved. Round
k is entered with a partially correct DFA Mk for L∗ with respect to a prefix-closed
subset Rk ⊆ R(L∗) and its smallest counterexample ck. During round k, REDIRECT
either stops with a DFA equivalent to M∗ or enters the next round with a partially
correct DFA Mk+1 and its smallest counterexample ck+1. In the following informal
description (which can be compared with the more formal description in Table 3.1),
we focus on a round k not leading to the stopping condition.

During each round k, REDIRECT keeps track of the sets C(r, a) ⊆ {s ∈ Rk| s <
ra} containing all candidates for the endpoint of the B-edge directed from qr and
labeled by a. As REDIRECT proceeds, it detects wrong B-edges and eliminates the
corresponding candidates from C(r, a).

1. The DFA Mk obtained from the preceding round is inspected. According to
Lemma 3.1, a wrong B-edge, say qr

a→ qs, is found on the computation path of Mk for
counterexample ck = mincex(Mk,M∗). This leads to the safe elimination of s from
C(r, a).

6The redirection of B-edges is one of its central features.

LEARNING DETERMINISTIC FINITE AUTOMATA 473

2. REDIRECT considers TEST-DFAs. If C(r, a) �= ∅, it picks a candidate s′ from
C(r, a) and inspects the corresponding TEST-DFA M ′

k = Mk(r, a, s′). According to
Lemma 3.2, this either leads to a counterexample c′k = mincex(M ′

k,M∗) > ck or to
the safe elimination of s′ from C(r, a). In the former case, REDIRECT enters round
k+ 1 with Mk+1 equal to M ′

k. In the latter case, it proceeds with the next candidate
from C(r, a).

If all elements of C(r, a) are eliminated without receiving a counterexample c′k >
ck, REDIRECT decides to extend Rk to Rk+1 = Rk ∪ {ra}. In order to define Mk+1

appropriately, REDIRECT calls procedure EXTEND(Mk, ra). The task of this procedure is
to include the new state qra in the state diagram of Mk. Afterwards the state diagram
contains the prefix-tree of Rk ∪ {ra}. The modifications are performed carefully in
order to guarantee correct accepting behavior on ra (which is necessary to achieve
partial correctness), and to modify L(Mk) as little as possible. These subtle details of
procedure EXTEND will be discussed subsequently. Finally, round k + 1 is entered.

There is still one missing detail. We have to explain how REDIRECT gets started
with a first partially correct DFA M1. Let M0

1 and M1
1 be the DFAs shown in

Figure 3.2.

1
0

1M 1
M

1

0

q

1

0

q

Fig. 3.2. Initial DFAs M0
1 and M1

1 for Σ = {0, 1}.

Their state diagrams consist of a single state qλ and the B-edges qλ
a→ qλ for all

a ∈ Σ. State qλ is accepting in M1
1 and nonaccepting in M0

1 . Thus, M0
1 and M1

1 are
acceptors of ∅ and Σ�, respectively. Note that M0

1 is partially correct if M∗(λ) = 0.

Otherwise, M1
1 is partially correct. Thus, M1 can be set to M

M∗(λ)
0 at the expense

of one counterexample used to determine M∗(λ). Round 1 can be entered with M1,
c1 = mincex(M1,M∗), R1 = {λ}, and C(λ, a) = {λ} for all a ∈ Σ.

We now turn to the analysis of REDIRECT, which builds on the following auxiliary
result.

Lemma 3.3. All DFAs Mk, k ≥ 1, are partially correct.

The proof of this lemma is somewhat tedious. It is postponed to section 3.1,
because we want to present the high-level ideas of the analysis more coherently.

Note that Lemma 3.3 implies that REDIRECT creates only the n states qu for
u ∈ R(L∗). It is now easy to show the following theorem.

Theorem 3.4. REDIRECT polynomially SC-learns DFAΣ,n from at most 1 +
|Σ|n2 − |Σ|n smallest counterexamples.

Proof. The number of counterexamples is bounded by 1 plus the number of
eliminated candidates from sets of the form C(r, a), because the first counterexample
is used to define M1 properly, and each new counterexample leads to the elimination
of a candidate. The total size of all candidate sets equals the number of candidate
B-edges of the form qr

a→ qs, where a ∈ Σ, r, s ∈ R(L∗), and s < ra. This number
is obviously bounded by |Σ|n2. Since the |Σ|n candidates for the correct B-edges are
not eliminated, the total number of eliminated candidates is at most |Σ|n2 − |Σ|n.
This leads to the desired bound on the number of counterexamples.

474 A. BIRKENDORF, A. BÖKER, AND H. U. SIMON

Since the run time per round is certainly polynomially bounded, it follows that
the total run time is polynomially bounded.

We conclude the current section with the proof of Lemma 3.3, given in section 3.1,
and a refined time analysis, given in section 3.2. The reader not interested in these
details may immediately pass to section 4.

3.1. Proof of Lemma 3.3. In this subsection, we prove the partial correctness
of the Mk. We start with the following easy observations that hold for all k ≥ 1.

1. M1 is partially correct for L∗ with respect to R1 = {λ}.
2. The state diagram of Mk contains exactly the nodes qu for u ∈ Rk, and

decomposes into the prefix-tree of Rk and additional B-edges.
3. For all u ∈ Rk: Mk+1(u) = Mk(u).
4. If Mk+1 = Mk(r, a, s′), then Rk+1 = Rk and ck+1 > ck.
5. If Mk+1 = Mk(r, a, s′) and Mk is partially correct for L∗ with respect to Rk,

then Mk+1 is partially correct for L∗ with respect to Rk+1.
6. If Mk+1 = EXTEND(Mk, ra), then Rk+1 = Rk ∪ {ra}.

These observations fall short of proving the partial correctness of all Mk by in-
duction: the inductive step is only performed for Mk+1 = Mk(r, a, s′)—see observa-
tion 5—but not yet for Mk+1 = EXTEND(Mk, ra). Note that the partial correctness
of Mk carries over to Mk+1 = EXTEND(Mk, ra) if we can show that ra ∈ R(L∗) and
Mk+1(ra) = M∗(ra).

We start with the proof of the latter assertion. (For technical reasons, we prove
also that ck+1 ≥ ck.)

Lemma 3.5. If Mk+1 = EXTEND(Mk, ra), then Mk+1(ra) = M∗(ra) and ck+1 ≥
ck.

Proof. Remember that ck decomposes into ck = raz for some z ∈ Σ�. Thus,
ck ≥ ra. We prove the lemma separately for the cases ck > ra and ck = ra.

If ck > ra, then EXTEND(M, ra) was defined in such a way that states qs and qra
are equivalent.7 It follows that L(Mk) = L(Mk+1). Mk is correct on all words smaller
than ck = mincex(Mk,M∗), in particular on ra. Thus, the same must hold for Mk+1

(implying ck+1 ≥ ck).

If ck = ra, then EXTEND(M, ra) was defined in such a way that Mk+1(ra) �=
Mk(ra). Since Mk is wrong on ra = ck = mincex(Mk,M∗), Mk+1 is correct on
ra. For any word w < ck = ra, the path PMk

(w) does not reach the part of the
diagram that has been modified by procedure EXTEND. Thus, Mk+1(w) = Mk(w) =
M∗(w), where the latter equality follows from w < ck = mincex(Mk,M∗). Hence
ck+1 > ck.

All that remains to be done is showing ra ∈ R(L∗). The proof for this requires
the following monotonicity property of the sequence ck, given by observation 4 and
Lemma 3.5.

Corollary 3.6. The sequence ck, k ≥ 1, is nondecreasing.

Using this monotonicity, we are able to show the following lemma.

Lemma 3.7. If Mk+1 = EXTEND(Mk, ra), then ra ∈ R(L∗).

Proof. Let us assume for the sake of contradiction that ra /∈ R(L∗), i.e., there
exists a word t ∈ Σ� satisfying t < ra and t ≡L∗ ra.

Let qw denote the state visited by t in Mk. According to the visitor lemma,
w ≤ t < ra. Because all candidate sets are properly updated when a new state is

7As usual, states q, q′ of a DFA M are called equivalent if the following holds for each w ∈ Σ�:
M started in q accepts w iff M started in q′ accepts w.

LEARNING DETERMINISTIC FINITE AUTOMATA 475

created (see Steps 5.4 and 5.5 of REDIRECT), w must belong to C(r, a) as soon as qr
and qw are both included. Since r, w ∈ Rk, qr

a→ qw was a candidate B-edge before
C(r, a) became empty in round k. Thus, this B-edge was eliminated during some
round j ≤ k. Let M ′ denote the DFA in round j leading to the elimination of w in
Step 2 or Step 4.4 due to counterexample c′. Hence, M ′ is either Mj (and c′ = cj)

or M ′ is the TEST-DFA M ′
j for B-edge qr

a→ qw (and c′ = c′j). We obtain c′ ≤ ck
since cj ≤ ck and c′j ≤ cj ≤ ck by monotonicity. According to Lemma 3.2, c′ can be
written as c′ = raz′ for some z′ ∈ Σ�, and we get

wz′ ≤ tz′ < raz′ = c′ = mincex(M ′,M∗) ≤ ck = mincex(Mk,M∗).(3.1)

Hence, Mk is correct on wz′ and tz′. Since Mk cannot distinguish between t and w,
we obtain

M∗(tz′) = Mk(tz′) = Mk(wz′) = M∗(wz′).(3.2)

According to (3.1), M ′ is correct on wz′ but wrong on raz′. Since M ′ cannot distin-
guish between ra and w and t ≡L∗ ra, we obtain

M∗(tz′) = M∗(raz′) �= M ′(raz′) = M ′(wz) = M∗(wz).(3.3)

We arrived at a contradiction between (3.2) and (3.3).
Lemmas 3.5 and 3.7 imply that all hypotheses Mk, k ≥ 1, are partially correct

for L∗ with respect to Rk, which concludes the analysis of REDIRECT.

3.2. Some implementation details. The following considerations show that
REDIRECT has time bound O(|Σ|n3).

The central data structure in the implementation of REDIRECT is the prefix-tree
of the actual set Rk. It forms the skeleton of the actual hypothesis DFA Mk. The
edges are labeled by letters from Σ. Each node in the tree represents a state qr,
where r ∈ Rk is given implicitly by the path from the root to qr. Each state qr is
correctly labeled as either “accepting” or “nonaccepting.” In addition, we use pointers
associated with qr to store the B-edges directed from qr and the |Σ| candidate lists
C(r, a), a ∈ Σ.

Let us first consider Steps 1 to 4 of REDIRECT. According to Theorem 3.4, each of
these steps is executed less than |Σ|n2 times during one run of REDIRECT. Furthermore,
it is easy to see that each step can be performed in time O(n) using the data structure
described above. In particular, note that each word in R(L∗) has length at most n (the
number of states of M∗). Each shortest counterexample, presented to a hypothesis
DFA, has length smaller than 2n (the total number of states in M∗ and the current
hypothesis DFA).8 It follows that the total time spent for Steps 1 to 4 during one run
of REDIRECT is bounded by O(|Σ|n3).

Step 5 is executed exactly n− 1 times by REDIRECT, because the final hypothesis
consists of n states and each call of procedure EXTEND leads to the creation of a new
state. The most expensive substeps are 5.4 and 5.5, which can be performed during
|Σ| appropriate walks through the prefix-tree. In Substep 5.4, REDIRECT directs the
walk to states qt with t < rab. In Substep 5.5, the walk is directed to states qt with
ra < tb. Since each walk takes time O(n), the total time spent for Step 5 during one
run of REDIRECT is bounded by O(|Σ|n2).

8This bound on the length of shortest counterexamples is well known, although we do not know
its origin. A proof is contained in [10], for instance.

476 A. BIRKENDORF, A. BÖKER, AND H. U. SIMON

4. The SC-learning algorithm for leveled DFAs. A leveled DFA M with l
levels is a DFA with the following special properties.

1. State set Q is partitioned into Q0, . . . , Ql, where Qj denotes the set of states
on level j.

2. Q0 = {q0} contains the initial state.
3. If the DFA is in state q ∈ Qj−1 and reads the jth input symbol xj = a ∈ Σ,

it passes to a unique state δ(q, a) ∈ Qj for j = 1, . . . , l.
4. Ql is a nonempty subset of {q+, q−}, where q+ is accepting and q− is nonac-

cepting.

The corresponding state diagrams are leveled acyclic graphs with nodes on levels
0, . . . , l. A word w ∈ Σl is accepted if the computation path PM (w) ends in q+. All
other words are rejected (in particular all words of a length differing from l). Thus,
L(M) is a subset of Σl.

We denote the class of leveled DFAs with at most n states and input alphabet Σ as
LEV-DFAΣ,n. All concepts and results considered so far for DFAs can be transferred
to leveled DFAs in the obvious way. This transfer is used in what follows without
explicit mentioning.

As outlined in the preceding section, general DFAs are efficiently learnable from
less than |Σ|n2 smallest counterexamples. Now we will show that O(|Σ|n log n)
smallest counterexamples are sufficient for SC-learning leveled DFAs with at most
n states and input alphabet Σ (even efficiently). In the next section, we show that
Ω(|Σ|n log n) smallest counterexamples are necessary (even with unlimited computa-
tional resources). To demonstrate sufficiency, we design an efficient algorithm called
LEVELED-REDIRECT. It builds on the generic algorithm REDIRECT from section 4, but
adds some subtle implementation details which prove extremely useful for leveled
DFAs. The main modifications are as follows.

Modification 1. The hypotheses DFAs will be leveled. Consequently, only coun-
terexamples of length l are received.

Modification 2. The second “modification” is obtained automatically when the
generic algorithm REDIRECT is applied to leveled DFAs. In general, it may happen that
REDIRECT operates first on candidate set C(r, a) in round k, on a different candidate
set C(r′, a′) in the same round (after receiving a counterexample to a TEST-DFA)
or in round k + 1, and again on C(r, a) in a later round. However, when applied
to leveled DFAs, REDIRECT exhibits a nice property. Each round will be concerned
with exactly one candidate set, say C(r, a), and will find the final setting of it (after
presenting a series of TEST-DFAs). C(r, a) will shrink in round k to either the empty
set (in which case EXTEND(M, ra) is called) or a singleton set {s′} (in which case the
B-edge directed from qr and labeled by a will point to qs′).

Modification 3. If the redirection of B-edges is cleverly done, then each coun-
terexample will allow us to eliminate not only a single candidate from C(r, a), but at
least fifty percent of it.

Modifications 2 and 3 imply that each round performs a sort of binary search for
the right candidate in one of the sets C(r, a) and either finds it or adds ra to the
prefix-closed set.

The remainder of this section is organized as follows. We start with a detailed
explanation of Modifications 2 and 3 in section 4.1. In section 4.2, we present a high-
level description of LEVELED-REDIRECT (focusing on the main differences to REDIRECT).
In order to derive a time bound, some implementation details are finally presented in
section 4.3.

LEARNING DETERMINISTIC FINITE AUTOMATA 477

4.1. Binary search for the right candidate. The reason REDIRECT possibly
operates on the same candidate set in different rounds is that c′ = r′a′z′ can be
smaller than c = raz even if ra < r′a′, because the length of suffix z′ can be smaller
than the length of suffix z. This may cause REDIRECT to stop its current work on
C(r, a) intermediately and to switch to C(r′, a′). For leveled DFAs, however, this
cannot happen since all counterexamples are of the same length. These observations
lead to Lemma 4.1 which provides a theoretical explanation for Modification 2. The
notations are as in Lemma 3.2, but here they refer to leveled DFAs.

Lemma 4.1. Let c = mincex(M,M∗), qr
a→ qs be the first B-edge on PM (c), qs′

be a state of M located at the same level as qs, M
′ = M(r, a, s′) be the TEST-DFA for

B-edge qr
a→ qs′ , c

′ = mincex(M ′,M∗), and qr′
a′→ qt be the first B-edge on PM ′(c′).

If ra is not a prefix of c′ (i.e., if ra �= r′a′), then ra <LEX r
′a′ and s′ ≡L∗ ra.

Proof. Lemma 3.2 implies that c′ > c. (Otherwise, ra must be a prefix of c′.)
Since c and c′ both have length l, c < c′ implies that ra <LEX r′a′. Assume for the
sake of contradiction that s′ �≡L∗ ra. Then there exists a word z ∈ Σ� such that
M∗(s′z) �= M∗(raz). Since M ′ cannot distinguish between s′ and ra, it is wrong on
either s′z or raz. This contradicts s′z < raz < c′ = mincex(M ′,M∗).

LEVELED-REDIRECT can use this lemma as follows. Whenever a TEST-DFA for B-
edge qr

a→ qs′ leads to a counterexample referring to a candidate set C(r′, a′) different

from C(r, a), B-edge qr
a→ qs′ is correct, and C(r, a) can safely be set to singleton

{s′}.
Assume that Mk, Rk, ck, r, a (as defined within REDIRECT) are given. Next, we

want to explain how C(r, a) can be halved per counterexample. REDIRECT used Lem-
mas 3.1 and 3.2 to perform a sort of “exhaustive search” for the correct candidate
in C(r, a). Each counterexample led to the elimination of one candidate only. It is
a straightforward idea to use “binary search” instead. For this purpose, we define in
what follows a carefully selected candidate s(C(r, a)) which is either correct or leads
to the simultaneous removal of all elements from a set E(C(r, a)) containing at least
half of the former candidates.

The basic idea behind the choice of s′ = s(C(r, a)) is as follows. If all TEST-
DFAs for B-edges directed from r and labeled by a were equivalent, they would
certainly receive the same smallest counterexample c′. (In a somewhat more general
definition below, we will call C(r, a) “homogeneous” in this case.) If they are not all
equivalent, there is a smallest word d on which each output label is produced by at
least one TEST-DFA. In this case, LEVELED-REDIRECT should “go with the majority,”
because, if the smallest counterexample happens to be d, then the majority of TEST-
DFAs fails. This leaves two questions open. First, how do we implement “going
with the majority”? Second, what have we gained when the smallest counterexample
does not happen to be d? Fortunately, there is an easy answer to both questions.
First, we can go with the majority by making the commitment to select s′ from the
subset of candidates leading to the more frequent output label on d. Second, the
case of counterexamples different from d is handled by a recursive application of this
commitment scheme. Details follow.

In what follows, we define operators for selection and elimination. Because the
definitions will proceed recursively, they refer to an arbitrary set C ⊆ C(r, a).

1. D(C) := {d ∈ Σ�| ∃s1, s2 ∈ C : M(r, a, s1)(d) �= M(r, a, s2)(d)}.
2. C is called homogeneous if D(C) = ∅, and heterogeneous otherwise.
3. For heterogeneous C, we define d(C) := min{x| x ∈ D(C)}, i.e., d(C) is the

smallest word on which at least two of the TEST-DFAs disagree. For homogeneous

478 A. BIRKENDORF, A. BÖKER, AND H. U. SIMON

C, we define d(C) := ∞ by default (where ∞ represents an “infinite word” greater
than any word from Σ�).

4. For heterogeneous C, word d(C) leads to the following partition of C into C0

and C1:

Ci := {s′ ∈ C| M(r, a, s′)(d(C)) = i}, i = 0, 1.

Denote by CMAJ the larger of the two sets (say C0 if there is a tie), and by CMIN the
other set.

5. The selection operator is given recursively by

s(C) :=

{
min{x|x ∈ C} if C is homogeneous,
s(CMAJ) otherwise.

6. Let M ′ = M(r, a, s(C)) and c′ = mincex(M ′,M∗). Assume that c′ has prefix
ra. Then the elimination operator is given recursively by

E(C) :=

C if c′ < d(C),
CMAJ if c′ = d(C),
CMIN ∪ E(CMAJ) if c′ > d(C).

It follows inductively from the recursive definition that |E(C)| ≥ 1
2 |C|. (In par-

ticular, E(C) = C if C is homogeneous.) The “binary search” paradigm is therefore
established by the following result which (in combination with Lemma 4.1) implies
that counterexample c′ either witnesses the correctness of the current B-edge directed
from r and labeled by a or justifies to eliminate all candidates belonging to E(C) si-
multaneously.

Lemma 4.2. For all C ⊆ C(r, a), M ′ = M(r, a, s(C)), and c′ = mincex(M ′,M∗),
the following holds.

(i) If C is heterogeneous, then ra is a prefix of d(C).
(ii) If ra is prefix of c′, then t �≡L∗ ra for all t ∈ E(C).

Proof.
(i) Pick s1 and s2 from C such that d(C) = mincex(M1,M2), where M1 =

M(r, a, s1) and M2 = M(r, a, s2). Obviously, the computation path PM1
(d(C)) con-

tains B-edge qr
a→ qs1 . It remains to show that this B-edge is the first B-edge on the

path. Since M1 is partially correct for L(M2), we may apply Lemma 3.1, identifying
M by M1 and M∗ by M2. We get that the first B-edge on PM1(d(C)) is wrong, i.e.,

this B-edge is not contained in M2. The only B-edge not contained in M2 is qr
a→ qs1 ,

yielding the claim.
(ii) The proof proceeds by case analysis, but the following argument will apply

in all cases. A collection of DFAs shares the same smallest counterexample c if the
smallest word on which two of them disagree is greater than c. This argument will be
used without further explicit mentioning.

If c′ < d(C), then c′ /∈ D(C). Thus c′ is the smallest counterexample for each
M(r, a, t) with t ∈ C. Since ra is prefix of c′, Lemma 3.1 yields t �≡L∗ ra for all t ∈ C.
If c′ = d(C), then M ′ votes on c′ as the majority of all TEST-DFAs. Thus c′ is the
smallest counterexample not only for M ′, but for all M(r, a, t) with t ∈ CMAJ. Again,
Lemma 3.1 applies. This time, it yields t �≡L∗ ra for all t ∈ CMAJ.

If c′ > d(C), then M ′ is correct on d(C). Thus d(C) is the smallest counterexam-
ple for each M(r, a, t) with t ∈ CMIN. Since d(C) has prefix ra, Lemma 3.1 applies
again. Now, it yields t �≡L∗ ra for all t ∈ CMIN. Furthermore, t �≡L∗ ra for all
t ∈ E(CMAJ) follows inductively.

LEARNING DETERMINISTIC FINITE AUTOMATA 479

4.2. High-level description of LEVELED-REDIRECT. The initialization of
LEVELED-REDIRECT is performed analogously to the starting phase of REDIRECT. This
time we find a first partially correct leveled DFA M1 using the leveled DFA M0

1 and
M1

1 shown in Figure 4.1.

q

q

q

0l

1
0

0

00

q

0

0

0

0

1

1

1

1

.....

q

q

0l

q
M

0

00

q

0

0

0

0

1

1

1

1

.....

M 1
1

Fig. 4.1. Initial leveled DFAs M0
1 and M1

1 for Σ = {0, 1}.

An arbitrary round k of algorithm LEVELED-REDIRECT is similarly structured as
the corresponding round in REDIRECT. For this reason, we restrict ourselves to stress
the main differences.

1. The former Step 4.1 is replaced by s′ ← s(C(r, a)), i.e., the next candidate
B-edge is determined by the selection operator.

2. The former Step 4.4 is replaced by
if ra is prefix of c′k then eliminate all elements of E(C(r, a)) from C(r, a)

else SAMEROUND←FALSE.
3. The updates in Step 5 are adapted to leveled DFAs. In the else part (i.e., if

ra is not prefix of c′), we add the command C(r, a)← {s′}. This reflects that B-edge

qr
a→ qs′ is known to be correct in this case.

It becomes obvious from these modifications, that we treat C(r, a) completely in
one round, and halve it per counterexample.

We note that the selection and elimination operators allow, even in the case of
arbitrary DFAs, to halve one of the candidate sets per smallest counterexample. The
problem is that for arbitrary DFAs Lemma 4.1 does not hold. Thus, iterated halving
of a set C(r, a) and the insertion of up to n elements in C(r, a) are possibly interleaved.
This may cause Ω(n) halvings. (For this reason, REDIRECT uses the simpler exhaustive
search paradigm.) Because of Lemma 4.1, REDIRECT is not faced with this problem.
When candidate set C(r, a) is shrunk to the empty or a singleton set during one round,
no later round will cause insertions into C(r, a). From these considerations, we obtain
the following theorem.

Theorem 4.3. LEVELED-REDIRECT polynomially SC-learns LEV-DFAΣ,n from at
most (1 + o(1))|Σ|n log n smallest counterexamples.

480 A. BIRKENDORF, A. BÖKER, AND H. U. SIMON

The width w(M) of a leveled DFA M is defined as

w(M) = max
0≤i≤l

{|Qi|},

i.e., w(M) is the maximal number of nodes that appear on the same level in the
state diagram of M . Let LEV-DFAΣ,n,w denote the class of leveled DFAs with at
most n states, input alphabet Σ, and width at most w. The following result is a
straightforward generalization of Theorem 4.3.

Corollary 4.4. LEVELED-REDIRECT polynomially SC-learns LEV-DFAΣ,n,w

from at most (1 + o(1))|Σ|n logw smallest counterexamples.
Proof. Remember that all updates performed by LEVELED-REDIRECT are adapted

to leveled DFAs. In particular, all candidate sets C(r, a) contain only words of length
|r| + 1. Thus, the sizes of these sets are bounded by w. The number of halvings
needed to shrink a candidate set from full size to size 1 or 0 is therefore logarithmically
bounded in w.

4.3. Some implementation details. We briefly describe how LEVELED-RE-

DIRECT can be implemented such as to run in time proportional to |Σ|2lnw2. The
reader not interested in this low-level information can pass to section 5 without loss
of continuity.

We use the same data structure as for REDIRECT to represent the actual hypothesis
Mk. As in the analysis of REDIRECT, the total run time spent for Step 5 is bounded
by O(|Σ|n2). (Since n ≤ lw, this does not contradict the claimed time bound.)

Let us now consider Steps 1 to 4 of LEVELED-REDIRECT. Obviously, it is sufficient
to show that the total run time, spent for the recursive evaluations of the selection
and elimination operators, is bounded by O(|Σ|2lnw2). Since there are |Σ|n rounds,
each round being concerned with a specific candidate set C(r, a), the problem boils
down to showing that the recursive evaluations during one round have time bound
O(|Σ|lw2).

To this end, we consider the application of selection operator s on C ⊆ C(r, a).
(The analysis of call E(C) is similar.) C is stored as a list of pointers (pointing to
states qs for s ∈ C). Let K denote the cardinality of C and N(K) the number of
steps needed to compute s(C). It is easy to show that, for each s ∈ C, the following
holds:

d(C) = min
t∈C
{mincex(Mk(r, a, s),Mk(r, a, t))}.

Hence, we have to find the minimum of K smallest counterexamples between TEST-
DFAs in order to compute d(C). If we adapt a procedure, presented in [10] for the
corresponding problem on OBDDs,9 it is possible to compute each counterexample in
time proportional to |Σ|l. Hence after at most O(|Σ|lK) steps, we either know that
C is homogeneous (which stops the recursion), or we can use d(C) to compute CMAJ

of cardinality at most K− 1 and enter the next level of recursion. Since CMAJ is easy
to compute from d(C), we get the recursion

N(K) ≤ α1|Σ|lK +N(K − 1), N(1) = α2

for constants α1, α2. Obviously, N(K) = O(|Σ|lK2). We note without proof that the
recursive evaluation of E(C) has the same time bound (which can be derived by a
similar analysis).

9As mentioned in the introduction, OBDDs stands for ordered binary decision diagrams, which
is a data structure coinciding with what we call leveled DFAs up to minor differences.

LEARNING DETERMINISTIC FINITE AUTOMATA 481

During one round, candidate set C(r, a) is iteratively halved. Before each halving,
the operators s and E are applied to C(r, a). In the beginning of a round, the
cardinality of C(r, a) is at most w. The recursive calls are therefore initiated on sets
of sizes w, w2 ,

w
4 , It follows that the total time spent in one round is bounded by

O(|Σ|lw2) ·
(

12 +

(
1

2

)2

+

(
1

4

)2

+ · · ·
)
,

which is proportional to |Σ|lw2 (as desired).

5. A general lower bound for SC-learning. In this section, we show that
any learning algorithm for LEV-DFAΣ,n (LEV-DFAΣ,n,w, respectively) requires at
least Ω(|Σ|n log n) (Ω(|Σ|n logw), respectively) smallest counterexamples. (Thus,
LEVELED-REDIRECT is optimal in this respect.) On the way to this result, we prove a
general lower bound in terms of a combinatorial dimension associated with the target
class. Then we apply this result to the classes of arbitrary and leveled DFAs.

Let F be a concept class over a linearly ordered domain X. We say that a finite
set S ⊆ X is SC-shattered by F if F contains 2|S| concepts that are pairwise different
on S, but coincide on X<S := {x ∈ X \ S | x < maxS}. Note that these concepts
can realize each binary output pattern on S. The SC-dimension10 of F is defined as
follows:

SCdim(F) := sup{ d | ∃S ⊆ X : |S| = d and S is SC-shattered by F}.
We show the following general lower bound.

Lemma 5.1. Each SC-learning algorithm for F requires at least SCdim(F) small-
est counterexamples.

Proof. Let S be an SC-shattered set of size d, F0 ⊆ F be the set containing the 2d

SC-shattering concepts for S, and v(x) ∈ {0, 1} be their common value on an instance
x ∈ X<S . The lower bound is obvious from the following “adversary-argument.”

Let s1 < s2 < · · · < sd denote the ordered sequence of elements from S. The
strategy of the adversary is to present s1, s2, . . . , sd (in this order) as smallest coun-
terexamples. When si is presented, the value of the target concept on si is revealed,
but still all values on si+1, . . . , sd are conceivable. The mistakes on s1, . . . , sd are
therefore unavoidable. This strategy can be slightly disturbed by a hypothesis h
with an “additional” mistake on an sj , j ≤ i, already presented, or on an element
s < si+1, s /∈ S. Now the adversary presents the smallest instance smin on which
h makes an additional mistake. In case of smin = sj , the SC-learner does not gain
information. In case of smin /∈ S, the SC-learner only comes to know value v(smin)
being common for all concepts in F0. Thus, the additional mistakes do not restrict
the variability of the adversary on si+1, . . . , sd.

Lemma 5.2. The SC-dimensions of the classes DFAΣ,n and LEV-DFAΣ,n are
bounded as follows:

(
1

4
− o(1)

)
|Σ|n log n ≤ SCdim(LEV-DFAΣ,n)

≤ SCdim(DFAΣ,n) ≤ (1 + o(1))|Σ|n log n.

10The reader familiar with the theory of Vapnik and Chervonenkis (see [22]) will notice the
similarity between the SC-dimension and the VC-dimension. In general, SCdim(F) ≤VCdim(F)
because the constraint of coincidence on X<S does not occur in the definition of the VC-dimension.
Intuitively, this additional constraint will enable an adversary to pick all nonredundant smallest
counterexamples from S.

482 A. BIRKENDORF, A. BÖKER, AND H. U. SIMON

\ {0,1}

\ {0,1}

q-
q+

....

s

a

t

.

.

.

.

.

Rejection Path

. . .

Fig. 5.1. State diagram D for the proof of Lemma 5.2. The path for an input word w = sat ∈ S
through D is displayed accentuated.

Proof. The rightmost inequality follows from the fact that SCdim(F) ≤ log |F|
and that |DFAΣ,n| ≤ n2nnn|Σ|. Since leveled DFAs form a subclass of arbitrary DFAs,
we know

SCdim(LEV-DFAΣ,n) ≤ SCdim(DFAΣ,n).

The leftmost inequality follows from showing that the set

S = {0, 1}lognΣ{0, 1}logm,

where m = log n− log log n, is SC-shattered by leveled DFAs with at most 4n states
and input alphabet Σ. A word w from S has the form w = sat, where s is a binary
word of length logn, a is an arbitrary letter, and t is a binary word of length logm. It
is convenient to represent a binary output pattern on S as a collection of |Σ| binary
matrices with n rows and m columns, respectively. Given w = sat ∈ S, we obtain the
corresponding output bit from entry (s, t) of the matrixMa associated with letter a.
We now show that an arbitrary collection (Ma)a∈Σ of such matrices can be realized
by a leveled DFA M with less than 4n states. Figure 5.1 shows the structure of the
transition diagram D.

LEARNING DETERMINISTIC FINITE AUTOMATA 483

We describe the resulting computation on a correctly formed input w = sat ∈ S:
Diagram D starts with a complete binary tree of depth logn with 2n − 1 nodes and
n leaves. The leaves are in one-to-one correspondence to the possible strings s in
the decomposition w = sat. In other words, when reaching a leaf, s is stored in the
finite control. Now M reads letter a. At this moment, it knows perfectly the relevant
matrixMa, and the relevant row s. The remainder of the computation only depends
on the binary pattern in row s of matrix Ma. Instead of storing (s, a) in the finite
control, it is more economical to store the binary pattern p of the row: if for (s1, a1)
and (s2, a2), the rows s1 and s2 in Ma1

and Ma2 , respectively, form the same binary
pattern p, the corresponding edges in D point to the same node. Consequently, the
next level in D contains 2m = n/ log n nodes, which is precisely the number of binary
patterns of length m = log n − log log n. Each of these n/ log n nodes is the root of
a complete binary tree of depth logm. When M reaches a leaf in one of these trees,
it has stored suffix t (and still the relevant binary pattern p ∈ {0, 1}m) in its finite
control, and can select and output the correct bit.

If the input word w does not have the correct form, i.e., w = sat /∈ S, either s or t
contains a digit different from 0 and 1. In this case, diagram D feeds the computation
path into a “rejection path,” which assigns default value 0 to each w /∈ S. The
number of nodes in diagram D is easily seen to be less than 4n. This shows that S is
SC-shattered by the class of leveled DFAs with less than 4n states.

Note that the 2|S| DFAs, used in this proof to SC-shatter S, coincide not only on
X<S , but even on X \S. This observation will be used in section 7, which is devoted
to SD-learning.

Similar bounds for the VC-dimension of class DFAΣ,n were recently shown in [17].
Our lower bound is stronger for two reasons. First, it applies to leveled DFAs. Second,
it applies to the SC-dimension which is smaller, in general, than the VC-dimension.
Besides that, our proof is much simpler. Note that the DFAs considered in the
proof have 4n states and width n+ 1. So, the stated lower bound doesn’t contradict
Corollary 4.4.

We are also able to bound the SC-dimension for leveled DFAs in terms of their
width.

Lemma 5.3. The SC-dimension of the class LEV-DFAΣ,n,w is bounded as follows:

(
1

4
− o(1)

)
|Σ|n logw ≤ SCdim(LEV-DFAΣ,n,w) ≤ (1 + o(1))|Σ|n logw.

Proof. The upper bound follows from Lemma 5.1 and Corollary 4.4.
The lower bound can be shown by a variant of the construction that was used

in the proof of Lemma 5.2. There, we constructed for each n a subclass D of leveled
DFAs with less than 4n states that SC-shatters a set S of size (|Σ|n(log n−log log n) =
(1 − o(1))|Σ|n log n. Note that all DFAs in D have width n + 1. This construction
does not readily imply Lemma 5.3 because parameters w and n cannot be chosen
independently from each other. However, Lemma 5.3 obviously follows from the
existence of a family of subclasses (Dk)k≥1 that consists of leveled DFAs and has the
following properties.

1. Each DFA in Dk has at most N = 4kn states and width w = n+ 2.
2. Dk SC-shatters a set Sk of size k|S| = (k|Σ|n(log n − log log n) = (1/4 −

o(1))|Σ|N logw.
Figure 5.2 shows how a DFA D from Dk is obtained from k DFAs D1, . . . , Dk

from D. The computation path PDi
(0l), leads to the root node of Di+1. Each

484 A. BIRKENDORF, A. BÖKER, AND H. U. SIMON

q-

.

.

.

1

k

.

.

D

.

D

D

.

.
.

2 .

q+

.

.

.

.
.. . .

. . .

.

.

.

. ..

. . .

. .
.

Accepting Path

Rejection Path

Fig. 5.2. State diagram of a DFA D from Dk obtained from k DFAs D1, . . . , Dk from D. The
computation path for an input word 0lsat0(k−2)l ∈ Sk is displayed accentuated.

other computation path PDi(v) is fed either into the rejection path (if it ends at
a nonaccepting state in Di) or into the accepting path (if it ends at an accepting state
in Di).

It is not hard to see that the following holds. Given that D SC-shatters S, Dk
SC-shatters

Sk = {0il S 0(k−i−1)l | i = 0, . . . , k − 1},

a set of the desired size k|S|. The width of a DFA D from Dk is clearly n+ 2 (since
a DFA from D has width n + 1, and we added the accepting path). The number of
nodes inD is obviously bounded by 4kn plus the number of nodes within the accepting
path (which would already suffice to accomplish the proof). A closer inspection of the

LEARNING DETERMINISTIC FINITE AUTOMATA 485

sizes of the DFAs Di from D reveals that D from Dk has at most 4kn states. This
completes the proof of Lemma 5.3.

6. A halving strategy for proper SC-learning. Let F be a finite concept
class over domain X. It is well known that F can be learned from �log |F|� arbitrary
counterexamples if the learner may issue arbitrary hypotheses of the form h : X →
{0, 1} (not necessarily belonging to F). The underlying learning strategy is the so-
called majority vote or halving strategy. The learner keeps track of the current version
space V consisting of all concepts from F that are consistent with all counterexamples
received so far. For each x ∈ X and i ∈ {0, 1}, let

Vi(x) = {f ∈ V| f(x) = i}.

An element x is called proper split element for V if V0(x) and V1(x) are nonempty. A
function h : X → {0, 1} is called majority vote with respect to V if |V0(x)| > |V1(x)|
implies h(x) = 0 and |V1(x)| > |V0(x)| implies h(x) = 1. If the learner issues an
EQ with a majority vote as hypothesis, then the resulting counterexample reduces
the size of the current version space by fifty percent or more. Clearly, after receiving
�log |F|� counterexamples, the initial version space F is shrunk to a singleton and
the target concept is exactly identified (up to equivalence). The halving strategy for
learning from counterexamples has two drawbacks. First, it cannot be implemented
efficiently in general. Second, it uses hypotheses which do not belong to F in general.

We speak of proper learning when the learner uses only hypotheses from the
concept class F . Let us assume that domain X is augmented with a linear ordering,
and each nonempty subset of X has a smallest element. We present the so-called
SC-halving strategy which leads to proper SC-learning of F from �log |F|� smallest
counterexamples. The basic idea is quite simple. Let V denote the current version
space. If |V| = 1, then the target concept is identified. Otherwise, let x = x(V) ∈ X
denote the smallest proper split element for V, VMAJ the bigger one of the two sets
V0(x),V1(x) and VMIN the smaller one (breaking ties arbitrarily). Now, the SC-learner
commits itself to pick its hypothesis from VMAJ, i.e., to make a majority vote on x.
Then it recursively applies its strategy to VMAJ until the resulting subspace of V is
a singleton {f}. Finally, f is issued as the hypothesis. Loosely speaking, the learner
anticipates the iterated splittings of V into subspaces that could result from smallest
counterexamples and goes always with the majority. The resulting hypothesis is not a
majority vote with respect to V in the aforementioned sense. Instead, it is a majority
vote on the smallest proper split element for V with respect to V, and a majority vote
on the smallest proper split element for VMAJ with respect to VMAJ, and so on.

Let f∗ denote the target concept. A more formal description of the SC-halving
strategy uses a selection operator s(V) which represents the hypothesis chosen from
V, and an elimination operator E(V) which represents the concepts from V which can
be eliminated after receiving the smallest counterexample c = mincex(s(V), f∗):

s(V) :=

{
f if V = {f},
s(VMAJ) if |V| ≥ 2,

E(V) :=

{ VMAJ if c = x(V),
VMIN ∪ E(VMAJ) if c > x(V).

(Don’t be confused by the fact that the operators deal with hypotheses this time,
as opposed to states, as they did before.) Note that the case c < x(V) cannot occur

486 A. BIRKENDORF, A. BÖKER, AND H. U. SIMON

because the target concept f∗ belongs to V. It is obvious that each smallest counterex-
ample reduces the size of the current version space by at least fifty percent. Thus, we
arrive at the following result.

Theorem 6.1. Let F be a finite concept class. The SC-halving strategy SC-learns
F from at most �log |F|� smallest counterexamples.

Corollary 6.2. The SC-halving strategy SC-learns DFAΣ,n from (1 + o(1)) ·
|Σ|n · log n smallest counterexamples.

Note that the run time of the SC-halving strategy is polynomial in the size of
F . Since the number of essentially different DFAs with n states is exponential in n,
it is not a polynomial learning strategy for DFAs. It shows, however, that our lower
bound Ω(|Σ|n log n) on the number of smallest counterexamples needed to SC-learn
DFAΣ,n is tight. We leave the question of whether this bound can be matched by a
polynomial SC-learning algorithm as an object of future research.

7. SC-learning and SD-learning. The model of SD-learning was introduced
by Goldman and Sloan in [14]. This section presents an efficient conversion of SC-
learners into SD-learners. For the particular concept classes DFAΣ,n, LEV-DFAΣ,n,
and LEV-DFAΣ,n,w, the conversion will lead to SD-learners whose number of mistakes
matches a lower bound (modulo a small constant).

We briefly recall the SD-learning model. Let F denote a finite concept class over
a finite domain X. SD-learning of a target concept f∗ ∈ F proceeds in |X| trials. In
each trial, the SD-learning algorithm A (sometimes simply called SD-learner) picks a
“new” instance x from X (being different from all instances picked in previous trials),
computes a prediction label l ∈ {0, 1}, supplies (x, l) to a teacher, and receives the
true label f∗(x) as an answer. We say that A made a mistake if l �= f∗(x). The
total number of mistakes during the |X| trials is denoted by mA(f∗). We say that
A SD-learns F making at most mA := maxf∗∈F mA(f∗) mistakes. These definitions
can be adapted in the obvious manner to the parameterized case, where (Fn, Xn) is a
countable sequence of finite concept classes Fn over finite domains Xn, respectively.
mA = mA(n) is then written as function in n. A is called polynomial if mA(n) and
the maximum computation time per trial are both polynomially bounded in n.

The sequence x1, x2, . . . , x|X| ∈ X of instances picked by an SD-learning algorithm
in trials 1, 2, . . . , |X| when learning f∗ ∈ F is called the query sequence of A for target
concept f∗. Note that the query sequence is computed by A in an on-line fashion
(leading to different query sequences for different target concepts, in general). An
SD-learner is called oblivious when it uses the same query sequence for all target
concepts from F . If X is augmented with a linear ordering, the oblivious SD-learner
always using the (correctly) ordered query sequence is called strictly monotone. It is
not hard to construct artificial concept classes which demonstrate that the hierarchy,
consisting of strictly monotone, oblivious, and general SD-learners, is strict.

Goldman and Sloan have shown in [14] that a partial equivalence query (a query
type including ordinary equivalence or membership queries as special cases) can be
simulated by an SD-learner at the expense of only one mistake. It follows that each
query-learning algorithm using at most m partial equivalence queries can be converted
into an SD-learning algorithm making at most m mistakes. We will present a similar
conversion of SC-learners into (even strictly monotone) SD-learners. It is technically
convenient to break this conversion into two steps by introducing strictly monotone
SC-learning algorithms.

Let A be an algorithm which SC-learns a concept class F . The sequence of
counterexamples received by A when learning f∗ ∈ F is called the mincex-sequence of

LEARNING DETERMINISTIC FINITE AUTOMATA 487

A for target concept f∗. A is called strictly monotone if, for all f∗ ∈ F , the mincex-
sequence of A for target concept f∗ is strictly increasing (with respect to the given
linear ordering of X).

Lemma 7.1. Each algorithm A which SC-learns F from at most m smallest
counterexamples can be converted into a strictly monotone algorithm A′ which SC-
learns F from at most m smallest counterexamples.

Proof. Let hi denote the ith hypothesis of A when learning target concept f∗
and ci = mincex(hi, f∗). An EQ with hypothesis hi is called redundant if there exists
an index j < i with cj ≥ ci. Otherwise, it is called relevant. The subsequence of ci
consisting of all counterexamples received after relevant queries is obviously strictly
increasing. A′ proceeds as A except that redundant queries are not delivered to the
teacher. We have to describe how to check whether the EQ with hypothesis hi+1 is
redundant and what to do if it is. The crucial observation is that hi and f∗ coincide on
all x ∈ X with x < ci and differ on ci. Given hi and ci, the EQ with hypothesis hi+1 is
relevant iff mincex(hi+1, hi) = ci (which happens iff mincex(hi+1, f∗) > ci). Thus in-
stead of supplying hypothesis hi+1 to the teacher, A′ computes c′ := mincex(hi+1, hi)
and tests redundancy by comparing c′ with ci. If c′ = ci (the relevant case), then
A′ may issue an EQ with hypothesis hi+1. Otherwise, c = mincex(hi+1, f∗) can be
directly computed: c is the smaller word among c′ and ci.

The proof of Lemma 7.1 leads to the following observation. A′ achieves a strictly
increasing mincex-sequence at the expense of at most m mincex-computations and
at most m comparisons of two instances (with respect to the given linear ordering of
X). Thus, if A is polynomial and the computation of the smallest counterexample of
two given hypotheses and the comparison of two given instances can be performed in
polynomial time, then A′ is polynomial as well.

Lemma 7.2. Assume that concept class F and domain X are finite. Then each
strictly monotone algorithm A which SC-learns F from m smallest counterexamples
can be converted into a strictly monotone algorithm A′ which SD-learns F making at
most m mistakes and vice versa.

Proof. We first present the conversion of A into A′. Let |X| = N and let x1 <
x2 < · · · < xN be the ordered sequence of all instances from X, which coincides
with the query sequence of A′ for all target concepts. Let c1, . . . , ck with k ≤ m
be the mincex-sequence of A for target concept f∗. Since A is strictly monotone,
c1 < c2 < · · · < ck is a subsequence of x1 < x2 < · · · < xN . A′ simulates A according
to the following policy. Let hi denote the current hypothesis of A and xj the next
instance of the query-sequence. (Initially, i = j = 1.) The prediction label for xj is
set to hi(xj). If the label is correct, then j is incremented. If the label is incorrect,
then xj is delivered to A as smallest counterexample to hypothesis hi, j and i are
both incremented, and the simulation can continue. The crucial observation is that
the first mistake happens when xj = ci. Thus, A′ makes its mistakes exactly on the
mincex-subsequence of the query sequence. This leads to k ≤ m mistakes.

Let’s now assume that A′ is given and must be converted into A. A uses a
simulation of A′. When xi is the next instance in the query sequence, A computes
a hypothesis hi as follows. For all xj with j < i, hi(xj) is set to the correct label
f∗(xj), which is known at this stage. In order to set hi(xj) appropriately for j ≥ i, A′

is simulated to the end, except that it receives its own prediction labels instead of the
correct ones. Loosely speaking, A puts A′ into a virtual reality, where no mistakes
are reported. For all j ≥ i, hi(xj) is now set to the prediction label that was proposed
by A′. Then A issues an EQ with hypothesis h and receives ci = mincex(hi, f∗).

488 A. BIRKENDORF, A. BÖKER, AND H. U. SIMON

Obviously, ci = xj , where j ≥ i points to the earliest trial with a wrong prediction
label. Then A′ is reset to trial j, receives the true label f∗(xj), and the simulation
proceeds with trial j + 1. Clearly, the total number of counterexamples delivered to
A equals the total number of mistakes made by A′.

According to Lemma 7.2, strictly monotone SC-learners and strictly monotone
SD-learners are (information-theoretically) equivalent. In addition, if the SC-learning
algorithm A can present its next hypothesis in polynomial time and if a given hypoth-
esis can be evaluated on a given instance in polynomial time, then the corresponding
strictly monotone SD-learning algorithm performs each prediction in polynomial time.

We want to apply the conversion of SC-learners into strictly monotone SD-learners
to the class of (leveled or arbitrary) DFAs with at most n states. Lemma 7.2 cannot
be applied directly because domain X = Σ∗ is infinite. However, since a DFA with at
most n states is uniquely determined (up to equivalence) by its acceptance behavior
on words of length at most 2n− 1, we may simply pass to subdomain X ′ = {w ∈ Σ∗ :
|w| ≤ 2n− 1}.11 We denote the strictly monotone SD-learner resulting from a given
SC-learner A by ASD in what follows and immediately obtain the following corollary.

Corollary 7.3.
(i) REDIRECTSD is a strictly monotone algorithm which SD-learns the class

DFAΣ,n making at most 1 + |Σ|n2 − |Σ|n mistakes. Each prediction is done in poly-
nomial time.

(ii) HALVINGSD is a strictly monotone algorithm which SD-learns DFAΣ,n mak-
ing at most (1 + o(1))|Σ|n log n mistakes. Each prediction is done in exponential
time.

(iii) LEVELED-REDIRECTSD is a strictly monotone algorithm which SD-learns the
class LEV-DFAΣ,n (LEV-DFAΣ,n,w, respectively) making at most (1 + o(1))|Σ|n log n
((1 + o(1))|Σ|n logw, respectively) mistakes. Each prediction is done in polynomial
time.

We want to show that any SD-learning algorithm for DFAΣ,n or LEV-DFAΣ,n

makes at least Ω(|Σ|n log n) mistakes. Towards this end, we introduce the SD-
dimension, which is closely related to the SC-dimension.

Assume that F is a finite concept class over a finite domain X. We say that
S ⊆ X is SD-shattered by F if F contains 2|S| concepts that are pairwise different on
S, but coincide on X \ S. The SD-dimension is defined as follows:

SDdim(F) := max{ d | ∃S ⊆ X : |S| = d and S is SD-shattered by F}.

The definitions of the SC- and the SD-dimension differ only slightly. In the latter
case, the 2|S| concepts used to shatter S have to coincide on X \ S. In the former
case, they have to coincide on X<S ⊆ X \S. It follows that SDdim(F) ≤ SCdim(F)
for each concept class F . We will see, however, in Lemma 7.5 that, for the specific
classes DFAΣ,n and LEV-DFAΣ,n, the SC-dimension and the SD-dimension have the
same order of magnitude.

The following lower bound follows from a straightforward adversary argument.
Lemma 7.4. Each SD-learning algorithm for F makes at least SDdim(F) mis-

takes.
Proof. Let S denote a maximum SD-shattered set for F . By definition, there exist

2|S| concepts in F which coincide outside S and realize all 2|S| label combinations on

11A similar argument applies whenever F is finite. We may then pass to subdomain X′ = {x ∈
X| ∃f, g ∈ F : x = mincex(f, g)}, because the labels of the target concept f∗ on X′ uniquely specify
f∗ and the instances outside X′ are never returned as smallest counterexamples anyway.

LEARNING DETERMINISTIC FINITE AUTOMATA 489

S. The lemma easily follows from the following observations. First, the SD-learner
gains no information within trials concerned with instances outside S. Second, there
exists a target concept such that each of its predictions on S is wrong.

Lemma 7.5. The SD-dimensions of the classes DFAΣ,n and LEV-DFAΣ,n are
bounded as follows:

(
1

4
− o(1)

)
|Σ|n log n ≤ SDdim(LEV-DFAΣ,n) ≤ SDdim(DFAΣ,n)

≤ (1 + o(1))|Σ|n log n.

Proof. The upper bound follows from SDdim(DFAΣ,n) ≤ SCdim(DFAΣ,n) and
Lemma 5.2. The lower bound follows from Lemma 5.2 and the subsequent remark
concerning the proof of this lemma. (The DFAs used for SC-shattering a suitable set
S even satisfy the stronger condition for SD-shattering.)

In analogy to Lemma 5.3, we obtain the following lemma.
Lemma 7.6. The SD-dimension of the class LEV-DFAΣ,n,w is bounded as follows:

(
1

4
− o(1)

)
|Σ|n logw ≤ SDdim(LEV-DFAΣ,n,w) ≤ (1 + o(1))|Σ|n logw.

We omit the proof, which is similar to the proof of Lemma 5.3.
As for the leveled or arbitrary DFAs, the situation for SD-learning is analogous

to the situation for SC-learning.
1. LEVELED-REDIRECTSD is a polynomial SD-learning algorithm for the classes

LEV-DFAΣ,n and LEV-DFAΣ,n,w making the smallest possible number of mistakes
(modulo a small constant).

2. The SD-learning algorithm for DFAΣ,n resulting from the halving strategy
makes the smallest possible number of mistakes (modulo a small constant).

3. REDIRECTSD is a polynomial SD-learning algorithm for DFAΣ,n whose num-
ber of mistakes differs from the smallest possible number by factor Θ(n/ log n).

We leave the problem to find a polynomial SD-learning algorithm for DFAΣ,n

making the smallest possible number of mistakes (say, modulo a small constant) as
an object of future research. This problem might be easier to tackle than the cor-
responding problem for SC-learning because SD-learning is, in general, strictly more
powerful than SC-learning.

8. A corollary concerning MAs. We finally mention a consequence of the
results from the previous section concerning MAs. Let Σ denote an alphabet and K
a field. A formal series (with respect to Σ,K) is a function of the form f : Σ∗ → K.
Matrix (Fx,y)x,y∈Σ∗ with Fx,y = f(x · y) is called the Hankel matrix of f . Series
f is called recognizable if its Hankel matrix F has finite rank. We omit the formal
definition of MAs and just note that a formal series is recognizable iff it can be
computed by an MA. Moreover, the rank of the Hankel matrix of f coincides with
the size (number of states) of the smallest MA computing f . The reader interested
in background information on MAs is referred to [12, 13, 8].

It was shown in [7] and [20] that MAs are efficiently learnable from multiplicity12

and equivalence queries. In [5], these learning algorithms are considerably simplified
and the amazing power of MAs is demonstrated by showing that various Boolean
concept classes can be considered as classes of recognizable formal series of a “small”

12A multiplicity query is instantiated with an element x ∈ Σ∗ and is answered with f(x).

490 A. BIRKENDORF, A. BÖKER, AND H. U. SIMON

rank. Since Boolean functions are defined on Boolean vectors of fixed length, the
corresponding MAs are leveled. (The definition of leveled MAs is analogous to the
definition of leveled DFAs.)

We denote the class of MAs with at most n states and alphabet Σ by MAΣ,n.
The corresponding subclass of leveled MAs is denoted by LEV-MAΣ,n. Bergadano
and Varricchio have shown in [6] that MAΣ,n is SC-learnable from O(|Σ|n5) smallest
counterexamples, where O(|Σ|n2) smallest counterexamples are already sufficient for
the important subclass LEV-MAΣ,n. In [18], Forster presented an improved algorithm,
called MA-REDIRECT13 in what follows, which SC-learns MAΣ,n from 2+|Σ|n(n+1)
smallest counterexamples. He showed furthermore that

SCdim(MAΣ,n) ≥ SCdim(LEV-MAΣ,n) ≥ |Σ|n2/64.(8.1)

Thus O(|Σ|n2) smallest counterexamples are sufficient to SC-learn MAΣ,n efficiently,
and Ω(|Σ|n2) smallest counterexamples are necessary (even for subclass LEV-MAΣ,n

and even with unlimited amount of computation). An inspection of the proof of
the above inequalities (8.1) reveals that the same inequalities are valid with the SD-
dimension substituted for the SC-dimension. Applying the results of the previous
section, we immediately obtain the following corollary.

Corollary 8.1.
(i) MA-REDIRECTSD is a strictly monotone algorithm which SD-learns MAΣ,n

making at most 2 + |Σ|n(n+ 1) mistakes. Each prediction is done in polynomial time.
(ii) Each SD-learning algorithm for MAΣ,n (or even LEV-MAΣ,n) makes at least

|Σ|n2/64 mistakes.

Acknowledgments. The authors would like to thank two anonymous referees
for many valuable suggestions.

REFERENCES

[1] S. B. Akers, Binary decision diagrams, IEEE Trans. Comput., 27 (1978), pp. 509–516.
[2] D. Angluin, Learning regular sets from queries and counterexamples, Inform. and Comput.,

75 (1987), pp. 87–106.
[3] D. Angluin, Queries and concept learning, Machine Learning, 2 (1988), pp. 319–342.
[4] D. Angluin, Negative results for equivalence queries, Machine Learning, 5 (1990), pp. 121–150.
[5] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio, On the

applications of multiplicity automata in learning, in Proceedings of the 37th IEEE Annual
Symposium on the Foundations of Computer Science, Burlington, VT, 1996, pp. 349–358.

[6] F. Bergadano and S. Varricchio, Learning behaviours of automata from shortest coun-
terexamples, in Proceedings of the 2nd European Conference on Computational Learning
Theory, Springer-Verlag, Berlin, 1995, pp. 380–391.

[7] F. Bergadano and S. Varricchio, Learning behaviors of automata from multiplicity and
equivalence queries, SIAM J. Comput., 25 (1996), pp. 1268–1280.

[8] J. Berstel and C. Reutenauer, Rational Series and Their Languages, Monogr. Theoret.
Comput. Sci. EATCS Ser. 12, Springer-Verlag, Berlin, 1988.

[9] A. Birkendorf, A. Böker, and H. U. Simon, Learning deterministic finite automata from
smallest counterexamples, in Proceedings of the 9th International ACM–SIAM Symposium
on Discrete Algorithms, San Francisco, CA, 1998, pp. 599–609.

[10] A. Birkendorf and H. U. Simon, Using computational learning strategies as a tool for com-
binatorial optimization, Ann. Math. Artificial Intelligence, 22 (1998), pp. 237–257.

[11] R. E. Bryant, Symbolic boolean manipulation with ordered binary-decision diagrams, ACM
Computing Surveys, 24 (1992), pp. 293–318.

[12] J. W. Carlyle and A. Paz, Realization by stochastic finite automaton, J. Comput. System
Sci., 5 (1971), pp. 26–40.

13A clever adaptation of algorithm REDIRECT as it was published in [9].

LEARNING DETERMINISTIC FINITE AUTOMATA 491

[13] M. Fliess, Matrices de hankel, J. Math. Pures Appl. (9), 53 (1974), pp. 197–222. Erratum in
vol. 54.

[14] S. A. Goldman and R. H. Sloan, The power of self-directed learning, Machine Learning, 14
(1994), pp. 271–294.

[15] J. E. Hopcroft and J. D. Ullman, Formal Languages and Their Relation to Automata,
Addison Wesley, Reading, MA, 1969.

[16] O. H. Ibarra and T. Jiang, Learning regular languages from counterexamples, J. Comput.
System Sci., 43 (1991), pp. 299–316.

[17] Y. Ishigami and S. Tani, VC-dimensions of finite automata and commutative finite automata
with k letters and n states, Discrete Appl. Math., 74 (1997), pp. 123–134.

[18] J. Forster, Learning multiplicity automata from smallest counterexamples, in Proceedings of
the 4th European Conference on Computational Learning Theory, Springer-Verlag, Berlin,
1999, pp. 79–90.

[19] C. Y. Lee, Representation of switching circuits by binary-decision programs, Bell Systems
Technical Journal, 38 (1959), pp. 985–999.

[20] H. Ohnishi, H. Seki, and T. Kasami, A polynomial time learning algorithm for recognizable
series, IEICE Transactions on Informations and Systems, E77-D(10) (1994), pp. 1077–1085.

[21] R. L. Rivest and R. E. Schapire, Inference of finite automata using homing sequences,
Inform. and Comput., 103 (1993), pp. 299–347.

[22] V. N. Vapnik and A. Y. Chervonenkis, On the uniform convergence of relative frequencies
of events to their probabilities, Theory Probab. Appl., 16 (1971), pp. 264–280.

BOUNDS FOR CODES IDENTIFYING VERTICES IN THE
HEXAGONAL GRID∗

GÉRARD D. COHEN† , IIRO HONKALA‡ , ANTOINE LOBSTEIN† , AND GILLES ZÉMOR†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 4, pp. 492–504

Abstract. In an undirected graph G = (V,E), a subset C ⊆ V is called an identifying code if the
sets B1(v)∩C consisting of all elements of C within distance one from the vertex v are nonempty and
different. We take G to be the infinite hexagonal grid and show that the density of any identifying
code is at least 16/39 and that there is an identifying code of density 3/7.

Key words. graph, hexagonal grid, code, identifying code, density

AMS subject classifications. 05C70 (68R10, 94B65)

PII. S0895480199360990

1. Introduction. Let G = (V,E) be an undirected graph (which may be finite
or infinite). For x, y ∈ V , we denote by d(x, y) the graphic distance between them,
i.e., the number of edges in any shortest path from y to x. If d(x, y) ≤ 1, we say that
x covers y (and vice versa).

For x ∈ V , we denote

Bi(x) = {y ∈ V : d(y, x) ≤ i}
and

Si(x) = {y ∈ V : d(y, x) = i}.
A code C is a nonempty subset of V . Its elements are called codewords. The code

C is called an identifying code if the sets B1(v) ∩ C, v ∈ V , are all nonempty and
different.

Motivation for this last definition comes from Karpovsky, Chakrabarty, and Lev-
itin [8] and Karpovsky, Chakrabarty, Levitin, and Avresky [9] and is concerned with
fault diagnosis in arrays of processors. A multiprocessor system can be modeled as
an undirected graph G = (V,E), where V is the set of processors and E is the set
of links in the system. Fault diagnosis consists of testing the system and locating
faulty processors. For this purpose a set of processors will be selected, and they will
be assigned the task of testing their neighbors for malfunctions. Whenever a selected
processor detects a fault of any kind among its neighbors or malfunctions itself, an
error message is issued that specifies only its origin. We see that the set of selected
processors should make up an identifying code of G.

We are therefore interested in identifying codes which have as few vertices as
possible. In [8], among other graphs, the grids that represent the three tilings of
the plane by regular polygons are presented and the question is raised: what is the
minimum density of an identifying code for the square, triangular, and hexagonal
grid?

∗Received by the editors September 8, 1999; accepted for publication (in revised form) May 3,
2000; published electronically October 6, 2000.

http://www.siam.org/journals/sidma/13-4/36099.html
†ENST and CNRS, 46 rue Barrault, 75013 Paris, France (cohen@inf.enst.fr, lobstein@inf.enst.fr,

zemor@infres.enst.fr).
‡Department of Mathematics, University of Turku, 20014 Turku, Finland (honkala@utu.fi). The

research of this author was supported by the Academy of Finland.

492

CODES IDENTIFYING VERTICES IN THE HEXAGONAL GRID 493

Fig. 1. An identifying code of density 3/7.

The triangular grid is the only one of the three for which the answer is known
[8]. The minimum density of the square grid has been taken up in [4] and [3], where
upper and lower bounds are derived: the gap between bounds is now smaller than
0.002.

In this paper we consider the remaining case when G is the infinite hexagonal grid.
In [8, Theorem 12] it is shown that the minimum density D satisfies 2/5 ≤ D ≤ 1/2.
We shall improve this to 16/39 ≤ D ≤ 3/7.

The papers [1] and [2] give further results in the Hamming spaces, and [5] and [6]
give results for other graphs.

For a closely related problem in which B1(v)∩C are required to be different only
for noncodewords v ∈ V \ C, see Haynes, Hedetniemi, and Slater [7].

2. Constructions. There are at least two different periodic identifying codes in
the infinite hexagonal grid, with density 3/7. They are represented on Figures 1 and
2, which should speak for themselves. (The formal definition of density is given only
in section 3, but in Figures 1 and 2 the identifying codes are built using finite tiles,
and the density can simply be obtained by calculating the proportion of codewords
among the vertices in the tiles.)

Theorem 2.1. There is an identifying code of density 3/7 in the infinite hexag-
onal grid.

3. Preparation for the lower bound. It will be useful for us to have a num-
bering of the vertices of the grid: the one we shall use is represented on Figure 3.

It will also be convenient to introduce a sequence G2, G3, . . . , of finite subgraphs
of G. The graphs G2, G3, and G4 are shown in Figures 4, 5, and 6.

For even m, the points 0 and 9 are the two “middle” points of Gm; for odd
m, the “middle” points are 1 and 10. The graph Gm has roughly the shape of a
rhombus, has m hexagons on the bottom, and all in all consists of m2 hexagons and

494 G. D. COHEN, I. HONKALA, A. LOBSTEIN, AND G. ZÉMOR

Fig. 2. Another identifying code of density 3/7.

2m2 + 4m vertices. The number of vertices in the perimeter of Gm is 8m − 2. Now
G2 ⊆ G3 ⊆ G4 . . . , and the union of the graphs Gm, m ≥ 2, is G.

We furthermore define a sequenceHm of graphs by gluing together certain vertices
in Gm. Namely, we glue together the points in the perimeter so that the points on
the bottom are considered to be the same as the ones on the top, and the ones on
the left are glued to the ones on the right. So, for instance, to obtain H2 from G2,
we glue 3 to 7, 2 to 8, 1 to 29, and 12 to 30; and moreover, we glue 6 to 30, 5 to 31,
4 to 10, and 3 to 11. The idea is that we tile (in the natural way—there are others)
the whole space using Gm as a tile (each tile with the same fixed numbering), and
whenever two points with different numbers meet, we consider them as one and the
same point. In G2, for instance, the “floor” consisting of 3, 2, 1, 12 coincides with
the “ceiling” 7, 8, 29, 30; and, e.g., 11 is glued to 3 and 7. In this way we obtain a
finite 3-regular graph with 2m2 vertices.

The density D of an identifying code C in the hexagonal grid G is defined as

D = lim sup
m→∞

|C ∩ V (Gm)|
|V (Gm)| ,

where V (Gm) is the vertex set of Gm. For finite graphs (V,E) we shall also speak of
the density of a code C, which is simply D = |C|/|V |.

In section 4 we show that for all large m, the density of an identifying code in
Hm is at least 16/39. Then the following argument shows that any identifying code
in G also has density at least 16/39.

Assume that we have shown that the density of any identifying code in Hm has
density at least α, and that this is true for all Hm such that m ≥ k, where k is a
constant. This implies that the density of any identifying code C in G has density

CODES IDENTIFYING VERTICES IN THE HEXAGONAL GRID 495

Fig. 3. Numbering of the points of the hexagonal grid.

Fig. 4. The graph G2.

at least α. Indeed, let Tm consist of all the vertices in the perimeter of Gm together
with the codewords in C ∩V (Gm). It is easy to verify that these points—viewed now
as points in Hm—form an identifying code in Hm. Therefore,

|C ∩ V (Gm)|+ 8m− 2 ≥ |Tm| ≥ α · 2m2,

i.e.,

496 G. D. COHEN, I. HONKALA, A. LOBSTEIN, AND G. ZÉMOR

Fig. 5. The graph G3.

Fig. 6. The graph G4.

|C ∩ V (Gm)|
|V (Gm)| ≥ α

2m2

2m2 + 4m
− 8m− 2
2m2 + 4m

,

from which the claim follows.

4. Lower bound. Assume from now on that our graph G = (V,E) is Hm, where
m is suitably large, say at least 20.

Because every vertex has degree three, we know that

4|C| ≥ |C|+ 2(|V | − |C|).
We call the difference of the left-hand side and the right-hand side the excess (on G)
and denote it by e(C), i.e., e(C) = 5|C| − 2|V |.

CODES IDENTIFYING VERTICES IN THE HEXAGONAL GRID 497

Definition 4.1. A point that is covered by more than two codewords is called an
excess point.

A codeword c ∈ C for which there is no vertex x ∈ V such that B1(x) ∩ C = {c}
is called a deficient codeword.

A point is special if it is an excess point or a deficient codeword (or both).

The set of deficient codewords is denoted by D, the set of excess points by E, and
the set of special points by A.

If c ∈ C and B1(c) ∩ C = {c}, we call c an isolated codeword.
We divide the codewords according to their distance to the nearest special point.

Definition 4.2. Denote

Ci = {c ∈ C : d(c,A) = i}

for i = 0, 1, 2,

The following simple observations will be used repeatedly.

• If c ∈ C, c′ ∈ C, and d(c, c′) = 1, then at least one of the words c and c′ is
an excess point. Indeed, the sets B1(c) ∩ C and B1(c

′) ∩ C are different and
contain both c and c′, and therefore at least one of the sets must have more
than two elements.
• If c ∈ Ci, i ≥ 2, then c is an isolated codeword. If not, then there is a
codeword c′ ∈ C with d(c, c′) = 1, and by the previous observation c or c′ is
an excess point, which is of course impossible when c ∈ Ci, i ≥ 2.

Lemma 4.3. For any codeword c ∈ C we have d(c, E) ≤ 4. Moreover, if d(c, E) =
4, then there are at least two excess points at distance four from c, or there exists a
deficient codeword at distance four from c.

In particular, the lemma implies that if c ∈ C has distance four to the nearest
excess point, then there are (1) two excess points at distance four, or (2) an excess
point and a deficient codeword (which may coincide) at distance four.

Proof. Assume that c ∈ C is the point 0 and that d(c, E) ≥ 4. Our first observation
is that every codeword b ∈ C within distance two from c is an isolated codeword; if
b′ ∈ B1(b)∩C \{b}, then b or b′ is an excess point and still within distance three from
c.

In particular, none of 1, 5, 9 is in C. The point 9 cannot be covered only by 0,
and therefore either 8 or 10 is in C. By symmetry, let us assume that 8 is in C and 10
is not. By our first observation, neither 7 nor 29 is in C. We now consider two cases.

Case 1: 6 is not in C. Then 6 must be covered by 23, and 23 cannot be an
isolated codeword, so either 22 or 24 is in C, but not both; otherwise 23 is an excess
point at distance three from 0. Anyway, 22 or 24 is an excess point and has distance
four to 0.

We know that 5 must be covered by a codeword other than 0, and since 6 is not
in C, 4 must be a codeword, and again by our first observation, neither 3 nor 21 is in
C. If 22 is in C, we know that 51 is as well; but then 22 is a deficient codeword, and
we are done. Assume therefore that 22 is not a codeword and 24 is, together with 25
or 53. We know that 7 must be covered by a codeword other than 8, and hence 26 is
in C. If now 53 is in C, then 24 is a deficient codeword and we are done. We may
therefore assume that 53 is not in C, but 25 is.

We know that 10 is not in C. If 31 is not in C, then 10 must be covered by 11,
and, moreover, 12 or 34 is also in C. This implies that 34 is the required second excess
point. Assume hence that 31 is in C. If 30 is a codeword, then 30 is the second excess

498 G. D. COHEN, I. HONKALA, A. LOBSTEIN, AND G. ZÉMOR

point. Assume that 30 is not in C. Then 29 must be covered by 28, which makes 26
a deficient codeword, completing Case 1.

Case 2: 6 is in C. We can now proceed similarly. First, neither 4 nor 23 is in
C. We know that 2 or 12 is in C but not both. By symmetry, assume that 2 is a
codeword and 12 is not. By our first observation, neither 3 nor 15 is in C. But then
4 must be covered by 21, and, moreover, either 20 or 22 is in C, but not both, which
implies that 20 or 22 is an excess point and has distance four to 0.

If 22 is in C, so is 51, and we are done since 22 is a deficient codeword. Assume
therefore that 22 is not in C, but 20 is. Then 19 or 49 is also in C. Because 3 must
be covered by a codeword other than 2, we know that 18 is in C. Hence if 49 is a
codeword, we are done, because 20 is a deficient codeword. Assume, therefore, that
19 is a codeword.

If 11 is not in C, then 12 must be covered by 13, and, moreover, 14 or 36 is
a codeword. Then 14 or 36 is an excess point and we are done. We can therefore
assume that 11 is in C. Moreover, we can assume that 11 is an isolated codeword:
otherwise 34 is an excess point and we are done. Now 12 must be covered also by 13.
If 13 is not an isolated codeword, we are done, so assume that 14 is not in C. Since
15 is not a codeword, 16 must be. But then 18 is a deficient codeword, concluding
Case 2.

Denote

A2 = E ∩ D,
A1 = A \ A2.

We further denote for i = 0, 1, 2, . . . ,

C ′′
i = {c ∈ Ci : |Si(c) ∩ A| ≥ 2 or Si(c) ∩ A2 �= ∅},

C ′
i = Ci \ C ′′

i ,

and

C ′ =
4⋃

i=0

C ′
i,

C ′′ =
4⋃

i=0

C ′′
i .

By Lemma 4.3 we know that Ci = C ′
i = C ′′

i = ∅ for all i ≥ 5, and so C = C ′ ∪ C ′′.
For a given x ∈ A we denote for i = 0, 1, 2, 3, 4,

fi = |Si(x) ∩ Ci|,
gi = |Si(x) ∩ C ′

i|,
hi = |Si(x) ∩ C ′′

i |,

g =

4∑

i=0

gi,

and

h =

4∑

i=0

hi.

CODES IDENTIFYING VERTICES IN THE HEXAGONAL GRID 499

By the previous lemma, C4 = C ′′
4 and therefore f4 = h4. Trivially, fi = gi + hi.

Lemma 4.4. Assume that x ∈ A. Then g + 1
2h ≤ 17/2.

Proof. In what follows we very often replace some of the terms gi+
1
2hi by fi and

show that even such a stronger version of the required inequality is true. Moreover,
we show that, apart from a single special case, we always have g + 1

2h ≤ 8.
Case 1: x = 0 is both an excess point and a deficient codeword. Then we may

assume that 1 and 9 are in C. Clearly 2, 12, 10, and 8 are not in C2. If 5 is also in
C, then f2 = 0 and f0 + f1 + f2 ≤ 4. Assume that 5 is not in C. Now at most one of
the points 4 and 6 can be in C2, and again f0 + f1 + f2 ≤ 4.

There are nine points at distance three from x and 12 at distance four. Moreover,
if 3 is in C3, then (since all the codewords in C3 are isolated) 18 cannot be in C4.
In general, in any of the nine pairs (3, 18), (21, 20), (23, 24), (7, 26), (29, 28), (31, 32),
(11, 34), (13, 36), (15, 16), if the first component belongs to C3, the second cannot
belong to C4. Therefore f3 + f4 ≤ 12 and f0 + f1 + f2 + f3 + f4 ≤ 16. By the
assumption that x is both an excess point and a deficient codeword we have fi = hi
and gi = 0, and we get g +

1
2h ≤ 8.

Case 2: x = 0 is an excess point and belongs to C but is not a deficient codeword.
Wemay assume that 1 and 9 are in C, and none of 4, 5, and 6 are. Clearly f0+f1+f2 ≤
3.

Assume first that 9 is a special point. Then 7, 29, 31, and 11 are not in C3, and
26, 28, 30, 32, and 34 are not in C4. The set C3 can contain 23, 21 and at most one
of 3, 15, and 13: if 13 together with at least one of 3 and 15 is in C3, then 1 is a
deficient codeword, contradicting the fact that 13 is in C3; if 3 and 15 are in C3, then
2 would be an excess point, contradicting the fact that 3 is in C3. As in Case 1, we
have the pairs (23, 24), (21, 20), (3, 18), (15, 16), (13, 36), in which the first component
can be in C3 or the second in C4 but not both. For all j = 0, 1, 2, 3 we therefore have
f3 +

1
2f4 ≤ j + 1

2 (7− j) ≤ 5, and we are done. We can therefore assume that 9 is not
special. By symmetry we can assume that 1 is not special either.

In particular, we can therefore assume that none of the points 8, 10, 12, and 2 is
in C.

Now, 18 cannot be in C4; otherwise it would be an isolated point, and 18 and 3
would both only be covered by 18. Similarly, neither 26 nor 34 is in C4.

Moreover, if 11 is in C, then (recalling that neither 1 or 9 is special) we know
that none of 7, 29, 15 and 3 is in C, and 31 and 13 cannot be in C3. If 23 is in C3,
then it is an isolated codeword, and also 7 should be a codeword. Therefore 23 is not
in C3. By symmetry, 21 is not in C3 either. Consequently, f3 ≤ 1. If 11 is not in C3,
then f3 = 0 and f4 ≤ 9 imply that f0 + f1 + f2 + f3 +

1
2f4 ≤ 8. Assume that 11 is in

C3. Then 34 is not in C, 33 or 35 is in C, and therefore 32 or 36 is not in C4. Hence
f4 ≤ 8 and f0+ f1+ f2+ f3+

1
2f4 ≤ 8. We may therefore assume that 11 is not in C.

Then of course 34 and at least one of 33 and 35 are in C, and neither 32 nor 36
is in C4.

Assume then that 31 is in C3. Trivially 30 is not in C4. Then in the same way
as before we see that none of 23, 7, and 29 is in C3, and at most one of 3, 15, and
13 is in C3. We know that f4 ≤ 6, and if f3 ≤ 2, we immediately get the inequality
g+ 1

2h ≤ 8. If f3 = 3, then 21 is in C3 and hence f4 ≤ 4 and we again get g+ 1
2h ≤ 8.

We can therefore assume that 31 is not in C3 and by symmetry that 13 is not in C3

either.

Assume that 29 is in C3. Then 23 and 7 are not, and of course 28 and 30 are not
in C4. Because f4 ≤ 5, the inequality g + 1

2h ≤ 8 is immediate if f3 ≤ 2. Assume

500 G. D. COHEN, I. HONKALA, A. LOBSTEIN, AND G. ZÉMOR

Fig. 7. The constellation around an exceptional point x. Noncodewords have been marked with
a circle, codewords with a filled circle, and the codewords in C3 and C4 with a larger filled circle.

therefore that at least two of 21, 3, and 15 are in C3. Then 21 is in C3, and either 3
or 15 is in C3 but not both. This implies f4 ≤ 3, and again g + 1

2h ≤ 8. So we can
assume that 29 is not in C3. By symmetry we can assume that 15 is not in C3 either.

Now the only possible elements of C3 are 3, 21, 23, and 7, and the only possible
elements of C4 are 14, 16, 20, 22, 24, 28, and 30. Both 14 and 30 cannot be in C4.
Indeed, if they are, they are isolated points, and 13 and 31 are not in C, which in
turn implies that 32 and 36 must be in C. But we know that 33 or 35 is in C, and
therefore 33 or 35 is an excess point. By symmetry, we can assume that 33 is. But
then 30 cannot be in C4. Hence f4 ≤ 6, and the inequality g + 1

2h ≤ 8 is clear if
f3 ≤ 2. If f3 = 3, then 21 or 23 is in C3 and f4 ≤ 4; and again g + 1

2h ≤ 8. Assume
therefore that f4 = 4, i.e., 3, 21, 23, and 7 are all in C3. The only points that can be
in C4 are now 14, 16, 28, and 30, and we have shown that both 14 and 30 cannot be
in C4. In this case g + 1

2h ≤ 17/2. Apart from this case we always get g + 1
2h ≤ 8.

We call points x ∈ A for which g + 1
2h = 17/2 exceptional. We will prove later that

their effect can be averaged out. We have seen that, apart from obvious symmetries,
the constellation around an exceptional point 0 is like that in Figure 7.

Case 3: x = 0 is an excess point and does not belong to C. Then 1, 5, and 9 are
in C. Whether or not they are codewords, none of the points 2, 4, 6, 8, 10, and 12 is
in C2. Hence f0 = 0, f1 ≤ 3, f2 = 0.

Consider first what we can say of the six-element set consisting of the points 31,

CODES IDENTIFYING VERTICES IN THE HEXAGONAL GRID 501

11, 13, 32, 34, 36.

First of all, 34 cannot belong to C4. Indeed, if it did, then it would be an isolated
codeword, 11 would not be a codeword, and 10 or 12 would have to be in C, because
11 must be covered by a codeword other than 34. By symmetry, assume that 10 is in
C. Then 9 or 10 is an excess point, and both of them have distance less than four to
34, contradicting the fact that 34 is in C4.

If none of the points 11, 13, 31 is in C3, and we already know that 34 is not
in C4, then the contribution of the six points 31, 11, 13, 32, 34, and 36 to the sum
f0 + f1 + f2 + g3 +

1
2h3 +

1
2f4 is at most one.

Assume that 11 is not in C3, but 13 is. The case where, instead of 13, we assume
that 31 is in C3 is of course symmetrical. Trivially, 36 is not then in C4, and 11 cannot
be a codeword either. If 32 is in C4, then 10 is not in C. We already know that 11
and 12 are not. Then 33, 34, or 35 is an excess point contradicting the fact that 32 is
in C4. If 31 is not in C3, then the six points together contribute at most one. Assume
therefore that 31 is in C3. Again, we see that 11 is covered by 34, and 33, 34, or 35
is an excess point. However, since both 31 and 13 are in C3, neither 33 nor 35 can be
excess points. Therefore, 34 is an excess point and 31 and 13 are both in C ′′

3 . Again
the six points together contribute at most one.

Assume then that 11 is in C3. Then none of 31, 10, 12, and 13 is in C. In
particular 31 and 13 cannot be in C3. Moreover, 34 is not a codeword because 11 is
an isolated codeword, but 34 must then be covered by 33 or 35. By symmetry, assume
that 33 is in C. Then 32 is not in C4. If, anyway, 32 is in C, then 32 or 33 is an
excess point, which means that 30 cannot be in C4. If 32 is not a codeword, then 31
must be covered by 30, and, moreover, 29 or 63 is a codeword. Again we conclude
that 30 cannot be in C4. If we, instead of 33, had assumed that 35 is in C, then we
would have seen that 14 cannot be in C4. In conclusion, if 11 is in C3, then (i) the
contribution of the six points 31, 11, 13, 32, 34, and 36 is at most one, or (ii) the
contribution is 3/2 but at least one of the points 14 and 30 is not in C4.

By symmetry, a similar conclusion holds for the sets 15, 3, 21, 16, 18, 20 and 23,
7, 29, 24, 26, 28.

If for all these three six-element sets the contribution is at most one, we are done,
because the only other points left are 14, 22, and 30, and their contribution to the
sum can be at most 3/2, thus giving us a sum total which is at most 15/2. Assume
therefore that the contribution of the set 31, 11, 13, 32, 34, 36 is 3/2. Without loss of
generality we can still assume that 30 is then not in C4. The contribution of the set
23, 7, 29, 24, 26, 28 is at most 3/2. If the six points 15, 3, 21, 16, 18, 20 contribute
at most one, we are again done, because the two remaining points 14 and 22 together
contribute at most one. If 15, 3, 21, 16, 18, 20 together contribute 3/2, then we have
shown that at least one of the points 14 and 22 is not in C4, and the sum total is
again at most eight.

Case 4: x = 0 is a deficient codeword but not an excess point. This is a relatively
simple case. We can assume that 8 and 9 are in C, and 1 and 5 are not. Moreover, 4
or 6 is in C (or both); and 2 or 12 is in C (or both). Because 9 is an excess point, 26,
28, 30, 32, and 34 are not in C4, and for the same reason, 7, 29, 31, and 11 are not
in C3. Trivially, none of 1, 5, and 9 is in C1. If both 4 and 6 are in C2, then 5 is an
excess point and neither 4 nor 6 is in C2. We conclude that at most one of 4 and 6,
and similarly at most one of 2 and 12, is in C2, and 8 and 10 are clearly not in C2.
Hence f0 = 1, f1 = 0, and f2 ≤ 2.

We know that 2 or 12 is in C. If 2 is a codeword, then 15 is not in C3, because

502 G. D. COHEN, I. HONKALA, A. LOBSTEIN, AND G. ZÉMOR

2 or 15 is an excess point; and if 12 is a codeword, then 13 is not in C3. Similarly, at
most one of 21 and 23 can be in C3. Consequently, f3 ≤ 3. We have already shown
that f4 ≤ 7. If f3 = 0, then the sum f0 + f1 + f2 + f3 +

1
2f4 is at most 13/2. Assume

that f3 > 0. If, for instance, 3 is in C3, then of course 18 is not in C4. We see that if
f3 > 0, then f4 ≤ 6. Therefore, if f3 = 1 or 2, the sum is again at most eight. Finally,
if f3 = 3, then one of 21 and 23, one of 13 and 15, and 3 are in C3, and f4 ≤ 2, and
g + 1

2h ≤ 7.
Denote for i = 1, 2, 3, 4

Li = {x ∈ V : |B1(x) ∩ C| = i},
and

�i = |Li|.
Then

|E| =
∑

i≥3

�i.

Moreover,

�1 = |C| − |D|.
Indeed, by definition, �1 equals the number of pairs (x, c) such that x ∈ L1, c ∈ C,
d(x, c) ≤ 1; because C is identifying, there is at most one x for each c, and by definition
such a vertex x exists if and only if c is not deficient. Consequently,

4|C| =
4∑

i=1

i�i

≥ �1 + 2(|V | − �1) + |E|
= 2|V | − �1 + |E|
= 2|V | − |C|+ |D|+ |E|
= 2|V | − |C|+ |A|+ |D ∩ E|
= 2|V | − |C|+ |A1|+ 2|A2|,

and therefore

e(C) ≥ |A1|+ 2|A2|.(4.1)

Lemma 4.5.

e(C) ≥ 2

17
|C|.

Proof. We write a list of pairs (c, x), c ∈ C, x ∈ A in the following way. For
each c ∈ C ′ we write the unique pair (c, x), where c ∈ C ′

i, x ∈ A1, and d(c, x) = i,
to the list. For each c ∈ C ′′ we write all the pairs (c, x), where c ∈ C ′′

i , x ∈ A, and
d(c, x) = i, and, moreover, we write the pair a second time in the list if x ∈ A2.

We now estimate in two ways the quantity 2a + b, where a denotes the number
of pairs (c, x) in the list where c ∈ C ′ and b denotes the number of pairs (c, x) in the
list where c ∈ C ′′.

CODES IDENTIFYING VERTICES IN THE HEXAGONAL GRID 503

By the construction, 2a+ b is at least 2|C ′|+ 2|C ′′|.
On the other hand, given x ∈ A1 (resp., A2), two times the number of pairs (c, x)

where c ∈ C ′ plus the number of pairs (c, x) where c ∈ C ′′ is at most 17 (resp., 34)
by the previous lemma. Together with (4.1) this implies that

17e(C) ≥ 17(|A1|+ 2|A2|) ≥ 2a+ b ≥ 2|C ′|+ 2|C ′′| = 2|C|,

proving the claim.
This already implies thatD ≥ 34

83 ≈ 0.4096.We now attack the exceptional points.
Lemma 4.6.

e(C) ≥ 1
8
|C|.

Proof. In the proof of Lemma 4.4 we saw that for all x ∈ A we have g + 1
2h ≤ 8,

except for the exceptional points defined at the end of Case 2.
Recall the constellation around an exceptional point. Assume that x is at 0. By

symmetry we can assume that 0, 1, 9, and 34 are in C; 2, 4, 5, 6, 8, 10, 11, and 12 are
not in C; 3, 7, 21, and 23 are in C3; 14, 16, and 28 are in C4. Then 29 is not in C,
30 is an isolated codeword (to cover 29), and 31 and 63 are not codewords. Then 32
is in C. Similarly, 36 is an isolated codeword, and 13, 35, and 37 are not codewords.
Now 33 is a codeword and an excess point.

We see that for each exceptional x we can define a unique friend y ∈ E ∩ C as
follows. If x1 and x2 are the codeword neighbors of x, there are two points z1 and z2

such that B1(z1) ∩ C = {x1} and B1(z2) ∩ C = {x2}. The points z1 and z2 have a
common neighbor z, which is covered by a single codeword c. This codeword c has a
unique codeword neighbor y (point 33), which is an excess point. We define that this
point y is the friend of x.

Assume that we know that a given point y is the friend of x, and we want to find
x. By reversing the process above, we see that the number of possibilities for x is at
most the number of codeword neighbors of y. Indeed, for each codeword neighbor c
of y there is at most one point z such that B1(z)∩C = {c}, and once we know c and
z, there is a unique location for x.

Hence at most three exceptional points can share a friend y. If y is shared by
more than two exceptional points, then y ∈ A2. We say that the friend y together
with the at most three exceptional points that have y as their friend form a family.

We now show that if y is the friend of an exceptional point, then (where now g
and h refer to y instead of x)

(1) g + 1
2h ≤ 7 if y ∈ A1, and

(2) g + 1
2h ≤ 6 if y ∈ A2.

This will give the result of the lemma. Namely, in the proof of the previous lemma
we estimated that 17(|A1| + 2|A2|) ≥ 2a + b. We can now sharpen this estimate by
replacing 17 by 16. Indeed, we consider the families separately. If the friend y in the
family belongs to A1, then it is the friend of at most two exceptional points from A1,
and on average g + 1

2h ≤ 8 for these points by (1). If y ∈ A2 and is the friend of
j ≤ 3 exceptional points, the claim follows from (2) because 17j + 24 ≤ 16j + 32 for
all j = 1, 2, 3.

It therefore suffices to prove (1) and (2).
To view the situation in the by now familiar set-up, relabel the points so that y

becomes 0 and x becomes 33. Then we know that the only points of S4(y) that can

504 G. D. COHEN, I. HONKALA, A. LOBSTEIN, AND G. ZÉMOR

be in C4 are 16, 18, 20, 22, 24, 26, and the only points of S3(y) that can be in C3 are
13, 15, 3, 21, 23, 7, 29.

To prove (1), we assume that y ∈ A1 and therefore none of 4, 5, and 6 is in C.
Then f0 + f1 + f2 ≤ 3. From the constellation around y we see that 29 and 13 are in
C. This implies that none of the points 7, 3, and 15 can be in C3; if 3 or 15 were in
C3, then 1 would be a deficient codeword at distance two from 3 and 15. If 21 is in
C3, it is an isolated codeword and 3 must be in C, which implies that 13 is not in C3.
We also see that if 23 is in C3, then 29 is not. Hence f3 ≤ 2. If 24 and 26 both were
in C4, they would be isolated codewords, and the point 6 would not be covered at all.
The same argument shows that 18 and 20 cannot both be in C4. Hence f4 ≤ 4, and
f0 + f1 + f2 + f3 +

1
2f4 ≤ 7, proving (1).

To prove (2), we recall that y ∈ A2 implies that f0 + f1 + f2 ≤ 4. Moreover,
since in the pairs (15, 16), (3, 18), (21, 20), (23, 24), and (7, 26) the first component
may belong to C3 and the second may belong to C4 but not both, we immediately
see that f3 + f4 ≤ 8, proving (2), because for a point y ∈ A2, fi = hi for all i.

Theorem 4.7.

D ≥ 16
39
≈ 0.4102

In the previous theorem D refers to the graph Hm, but as we have seen in section
3, the same conclusion also holds for the infinite hexagonal grid, and we therefore
obtain the following theorem.

Theorem 4.8. The density of any identifying code in the infinite hexagonal grid
is at least 16/39.

REFERENCES

[1] U. Blass, I. Honkala, and S. Litsyn, Bounds on identifying codes, Discrete Math., to
appear.

[2] U. Blass, I. Honkala, and S. Litsyn, On binary codes for identification, J. Combin. Des.,
8 (2000), pp. 151–156.

[3] G. Cohen, S. Gravier, I. Honkala, A. Lobstein, M. Mollard, C. Payan, and G. Zémor,
Improved identifying codes for the grid, Electron. J. Combin., Comments to 6 (1999),
R19, http://www.combinatorics.org/Volume 6/Html/v6i1r19.html.

[4] G. Cohen, I. Honkala, A. Lobstein, and G. Zémor, New bounds for codes iden-
tifying vertices in graphs, Electron. J. Combin., 6 (1999), R19, http://www.
combinatorics.org/Volume 6/PDF/v6i1r19.pdf.

[5] G. Cohen, I. Honkala, A. Lobstein, and G. Zémor, On codes identifying vertices in the
two-dimensional square lattice with diagonals, IEEE Trans. Comput., to appear.

[6] G. Cohen, I. Honkala, A. Lobstein, and G. Zémor, On identifying codes, submitted to
the Proceedings of the DIMACS Workshop on Codes and Association Schemes, Rutgers
University, Piscataway, NJ, 1999.

[7] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in
Graphs, Marcel Dekker, New York, 1998.

[8] M. G. Karpovsky, K. Chakrabarty, and L. B. Levitin, On a new class of codes for
identifying vertices in graphs, IEEE Trans. Inform. Theory, 44 (1998), pp. 599–611.

[9] M. G. Karpovsky, K. Chakrabarty, L. B. Levitin, and D. R. Avresky, On the covering
of vertices for fault diagnosis in hypercubes, Inform. Process. Lett., 69 (1999), pp. 99–103.

APPROXIMATING FRACTIONAL MULTICOMMODITY FLOW
INDEPENDENT OF THE NUMBER OF COMMODITIES∗

LISA K. FLEISCHER†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 4, pp. 505–520

Abstract. We describe fully polynomial time approximation schemes for various multicommod-
ity flow problems in graphs with m edges and n vertices. We present the first approximation scheme
for maximum multicommodity flow that is independent of the number of commodities k, and our al-
gorithm improves upon the run time of previous algorithms by this factor of k, running in O∗(ε−2m2)
time. For maximum concurrent flow and minimum cost concurrent flow, we present algorithms that
are faster than the current known algorithms when the graph is sparse or the number of commodities
k is large, i.e., k > m/n. Our algorithms build on the framework proposed by Garg and Könemann
[Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science, IEEE, New
York, 1998, pp. 300–309]. They are simple, deterministic, and for the versions without costs, they are
strongly polynomial. The approximation guarantees are obtained by comparison with dual feasible
solutions found by our algorithm.

Our maximum multicommodity flow algorithm extends to an approximation scheme for the
maximum weighted multicommodity flow, which is faster than those implied by previous algorithms
by a factor of k/ logW , where W is the maximum weight of a commodity.

Key words. multicommodity flow, approximation algorithm, concurrent flow, VLSI routing

AMS subject classifications. 68Q25, 90C08, 90C27, 90C35, 90C59

PII. S0895480199355754

1. Introduction. A multicommodity flow problem is defined on a directed net-
work G = (V,E) with capacities u : E → R and k source sink terminal pairs
(sj , tj), 1 ≤ j ≤ k. The problem is to find flows fj from sj to tj that satisfy
node conservation constraints and meet some objective function criteria so that the
sum of flows on any edge does not exceed the capacity of the edge. Let |fj | denote
the amount of flow sent from sj to tj in fj . For the maximum multicommodity flow
problem, the objective is to maximize the sum of the flows: max

∑
j |fj |. For the max-

imum concurrent flow problem, there are demands dj associated with each commodity
j, and the objective is to satisfy the maximum possible proportion of all demands:
maxλ, |fj | ≥ λdj , ∀j. If there are costs c(e) associated with a unit of flow on edge
e, the minimum cost concurrent flow problem is to find a maximum concurrent flow
of minimum cost, where the cost of a flow is the cost of sending flow on each edge of
the graph summed over all the edges carrying flow.

Our goal is to find an ε-approximate solution for any error parameter ε > 0. For
the maximization problems, an ε-approximate solution is a flow that has value at
least (1 − ε) times the maximum value. For versions with costs, an ε-approximate
solution is flow that has value at least (1− ε) times the maximum value and has cost
at most the optimal cost. For each problem discussed in this paper, we describe a fully

∗Received by the editors May 4, 1999; accepted for publication (in revised form) May 19, 2000;
published electronically October 25, 2000. This research was partially supported by NSF grant EIA-
9973858. This paper was written while the author was at the Department of Industrial Engineering
and Operations Research at Columbia University and on leave at Center for Operations Research
and Econometrics, Louvain-la-Neuve, Belgium. An extended abstract of this paper appeared in
Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, IEEE, New
York, 1999, pp. 24–31.

http://www.siam.org/journals/sidma/13-4/35575.html
†Graduate School of Industrial Administration, Posner 239, Carnegie Mellon University, 5000

Forbes Avenue, Pittsburgh, PA 15213 (lkf@andrew.cmu.edu).

505

506 LISA K. FLEISCHER

Table 1.1
Comparison of multicommodity flow FPTAS. O∗() hides polylog(m). I := logM .

Problem Previous best This paper
max multiflow O∗(ε−2km2) [14, 9]1 O∗(ε−2m2)
max concurrent O∗(ε−2m(m+ k) + k max flows) [9]1 O∗(ε−2m(m+ k))
flow O∗(ε−2kmn) [18, 23]
min cost O∗((ε−2m(m+ k) + kmn)I) [9]1 O∗(ε−2m(m+ k)I)
concurrent flow O∗(ε−2kmnI) [13]

polynomial time approximation scheme (FPTAS) to solve the problem. A FPTAS is
a family of algorithms that finds an ε-approximate solution in time polynomial in the
size of the input and 1/ε. Here, the size of the input is specified by the number of
nodes n, the number of arcs m, and the space needed in a binary representation of
the largest integer M used to specify any of the capacities, costs, and demands. To
simplify the run times, we use O∗(f) to denote f logO(1)m.

There has been a series of papers providing FPTASs for multicommodity flow
problems and generalizations. We discuss these briefly below. These approximation
schemes are all iterative algorithms modeled on Lagrangian relaxations and linear pro-
gramming decomposition techniques. Preceding this work is a 1973 paper by Fratta,
Gerla, and Kleinrock that uses very similar techniques for solving minimum cost mul-
ticommodity flow problems [7]. While they do not discuss approximation guarantees,
it appears that the flow deviation method introduced in their paper yields an approx-
imation guarantee for this problem with only minor adjustments [4]. Shahrokhi and
Matula [25] give the first polynomial time combinatorial algorithm for approximating
the maximum concurrent flow problem with uniform capacities, and introduce the use
of an exponential length function to model the congestion of flow on an edge. Klein
et al. [17] improve the complexity of this algorithm using randomization. Leighton et
al. [18] extend [17] to handle graphs with arbitrary capacities, and give improved run
times when capacities are uniform. None of these papers considers the versions with
costs. Grigoriadis and Khachiyan [12] describe approximation schemes for block angu-
lar linear programs that generalize the uniform capacity maximum and minimum cost
concurrent flow problems. Plotkin, Shmoys, and Tardos [22] formulate more general
approximation schemes for fractional packing and covering problems, and describe an
approximation scheme for the minimum cost concurrent flow with general capacities.
They also obtain improved run times when all capacities are uniform. These last three
papers all observe that it is not necessary to exactly solve the subproblems generated
at each iteration; it suffices to obtain an approximate solution.

The most theoretically efficient algorithms discussed in the above references are
randomized algorithms, although several also describe slower deterministic versions.
Radzik [23] gives the first deterministic algorithm to match the run times of the
fastest existing randomized algorithms for the maximum concurrent flow problem.
His algorithm uses a “round-robin” approach to routing commodities. Karger and
Plotkin [16] use this idea to obtain deterministic algorithms for minimum cost con-
current flow that reduce the dependence of deterministic algorithms on ε. For fixed
ε, their algorithm also improves upon the fastest randomized algorithms. Grigoriadis
and Khachiyan [13] reduce the dependence on ε further to the current best known ε−2

with a specialized version of their initial algorithm. To get this improvement, they

1The extended abstract [9] makes stronger claims, but the actual achievable run times are cor-
rectly stated here [8].

APPROXIMATING FRACTIONAL MULTICOMMODITY FLOW 507

use the fact that it is sufficient to solve the subproblems approximately.

All of the above algorithms compute initial flows and then reroute flow from
more congested paths to less congested paths. Young [27] describes a randomized
algorithm that works by augmenting flow along shortest paths using the exponential
length function, instead of augmenting by single commodity minimum cost flows.
Shmoys [26] explains how the framework of [22] can be used to approximately solve the
maximum multicommodity flow problem. The subproblem he uses is also a shortest
path problem. Grigoriadis and Khachiyan [14] reduce the run time for approximately
solving this problem by a factor of 1/ε using a logarithmic instead of exponential
potential function. Their algorithm can also provide approximation guarantees for
the minimum cost version.

Recently, Garg and Könemann [9] give simple, deterministic algorithms to solve
the maximum multicommodity flow problem, the concurrent flow problem, and the
versions with costs. Like the work in [27], they augment flow on shortest paths. For
the maximum multicommodity flow problem, their algorithm matches the complexity
in [14]. They obtain a small improvement in run time for the concurrent flow problems.
Their main contribution is to provide a very simple analysis for the correctness of their
algorithms, and a simple framework for positive packing problems.

We present faster approximation schemes for maximum multicommodity flow,
maximum concurrent flow, and their minimum cost versions. For the maximum mul-
ticommodity flow problem we give the first approximation scheme with run time that
is independent of the number of commodities. It is faster than the best previous ap-
proximation schemes by the number of commodities, k. For the maximum concurrent
flow problem, we describe an algorithm that is faster than the best previous approxi-
mation schemes when the graph is sparse or there are a large number of commodities.
In particular, our algorithm is faster when k > m/n. We obtain similar improvements
for the minimum cost versions. See Table 1.1 for comparison with previous work. Our
algorithms are deterministic and build on the framework proposed in [9].

Our algorithms provide their approximation guarantees by simultaneously finding
solutions to the dual linear programs. We show that our primal solutions are within
1− ε of the dual solutions obtained, and hence both the primal solutions and the dual
solutions are ε-approximate. We discuss the interpretation of the dual problems at
the very end of this section.

Fractional multicommodity flow problems can be solved in polynomial time by
linear programming techniques. However, in many applications these problems are
typically quite large and can take a long time to solve using these techniques. For
this reason, it is useful to develop faster algorithms that deliver solutions that are
provably close to optimal. Experimental results to date suggest that these techniques
can lead to significantly faster solution times. For example, Bienstock has reported
significant speedups in obtaining approximate and often exact optimal solutions to
block decomposable linear programs by building on the ε-approximation methods
described in [22, 12]. There has also been earlier experimental work including [11, 13,
20]. In [11], they show that certain aspects of the approximation schemes need to be
fine tuned to obtain good performance in practice. For example, one aspect is the
choice of step size in each iteration. In the theoretical work [13, 22], each iteration
involves computing a new flow for a commodity (an improving direction) and then
moving to a new solution that is a convex combination of the old flow and the new flow.
The step size is determined theoretically by parameters of the algorithm. Goldberg
et al. [11] show that in practice it is better to compute the optimal step size at each

508 LISA K. FLEISCHER

iteration.

The focus of the current paper is not to explore directly the experimental efficiency
but instead to provide theoretical improvements that are simple to implement and thus
may improve experimental performance. Thus we ignore details such as step size and
other issues here so that our presentation may be easier to follow. However, since the
publication of an extended abstract of this paper [6], these ideas have been tested and
shown to lead to demonstrable improvements in practice [1, 5, 24].

One area of application for obtaining quick approximate solutions to fractional
multicommodity flow problems is the field of network design: in VLSI design [1, 5] or
in design of telecommunication networks [3]. Given pairwise demands, it is desired
to build a network with enough capacity to route all demand. The network design
problems encountered in practice are typically NP-hard and difficult to solve. In
addition, it is often desired to develop many solutions for many different scenarios.
A fast multicommodity flow algorithm permits the designer to quickly test if the
planned network is feasible and proceed accordingly. These algorithms can also be
incorporated in a branch-and-cut framework to optimize network design problems.
For example, see Bienstock [3].

Another area of application is interest in solving the dual problems. The integer
versions of the dual problems to multicommodity flow problems are NP-hard. There
are approximation algorithms for these problems that guarantee a solution within a
logarithmic factor of the optimal solution. These algorithms all start with a solution to
the linear program and round this solution. The guarantees are obtained by comparing
the resulting integer solution with the LP bound. Since the approximation guarantees
for these algorithms is much larger than ε, the worst-case performance guarantee
does not erode by starting from an ε-approximate solution to the linear program
instead of an exact solution. Since an ε-approximate solution is much easier to obtain,
this improves the run time of these algorithms. We briefly describe the integer dual
problems below.

The integer version of the dual to the maximum multicommodity flow problem is
the multicut problem. The multicut problem is, given (sj , tj) pairs, to find a minimum
capacity set of edges whose removal disconnects the graph so that sj is in a different
component than tj for all pairs j. Garg, Vazirani, and Yannakakis [10] describe an
algorithm for the multicut problem that returns a solution that is provably close to the
optimal solution. Their algorithm rounds the fractional solution to the LP relaxation
that is the dual of the maximum multicommodity flow problem. The integer version
of the dual to the maximum concurrent flow problem is the sparsest cut problem.
The sparsest cut problem is to find the set S so that the ratio of the capacity of
edges leaving S divided by the sum of demands of demand pairs with one end in S
and the other outside S is minimized. There have been several approximation results
for this problem that again round the fractional solution to the LP relaxation of the
sparsest cut problem; the most recent algorithms are given by London, Linial, and
Rabinovich [21] and Aumann and Rabani [2]. The sparsest cut problem arises as a
subroutine in an algorithm for finding an approximately optimal balanced cut [19].
The balanced cut problem is to partition the vertices of a graph into two sets of size
at least |V |/3, so that the total capacity of the edges that have one endpoint in each
set is minimized.

2. Maximum multicommodity flow. Our work builds directly on the simple
analysis given in [9]. We use the path-flow linear programming formulation of the
maximum multicommodity flow problem. Let Pj denote the set of paths from sj to

APPROXIMATING FRACTIONAL MULTICOMMODITY FLOW 509

tj , and let P := ∪jPj . Variable x(P) equals the amount of flow sent along path P .
The linear programming formulation is then

max
∑
P∈P x(P)

∀e : ∑
P :e∈P

x(P) ≤ u(e)

∀P : x(P) ≥ 0.

(P)

The dual to this linear program corresponds to the problem of assigning lengths to
the edges of the graph so that the length of the shortest path from sj to tj is at least
1 for all commodities j. The length of an edge represents the marginal cost of using
an additional unit of capacity of the edge.

min
∑
e u(e)l(e)

∀P :
∑
e∈P

l(e) ≥ 1

∀e : l(e) ≥ 0.

(D)

While neither of these linear programs are polynomially sized, they can both be
solved in polynomial time. One way to see this is to realize that there are polynomially
sized formulations of both problems: for example, the arc-flow formulation of the
maximum multiflow problem has only mk variables and O((n + m)k) constraints.
Another way to see this is to realize that the polytope described by the constraints in
(D) has a polynomial time separation algorithm. This implies that (D) can be solved
in polynomial time using the ellipsoid algorithm, via the equivalence of polynomial
time separation and polynomial time optimization for convex polytopes, established
by Grötschel, Lovász, and Schrijver [15]. This in turn implies that the primal can also
be solved in polynomial time. Given a candidate vector l, the separation algorithm
for (D) is to compute the shortest path for each commodity using l as the length
function. If there is a path with length less than one, this is a violated inequality.
Otherwise l satisfies all constraints.

For large problems it is often desirable to have faster algorithms. We now describe
a fast algorithm for obtaining ε-approximate solutions to (P) and (D). The Garg–
Könemann algorithm starts with length function l ≡ δ for an appropriately small
δ > 0 depending on m and ε, and with a primal solution x ≡ 0. While there is
a path in P of length less than 1, the algorithm selects such a path and increases
both the primal and the dual variables associated with this path as follows. For the
primal problem, the algorithm augments flow along this path. The amount of flow
sent along path P is determined by the bottleneck capacity of the path, using the
original capacities. The bottleneck capacity of a path is the capacity of the minimum
capacity edge in the path. Denote this capacity by u. The primal solution is updated
by setting x(P) = x(P) + u. Note that this solution may be infeasible since it will
likely violate capacity constraints. However, it satisfies nonnegativity constraints.
Once we determine the most violated capacity constraint, we can scale the primal
solution so that it is feasible by dividing all variables by the appropriate scalar. Thus,
at any point in the algorithm we can associate our current solution with a feasible
solution. Since we will show that our algorithm has only a polynomial number of
iterations, and each iteration increases x(P) for just one P , it is also easy to compute
the appropriate scalar since there are always only a polynomial number of nonzero
variables. (Alternatively, we may keep track of flows by keeping track of the flow on
each edge instead of the flow on each path. This is a natural approach to implementing
our algorithm, and makes computing the scale factor for feasibility a very simple task.

510 LISA K. FLEISCHER

Input: network G, capacities u(e), commodity pairs (sj , tj), 1 ≤ j ≤ k,
accuracy ε

Output: primal (infeasible) and dual solutions x and l

Initialize l(e) = δ ∀e, x ≡ 0.
while there is a P ∈ P with l(P) < 1

Select a P ∈ P with l(P) < 1
u← mine∈P u(e)
x(P)← x(P) + u
∀e ∈ P, l(e)← l(e)(1 + εu

u(e))

end while
Return (x, l).

Fig. 2.1. Generic algorithm for maximum multicommodity flow.

However, for simplicity of presentation, the algorithm described below will keep track
of the values x(P) only.)

After updating x(P), the dual variables are updated so that the length of an
edge is exponential in the congestion of the edge. For edge e on P , the update is
l(e) = l(e)(1 + εu

u(e)). The lengths of edges not on P remain unchanged. This update

ensures that the length of the bottleneck edge on P increases by a factor of (1 + ε).
We refer to this algorithm as the generic algorithm. It is summarized in Figure 2.1.

At any point in the algorithm we can also find the most violated dual constraint
(via shortest path computations using lengths l(e)) and scale the dual solution so that
it is feasible for (D) by multiplying all variables by the proportion of violation. Thus,
at the end of every iteration we have implicit primal and dual feasible solutions. While
we use dual feasibility as a termination criterion, this is done only for simplicity of our
arguments, and is not required for correctness of the algorithm. In practice, it would
make sense to keep track of the best dual solution encountered in the algorithm and
terminate the algorithm when the ratio between this and the best primal solution is
at most 1+ ε. Our analysis will show that this always happens by the time the length
of every path in P is at least one. (See the proof of Theorem 2.4 and the ensuing
discussion for further details.) The following two lemmas imply that the algorithm
does not require too many iterations, and that the final primal solution is not too far
from feasible.

Lemma 2.1. After O(m log1+ε
1+ε
δ) augmentations, the generic algorithm termi-

nates.

Proof. At start, l(e) = δ for all edges e. The last time the length of an edge is
updated, it is on a path of length less than one, and it is increased by at most a factor
of 1+ ε. Thus the final length of any edge is at most 1+ ε. Since every augmentation
increases the length of some edge by a factor of at least 1 + ε, the number of possible
augmentations is at most m log1+ε

1+ε
δ .

Lemma 2.2. The flow obtained by scaling the final flow obtained in the generic
algorithm by log1+ε

1+ε
δ is feasible.

Proof. Every time the total flow on an edge increases by a fraction 0 < ai ≤ 1 of
its capacity, its length is multiplied by 1 + aiε. Since 1 + aε ≥ (1 + ε)a ∀ 0 ≤ a ≤ 1,

we have Πi(1 + aiε) ≥ (1 + ε)
∑

i
ai when 0 ≤ ai ≤ 1 ∀ i. Thus, every time the flow

on an edge increases by its capacity, the length of the edge increases by a factor of at

APPROXIMATING FRACTIONAL MULTICOMMODITY FLOW 511

least 1 + ε. Initially l(e) = δ and at the end l(e) < 1 + ε, so the total flow on edge e
cannot exceed u(e) log1+ε

1+ε
δ .

The key to the efficiency of our algorithm lies in our selection of P . Garg and
Könemann [9] show that if P is selected so that P = argminP∈P l(P), where l(P) =∑
e∈P l(e), then the following theorem holds. We omit the proof here since our proof

of Theorem 2.4 provided in the subsequent section is a straightforward modification
of the proof of this theorem.

Theorem 2.3. If P is selected in each iteration to be the shortest (si, ti) path
among all commodities, then for a final flow value gt we have that gt

log1+ε
1+ε
δ

≥ (1 −
2ε)OPT.

To determine the minimum length path in P, it is necessary to compute a shortest
path for each commodity. This takes a total of O∗(km) time. Choosing δ = (1 +
ε)/((1+ε)n)1/ε then implies an O∗(ε−2km2) time approximation scheme for maximum
multicommodity flow.

2.1. Our improvement. We improve upon this algorithm by selecting P in a
less costly manner. Instead of finding the shortest path in P, we settle for some path
with length at most (1 + ε) times the length of the shortest path and show that we
can obtain a similar approximation guarantee.

Given a length function l, define α(l) := minP∈P l(P). Denote the length function
at the end of iteration i by li, and for ease of notation let α(i) = α(li). We show
below in Theorem 2.4 that by augmenting in iteration i along a path P such that
l(P) ≤ (1 + ε)α(i), the number of iterations is unchanged, and the final scaled flow
has value at least (1− 4ε)OPT.

This enables us to modify the algorithm by reducing the number of shortest
path computations. Instead of looking at all commodities to see which source sink
pair is the closest according to the current length function, we cycle through the
commodities, sticking with one commodity until the shortest source-to-sink path for
that commodity is above a 1 + ε factor times a lower bound estimate of the overall
shortest path. Let α̂(i) be a lower bound on α(i). To start, we set α̂(0) = δ. As
long as there is some P ∈ P with l(P) < min{1, (1 + ε)α̂(i)}, we augment flow along
P , and set α̂(i + 1) = α̂(i). When this no longer holds, we know that the length of
the shortest path is at least (1 + ε)α̂(i), and so we set α̂(i + 1) = (1 + ε)α̂(i). Thus,
throughout the course of the algorithm, α̂ takes on values in the set {δ(1 + ε)r}r∈N .
Let t be the final iteration. Since α(0) ≥ δ and α(t − 1) < 1, we have α(t) < 1 + ε.
Thus, when we stop, α̂(t) is between 1 and 1 + ε. Since each time we increase α̂, we
increase it by a 1 + ε factor, the number of times that we increase α̂ is log1+ε

1+ε
δ

(which implies that the final value of r is �log1+ε
1+ε
δ �, where �z� denotes the largest

integer ≤ z.).
Between updates to α̂, the algorithm proceeds by considering each commodity

one by one. As long as the shortest path for commodity j has length less than the
minimum of 1 + ε times the current value of α̂ and 1, flow is augmented along such a
shortest path. When minP∈Pj l(P) is at least (1+ ε)α̂, commodity j+1 is considered.
After all k commodities are considered, we know that α(i) ≥ (1+ ε)α̂(i) so we update
α̂ by setting α̂(i + 1) = (1 + ε)α̂(i). We implement this idea by defining phases
determined by the values of α̂, starting with α̂ = δ and ending with α̂ = δ(1 + ε)r for
r such that 1 ≤ δ(1 + ε)r < 1 + ε. This algorithm is presented in Figure 2.2.

Between each update to α̂, there is at most one shortest path computation per
commodity that does not lead to an augmentation (For commodity j this is the com-
putation that reveals that minP∈Pj

l(P) ≥ (1 + ε)α̂.) We charge these computations

512 LISA K. FLEISCHER

Input: network G, capacities u(e), commodity pairs (sj , tj), 1 ≤ j ≤ k,
accuracy ε

Output: primal (infeasible) and dual solutions x and l

Initialize l(e) = δ ∀e, x ≡ 0.
for r = 1 to �log1+ε

1+ε
δ �

for j = 1 to k do
P ← shortest path in Pj using l.
while l(P) < min{1, δ(1 + ε)r}

u← mine∈P u(e)
x(P)← x(P) + u
∀e ∈ P, l(e)← l(e)(1 + εu

u(e))

P ← shortest path in Pj using l.
end while

Return (x, l).

Fig. 2.2. FPTAS for maximum multicommodity flow. Here α̂ is represented implicitly as
δ(1 + ε)r.

to the increase of α̂. Thus a total of at most k log1+ε
1+ε
δ shortest path computations

are used to update α̂ over the course of the algorithm. The remaining shortest path
computations all lead to augmentations. Lemma 2.1 enables us to bound the number
of these computations by O∗(m log1+ε

1+ε
δ). Using a Dijkstra shortest path algorithm,

this implies a run time of O∗(ε−2(m2 + km)) for this modified algorithm. This can
be reduced to O∗(ε−2m2) by observing that we can group commodities by a common
source node, and compute shortest paths from a source node to all other nodes in
the same asymptotic time as needed to compute a shortest path from a source to one
specified node.

Below, we show that this algorithm actually finds a flow that is close to optimal
by comparing the scaled primal solution to the dual solution that is a byproduct of
the algorithm. We choose δ so that this ratio is at least (1−O(ε)).

Theorem 2.4. An ε-approximate maximum multicommodity flow can be com-
puted in O(1

ε2m(m+ n logm) log n) time.

Proof. We show that the scaled flow in Lemma 2.2 has value within 1/(1 + 4ε)
of the dual optimal value, and hence the optimal value for the primal. By choosing
an initial value ε′ = ε/4, this then implies the theorem. At the end of iteration i,
α(i) is the exact shortest path over all commodities using length function li. Given
length function l, define D(l) :=

∑
e l(e)u(e), and let D(i) := D(li). D(i) is the dual

objective function value of li and β := minlD(l)/α(l) is the optimal dual objective
value. Let gi be the primal objective function value at the end of iteration i.

For each iteration i ≥ 1,

D(i) =
∑

e

li(e)u(e) =
∑

li−1(e)u(e) + ε
∑

e∈P
li−1(e)u(2.1)

≤ D(i− 1) + ε(gi − gi−1)(1 + ε)α(i− 1),

APPROXIMATING FRACTIONAL MULTICOMMODITY FLOW 513

which implies that

D(i) ≤ D(0) + ε(1 + ε)

i∑

j=1

(gj − gj−1)α(j − 1).(2.2)

Consider the length function li − l0. Note that D(li − l0) = D(i) − D(0). For any
path used by the algorithm, the length of the path using li versus li − l0 differs by at
most δn. Since this holds for the shortest path using length function li − l0, we have
that α(li − l0) ≥ α(i)− δn. Hence

β ≤ D(li − l0)
α(li − l0) ≤

D(i)−D(0)

α(i)− δn .

Substituting this bound on D(i)−D(0) in (2.2) gives

α(i) ≤ δn+
ε(1 + ε)

β

i∑

j=1

(gj − gj−1)α(j − 1).

Observe that, for fixed i, this right-hand side is maximized by setting α(j) to its
maximum possible value ∀ 0 ≤ j < i. Call this maximum value α′(i). Hence

α(i) ≤ α′(i) = α′(i− 1)(1 + ε(1 + ε)(gi − gi−1)/β)

≤ α′(i− 1)eε(1+ε)(gi−gi−1)/β ,

where this last inequality uses the fact that 1 + a ≤ ea for a ≥ 0. Since α′(0) = δn,
this implies that

α(i) ≤ δneε(1+ε)gi/β .(2.3)

By the stopping condition, in the final iteration t, we have

1 ≤ α(t) ≤ δneε(1+ε)gt/β ,

and hence

β

gt
≤ ε(1 + ε)

ln(δn)−1
.(2.4)

Let γ be the ratio of the dual and primal solutions. γ := β
gt
log1+ε

1+ε
δ . By

substituting the bound on β/gt from (2.4), we obtain

γ ≤ ε(1 + ε) log1+ε
1+ε
δ

ln(nδ)−1
=

ε(1 + ε)

ln(1 + ε)

ln 1+ε
δ

ln(nδ)−1
.(2.5)

Letting δ = (1 + ε)((1 + ε)n)−1/ε, we have

γ ≤ ε(1 + ε)

(1− ε) ln(1 + ε)
≤ ε(1 + ε)

(1− ε)(ε− ε2/2) ≤
(1 + ε)

(1− ε)2 .

This is at most (1 + 4ε) for ε < .15. The choice of δ together with Lemma 2.1 imply
the run time.

514 LISA K. FLEISCHER

We have shown above that the framework of Garg and Könemann [9] can be mod-
ified to obtain a more efficient algorithm, by showing that on average, it is sufficient
to solve the shortest path subproblem for a single commodity. We note that the same
is not easily said of the algorithm described in [14]. This algorithm requires that the
shortest path subproblem for each commodity be solved (albeit approximately) at
each iteration.

This algorithm also finds ε-approximate dual solutions. Above, we have replaced
D/α in (2.2) with the exact optimal dual solution β, and we have shown that (2.4)
holds for this value. However, we can replace β throughout the proof with β′, the best
(lowest) value of D(i)/α(i) encountered in the algorithm, and we get the same bound

for β
′

gt
as we have shown for β

gt
. This value β′ corresponds to the dual solution li/α(i),

which is feasible by definition of α. Thus our proof of ε-optimality for the primal
solution really is a proof that the final scaled primal solution is within 1/(1 + 4ε) of
the best dual solution obtained during the algorithm. As noted earlier, instead of
terminating the algorithm when minP∈Pj

l(P) ≥ 1, we can terminate the algorithm
once we have this proof.

Although it is simple to extend this algorithm to approximately solve the mini-
mum cost maximum multicommodity flow problem, the technique for doing so does
not differ from the technique of extending the maximum concurrent flow problem to
the minimum cost concurrent flow problem. For this reason, we omit this discussion
and refer the reader to the section on minimum cost concurrent flows.

2.2. Some practical modifications. We discuss briefly two aspects of the
above analysis that could impact practical performance.

1. For large graphs and small ε, our expression for δ may be too small to im-
plement easily. This is avoidable by choosing a larger value of δ and modifying the
termination criterion appropriately. Instead of showing that the algorithm will termi-
nate by the time the length of the shortest path is at least 1, for any δ, it follows from
a simple modification to (2.5) that the algorithm will terminate by the time the length
of the shortest path is at least q(δ) := δ

1+ε [n(1+ ε)]
1/ε. The number of augmentations

remains O(m 1
ε2 log n). This also implies that if the lengths of edges become too large

during the course of the algorithm, they can be scaled down without affecting the run
time or accuracy of the algorithm.

2. Above we have described an algorithm that maintains a variable l(e) for each
edge and modifies l(e) whenever the flow on edge e is increased by u ≤ u(e) by
multiplying it by (1 + u

u(e)ε). This is not the only update that will result in the ap-

proximation guarantees described here. Another example that will work is to update
l(e) by multiplying by eεu/u(e). With this update, l(e) = δeεx(e)/u(e) at any point

during the algorithm. Thus, scaling by logeε
max |l(e)|

δ yields a feasible primal solution
at any point in the algorithm, and the total number of augmentations is at most
O(m logeε(q(e)e

ε/δ)). To get an approximation guarantee, note that ea ≤ 1 + a+ a2

for 0 ≤ a ≤ 1. Then, the increase in u(e)l(e) in one iteration is bounded from above
by εu+ ε2u u

u(e) ≤ ε(1+ ε)u as long as u ≤ u(e). Substituting this in (2.1) turns it into

an inequality, and results in a modification of inequality (2.3) to α(i) ≤ δneε(1+ε)
2gi/β .

This then implies that for an appropriate termination point γ ≤ (1+ε
1−ε)

2, which is at
most 1 + 16ε for small enough ε.

In fact, comparing this analysis with the second order Taylor series expansion
reveals that we may use as the update factor φ(u) any convex, increasing function
on [0, u(e)] that satisfies φ(0) = 1, φ′(0) = ε/u(e), and φ′′(0) ≥ 0. The theory shows

APPROXIMATING FRACTIONAL MULTICOMMODITY FLOW 515

that the number of iterations may depend on φ′′(0). Experiments comparing 1+ε u
u(e)

with eε
u

u(e) indicate that the latter update performs better [1].

2.3. Maximum weighted multicommodity flow. The maximum multicom-
modity flow approximation scheme can be extended to handle weights in the objective
function. Let wj be the weight of commodity j. We wish to find flows fj maximiz-
ing

∑
j wj |fj |. By scaling, we assume minj wj = 1, and then W := maxj wj is the

maximum ratio of weights of any two commodities. The resulting change in the
dual problem is that the path constraints are now of the form

∑
e∈P⊂Pj

l(e) ≥ wj ∀
P ∈ ∪jPj .

Corollary 2.5. A solution of value within (1 − ε) of the optimal solution
for the weighted maximum multicommodity flow problem can be computed in
O∗(ε−2m2 min{logW,k}) time.

Proof. We alter the FPTAS for maximum multicommodity flow by defining

α(i) := min1≤j≤kminP∈Pj

l(P)
wj

and substituting this for α. As before, the algorithm

terminates when α ≥ 1. For this modified algorithm, we choose δ = (1 + ε)W/((1 +
ε)nW)1/ε. The rest of the algorithm remains unchanged. The analysis of the algo-
rithm changes slightly, now that we are using α. The initial value of α can be as low
as δ/W , and the final value of α is at most (1+ ε). Hence, the number of times α̂ can

increase by a factor of (1 + ε) is log1+ε
(1+ε)W

δ . The length of an edge starts at δ and

can be as large as (1 + ε)W , so the number of iterations is at most m log1+ε
(1+ε)W

δ ,

and the scale factor to make the final solution primal feasible is at most log1+ε
(1+ε)W

δ .

Choosing δ = (1 + ε)W/((1 + ε)nW)1/ε implies a run time of O∗(ε−2m2 logW).
To establish that this modified algorithm finds an ε-approximate solution, we

follow the analysis in the proof of Theorem 2.4 with the following modifications: let
hi be the value of the primal objective function at the end of iteration i, and let D(i)
be the dual objective function value, as before. For iteration i ≥ 1 we have that

D(i) =
∑

e

li(e)u(e) =
∑

li−1(e)u(e) + ε
∑

e∈P
li−1(e)u

≤ D(i− 1) + ε(1 + ε)wjα(i− 1)
hi − hi−1

wj

≤ D(i− 1) + ε(1 + ε)α(i− 1)(hi − hi−1).

Symmetric to the case without weights, a dual solution li is made dual feasible by
dividing by α(li). Since the bounds on D(li − l0) and α(li − l0) remain valid, the
same analysis goes through to obtain the following bound on γ, the ratio of primal
and dual solutions obtained by the algorithm

γ ≤ ε(1 + ε)

ln(1 + ε)

ln (1+ε)W
δ

ln(nδ)−1
.

With the above choice of δ, this is at most (1 + 4ε) for ε < .15.
The strongly polynomial run time follows directly from the analysis of the packing

LP algorithm in [9].

3. Maximum concurrent flow. Recall the maximum concurrent flow problem
has specified demands dj for each commodity 1 ≤ j ≤ k and the problem is to find a
flow that maximizes the ratio of met demands.

516 LISA K. FLEISCHER

As with the maximum multicommodity flow, we let x(P) denote the flow quantity
on path P . The maximum concurrent flow problem can be formulated as the following
linear program.

max λ
∀e : ∑

P :e∈P
x(P) ≤ u(e)

∀j : ∑
P∈Pj

x(P) ≥ λdj

∀P : x(P) ≥ 0.

The dual LP problem is to assign lengths to the edges of the graph and weights zj to
the commodities so that the length of the shortest path from sj to tj is at least zj for
all commodities j and the sum of the product of commodity weights and demands is
at least 1. The length of an edge represents the marginal cost of using an additional
unit of capacity of the edge, and the weight of a commodity represents the marginal
cost of not satisfying another unit of demand of the commodity.

min
∑
e u(e)l(e)

∀j, ∀P ∈ Pj :
∑
e∈P

l(e) ≥ zj
∑

1≤j≤k
djzj ≥ 1

∀e : l(e) ≥ 0
∀j : zj ≥ 0.

When the objective function value is ≥ 1, Garg and Könemann [9] describe an
O∗(ε−2m(m+k)) time approximation scheme for the maximum concurrent flow prob-
lem. If the objective is less than one, then they describe a procedure to scale the
problem so that the objective is at least one. This procedure requires computing k
maximum flows, which increases the run time of their algorithm so that it matches
previously known algorithms. We describe a different procedure that requires k maxi-
mum bottleneck path computations which can each be performed in O(m logm) time.
Since the total time spent on this new procedure no longer dominates the time to solve
the scaled problem with objective function value ≥ 1, the resulting algorithm solves
the maximum concurrent flow problem in O∗(ε−2m(m+ k)) time.

For the cost bounded problem, Garg and Könemann [9] use a minimum cost flow
subroutine. We use a cost bounded maximum bottleneck path subroutine, which can
be solved in O(m logm) time. Thus our procedure improves the run time for the
minimum cost concurrent flow problem as well.

We first describe the approximation algorithm in [9]. Initially, l(e) = δ/u(e),
zj = minP∈Pj l(P), x ≡ 0. The algorithm proceeds in phases. In each phase, there
are k iterations. In iteration j, the objective is to route dj units of flow from sj to tj .
This is done in steps. In one step, a shortest path P from sj to tj is computed using
the current length function. Let u be the bottleneck capacity of this path. Then the
minimum of u and the remaining demand is sent along this path. The dual variables
l are updated as before, and zj is set equal to the length of the new minimum length
path from sj to tj . The entire procedure stops when the dual objective function
value is at least one: D(l) :=

∑
e u(e)l(e) ≥ 1. See Figure 3.1 for a summary of

the algorithm. Garg and Könemann [9] prove the following sequence of lemmas for
δ = (m

1−ε)
−1/ε. Here, β is the optimal objective function value.

Lemma 3.1. If β ≥ 1, the algorithm terminates after at most t := 1+ β
ε log1+ε

m
1+ε

phases.

APPROXIMATING FRACTIONAL MULTICOMMODITY FLOW 517

Input: network G, capacities u(e), vertex pairs (si, ti)
with demands di, 1 ≤ i ≤ k, accuracy ε

Output: primal (infeasible) and dual solutions x and l

Initialize l(e) = δ/u(e) ∀e, x ≡ 0.
while D(l) < 1

for j = 1 to k do
d′j ← dj
while D(l) < 1 and d′j > 0

P ← shortest path in Pj using l
u← min{d′j ,mine∈P u(e)}
d′j ← d′j − u
x(P)← x(P) + u
∀e ∈ P, l(e)← l(e)(1 + εu

u(e))

end while
end while
Return (x, l).

Fig. 3.1. FPTAS for max concurrent flow.

Lemma 3.2. After t − 1 phases, (t − 1)dj units of each commodity j have been
routed. Scaling the final flow by log1+ε 1/δ yields a feasible primal solution of value
λ = t−1

log1+ε 1/δ .

Lemma 3.3. If β ≥ 1, then the final flow scaled by log1+ε 1/δ has a value at least
(1− 3ε) OPT.

The veracity of these lemmas relies on β ≥ 1. Notice also that the run time
depends on β. Thus we need to insure that β is at least one and not too large.

Let ζj denote the maximum flow value of commodity j in the graph when all other
commodities have zero flow. Let ζ = minj ζj/dj . Since at best all single commodity
maximum flows can be routed simultaneously, ζ is an upper bound on the value of the
optimal solution. The feasible solution that routes 1/k fraction of each commodity
flow of value ζj demonstrates that ζ/k is a lower bound on the optimal solution. Once
we have these bounds, we can scale the original demands so that this lower bound is
at least one. However, now β can be as large as k.

To reduce the dependence of the number of phases on β, we use a popular tech-
nique developed in [22] that is also used in [9]. We run the algorithm, and if it does
not stop after T := 2 1

ε log1+ε
m

1−ε phases, then β > 2. We then multiply demands by
2, so that β is halved and still at least 1. We continue the algorithm, and again double
demands if it does not stop after T phases. After repeating this at most log k times,
the algorithm stops. The total number of phases is T log k. The number of phases
can be further reduced by first computing a solution of cost at most twice the optimal
using this scheme. This takes O(log k logm) phases, and returns a value β̂ such that

β ≤ β̂ ≤ 2β. Thus with at most T additional phases, an ε-approximation is obtained.
The following lemma follows from the fact that there are at most k iterations per
phase.

Lemma 3.4. The total number of iterations required by the algorithm is at most
2k logm(log k + 1

ε2).

It remains to bound the number of steps. For each step except the last step in an

518 LISA K. FLEISCHER

iteration, the algorithm increases the length of some edge (the bottleneck edge on P)
by 1+ε. Since each variable l(e) has initial value δ/u(e) and value at most 1

u(e) before

the final step of the algorithm (since D(t− 1) < 1), the number of steps in the entire
algorithm exceeds the number of iterations by at most m log1+ε

1
δ = m log1+ε

m
1−ε .

Theorem 3.5. Given ζj, an ε-approximate solution to the maximum concurrent
flow problem can be obtained in O∗(ε−2m(k +m)) time.

Our contribution is to reduce the dependence of the run time of the algorithm on
the computation of ζj , 1 ≤ j ≤ k, by observing that it is not necessary to obtain the
exact values of ζj since they are just used to get an estimate on β. Computing an
estimate of ζj that is at most a factor m away from its true value increases the run

time by only a logm factor. That is, if our estimate ζ̂j is ≥ 1
mζj , then we have upper

and lower bounds on β that differ by a factor of at most mk.

We compute estimates ζ̂j ≥ 1
mζj as follows. Any flow can be decomposed

into at most m path flows. Hence, flow sent along a maximum capacity path is
an m-approximation to a maximum flow. Such a path can be computed easily in
O(m logm) time by binary searching for the capacity of this path. In fact, by group-
ing commodities by their common source node, we can compute all such paths in
O(min{k, n}m logm) time.

Theorem 3.6. An ε-approximate solution to the maximum concurrent flow prob-
lem can be obtained in O∗(ε−2m(k +m)) time.

4. Minimum cost concurrent flow. By adding a budget constraint to the
multiple commodity problem, it is possible to find a concurrent flow within (1 − ε)
of the maximum concurrent flow within the given budget. Since there is a different
variable for each commodity-path pair, this budget constraint can easily incorporate
different costs for different commodities.

In the dual problem, let φ be the dual variable corresponding to the budget
constraint. In the algorithm, the initial value of φ is δ/B. The subroutine to find
a most violated primal constraint is a shortest path problem using length function
l + φc, where c is the vector of cost coefficients and φ is the dual variable for the
budget constraint. (This can be easily adapted to multiple budget constraints with
corresponding dual variables φi and cost vectors ci using length function l+

∑
i φici.)

The amount of flow sent on this path is now determined by the minimum of the
capacity of this path, the remaining demand to be sent of this commodity in this
iteration, and B/c(P), where c(P) =

∑
e∈P c(e) is the cost of sending one unit of flow

along this path. Call this quantity u. The length function is updated as before, and

φ is updated by φ = φ(1+ εuc(P)
B). The correctness of this algorithm is demonstrated

in [9] and follows a similar analysis as for the maximum concurrent flow algorithm.

Again, we improve on the run time in [9] by efficient approximation of the values
ζj . To get estimates on ζj , as needed to delimit β, we compute m-approximate solu-
tions to min{n2, k} maximum-flow-with-budget problems. To do this, it is sufficient
to compute a maximum bottleneck path of cost at most the budget. This can be done
by binary searching for the capacity of this path among the m candidate capacities,
and performing a shortest path computation at each search step, for a run time of
O(m logm) per commodity.

To find a (1 − ε) maximum concurrent flow of cost no more than the minimum
cost maximum concurrent flow, we can then binary search for the correct budget.

Theorem 4.1. There exists an FPTAS for the minimum cost concurrent flow
problem that requires O∗(ε−2m(m+ k) logM) time.

APPROXIMATING FRACTIONAL MULTICOMMODITY FLOW 519

Acknowledgments. We thank Cynthia Phillips for suggesting a simpler pre-
sentation of the maximum multicommodity flow algorithm and Kevin Wayne, Jeffrey
Oldham, Aravind Srinivasan, and an anonymous referee for helpful comments.

REFERENCES

[1] C. Albrecht, Provably good global routing by a new approximation algorithm for multicom-
modity flow, in Proceedings of the International Conference on Physical Design (ISPD),
San Diego, CA, ACM, New York, 2000, pp. 19–25.

[2] Y. Aumann and Y. Rabani, An O(log k) approximate min-cut max-flow theorem and approx-
imation algorithm, SIAM J. Comput., 27 (1998), pp. 291–301.

[3] D. Bienstock, Experiments with a Network Design Algorithm Using ε-Approximate Linear
Programs, CORC Report 1999-4, Department of Industrial Engineering and Operations
Research, Columbia University.

[4] D. Bienstock, Approximately Solving Large-Scale Linear Programs I: Strengthening Lower
Bounds and Accelerating Convergence, CORC Report 1999-1, Department of Industrial
Engineering and Operations Research, Columbia University, CORE Lecture Series 2000,
to appear.

[5] F. Dragan, A. B. Kahng, S. Muddu, I. Mandoiu, and A. Zelikovsky, Global routing
with given buffer blocks, in Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, 2000, to appear.

[6] L. K. Fleischer, Approximating fractional multicommodity flows independent of the number
of commodities, in Proceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science, IEEE, New York, 1999, pp. 24–31.

[7] L. Fratta, M. Gerla, and L. Kleinrock, The flow deviation method: an approach to store-
and-forward communication network design, Networks, 3 (1973), pp. 97–133.

[8] N. Garg, personal communication, 1999.
[9] N. Garg and J. Könemann, Faster and simpler algorithms for multicommodity flow and

other fractional packing problems, in Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science, IEEE, New York, 1998, pp. 300–309.

[10] N. Garg, V. V. Vazirani, and M. Yannakakis, Approximate max-flow min-(multi)cut theo-
rems and their applications, SIAM J. Comput., 25 (1996), pp. 235–251.

[11] A. V. Goldberg, J. D. Oldham, S. Plotkin, and C. Stein, An implementation of a combi-
natorial approximation algorithm for minimum-cost multicommodity flow, in Integer Pro-
gramming and Combinatorial Optimization, R. E. Bixby, E. A. Boyd, and R. Z. Ŕıos-
Mercado, eds., Lecture Notes in Comput. Sci. 1412, Springer, Berlin, pp. 338–352.

[12] M. D. Grigoriadis and L. G. Khachiyan, Fast approximation schemes for convex programs
with many blocks and coupling constraints, SIAM J. Optim, 4 (1994), pp. 86–107.

[13] M. D. Grigoriadis and L. G. Khachiyan, Approximate minimum-cost multicommodity flows,
Mathematical Programming, 75 (1996), pp. 477–482.

[14] M. D. Grigoriadis and L. G. Khachiyan, Coordination complexity of parallel price-directive
decomposition, Math. Oper. Res., 21 (1996), pp. 321–340.

[15] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica, 1 (1981), pp. 169–197.

[16] D. Karger and S. Plotkin, Adding multiple cost constraints to combinatorial optimization
problems, with applications to multicommodity flows, in Proceedings of the 27th Annual
ACM Symposium on Theory of Computing, ACM, New York, 1995, pp. 18–25.

[17] P. Klein, S. Plotkin, C. Stein, and É. Tardos, Faster approximation algorithms for the
unit capacity concurrent flow problem with applications to routing and finding sparse cuts,
SIAM J. Comput., 23 (1994), pp. 466–487.

[18] T. Leighton, F. Makedon, S. Plotkin, C. Stein, É. Tardos, and S. Tragoudas, Fast
approximation algorithms for multicommodity flow problems, J. Comput. System Sci., 50
(1995), pp. 228–243.

[19] T. Leighton and S. Rao, Multicommodity max-flow min-cut theorems and their use in de-
signing approximation algorithms, J. ACM, 46 (1999), pp. 787–832. Extended abstract
appeared in Proceedings of the 29th Annual IEEE Symposium on Foundations of Com-
puter Science, New York, 1988, pp. 422–431.

[20] T. Leong, P. Shor, and C. Stein, Implementation of a combinatorial multicommodity flow al-
gorithm, in The First DIMACS Implementation Challenge: Network Flows and Matchings,
in DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 12, D. S. Johnson and C. McGoech,
eds., AMS, Providence, RI, 1993, pp. 387–405.

520 LISA K. FLEISCHER

[21] N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algorith-
mic applications, Combinatorica, 15 (1995), pp. 215–246.

[22] S. A. Plotkin, D. Shmoys, and É. Tardos, Fast approximation algorithms for fractional
packing and covering problems, Math. Oper. Res., 20 (1995), pp. 257–301.

[23] T. Radzik, Fast deterministic approximation for the multicommodity flow problem, in Proceed-
ings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco,
1995, ACM, New York, 1995, pp. 486–492.

[24] M. Sato, Efficient Implementation of an Approximation Algorithm for Multicommodity Flows,
Master’s thesis, Division of Systems Science, Graduate School of Engineering Science,
Osaka University, Osaka, Japan, 2000.

[25] F. Shahrokhi and D. W. Matula, The maximum concurrent flow problem, J. ACM, 37 (1990),
pp. 318–334.

[26] D. B. Shmoys, Cut problems and their application to divide-and-conquer, in Approximation Al-
gorithms for NP-Hard Problems, D. S. Hochbaum, ed., PWS Publishing Company, Boston,
1997, chapter 5.

[27] N. Young, Randomized rounding without solving the linear program, in Proceedings of the
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 1995, ACM,
New York, 1995, pp. 170–178.

WELL-SPACED LABELINGS OF POINTS IN RECTANGULAR
GRIDS∗

JEFFREY C. LAGARIAS†

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 4, pp. 521–534

Abstract. We describe methods to label the M1 ×M2 grid with the integers 1 to M1M2 so
that any K consecutively labeled cells are relatively far apart in the grid in the Manhattan metric.
Constructions of such labelings are given which are nearly optimal in a range of conditions. Such
labelings can be used in addressing schemes for storing data on two-dimensional arrays that include
randomly located “blobs” of defective cells. The data can be precoded using block error-correcting
codes before storage, and the usefulness of well-spaced points is to decrease the probability of “burst”
errors which cannot be corrected. Possible applications include the storage of speech or music on
low-quality memory chips and in “holographic memories” to store bit-mapped data.

More generally, we present a general family of mappings of the integers 1 to M1M2 · · ·Md onto
the d-dimensional grid of size M1 × M2 × · · · × Md, called mixed radix vector mappings. These
mappings give labelings whenever they are one to one. We give a sufficient condition for these
mappings to be one to one, which is easy to verify in many cases.

Key words. radix expansions, error correction, packings

AMS subject classifications. Primary, 90C27; Secondary, 05B40, 11A63, 11H71, 52C20,
68R05, 94B60

PII. S0895480199362241

1. Introduction. Let [N1, N2] denote the set of consecutive integers
{N1, N1 + 1, . . . , N2}. The d-dimensional rectangular grid G(M1,M2, . . . ,Md) is
the set of lattice points

G(M1, . . . ,Md) = [0,M1 − 1]× [0,M2 − 1]× · · · × [0,Md − 1]
= {(m1, . . . ,md) ∈ Z

d : 0 ≤ mj ≤Mj − 1}.(1.1)

A labeling of G(M1,M2, . . . ,Md) is a one-to-one mapping

φ :

1,
d∏

j=1

Mj

→ G(M1,M2, . . . ,Md).(1.2)

A labeling φ is clearly onto, hence it has a well-defined inverse φ−1. We think of a la-
beling as giving an access ordering to the

∏d
j=1 Mj cells in the gridG(M1,M2, . . . ,Md).

We consider the general problem of finding labelings with the property that points
with labels that are close are spaced far apart in the grid. We measure distance in
the grid using the L1-norm,

||(m1, . . . ,md)− (m′
1, . . . ,m

′
d)|| :=

d∑

i=1

|mi −m′
i|.(1.3)

In the two-dimensional case there are a number of applications for such well-
spaced labelings, which motivated this work. One application consists of schemes to

∗Received by the editors October 5, 1999; accepted for publication (in revised form) July 5, 2000;
published electronically October 25, 2000.

http://www.siam.org/journals/sidma/13-4/36224.html
†AT&T Labs-Research, Florham Park, NJ 07932-0971 (jcl@research.att.com).

521

522 JEFFREY C. LAGARIAS

address memory locations on chips which have memory arrays containing randomly
distributed defects consisting of variable-sized “blobs” of defective memory cells. Such
labelings are useful in minimizing the probability of consecutively accessed locations
being defective. The data can be preencoded using a block error-correcting code before
storing it in such an array, and the usefulness of well-spaced points is to decrease the
probability of “burst” errors, which block coding cannot handle. A second application
concerns the design of proposed “holographic memories” to store bit-mapped data,
in situations where scanning errors introduce “blocks” of blank data; cf. Bruckstein,
Holt, and Netravali [3]. In both applications one wants labeling schemes φ that are
simple to calculate and to invert.

In section 2 we give a general construction of mappings φ : [1,
∏d
j=1 Mj] →

G(M1, . . . ,Md), called mixed radix vector mappings, which are mappings

φ(n) =
r∑

j=1

kjyj ,(1.4)

in which the vectors y1, . . . ,yr ∈ Z
d are a given set of r vectors, together with a

mapping

n
−→ (k1, . . . ,kr),(1.5)

which is the mixed radix expansion of n to base B = (B1, B2, . . . ,Br), as defined in
section 2. Such mappings are not necessarily one to one. We give a sufficient condition
for such a map to be one to one, which applies in many situations (Theorem 2.1).
Suitable choices of the parameters {y1,y2, . . . ,yr} and (B1, B2, . . . ,Br) yield well-
spaced labelings, particularly in the two-dimensional case.

In this paper we study the two-dimensional case in sections 3 and 4. In section 3
we consider the problem of constructing labelings that have every two consecutively
labeled points far apart. We show that every admissible labeling has two consecutively
labeled points at L1-distance at most �M1+M2

2 �. We find mixed radix vector labelings
that achieve separation of consecutive labels by �M1+M2

2 � − 2 (Theorem 3.1).
In section 4 we consider the problem of constructing labelings that well-separate

k consecutive labels for k ≥ 3. We prove upper bounds for the attainable separation
of 3M2

k if M2 ≥ k
3M1, and

(
8M1M2

k

)1/2
if M1 ≤ M2 ≤ k

3M1 (Theorem 4.1). These
bounds are shown to be attainable within a multiplicative factor of 4 by mixed radix
labelings for many values of M1,M2, and k (Theorem 4.2).

This paper was motivated by the two-dimensional case and does not consider
labelings in dimension d ≥ 3, except for the criterion of section 2 for mixed radix
vector mappings to be one to one on d-dimensional grids. We leave as open problems
obtaining good upper bounds on the maximum attainable L1-distance between mem-
bers of a labeling at distance at most m, and determining whether suitable mixed
radix vector mappings give nearly optimal well-spaced labelings of points for vari-
ous d-dimensional rectangular grids when d ≥ 3. For the upper bound we note a
connection with a generalization of the unsolved problem D1, “spreading points in
a square,” in Croft, Falconer, and Guy [4, pp. 108–110]. The problem of packing k
points in an d-dimensional cube, so as to maximize the minimal distance between any
two of the points (using L1-norm), certainly gives an upper bound (after rescaling)
on how much separation is possible in every consecutive k-tuple of a labeling of a
d-dimensional cubical grid. The results of this paper suggest that for d-dimensional

WELL-SPACED LABELINGS 523

grids which are roughly cubical there exist well-spaced labelings with spacing within
a multiplicative constant (depending on the dimension d) of such an upper bound.

We also note a relation tomagic squares, and more generallymagic d-cubes. These
are a special kind of labeling of the d-cube G(M,M, . . . ,M) by integers in which all
the row sums are required to be equal; cf. [1], [2], [5], [6]. One of the standard
constructions of magic squares and magic d-cubes using the integers from 1 to Md is
actually a mixed radix vector labeling; see [1], [2].

2. Mixed radix vector mappings. We present a general construction of d-
dimensional mappings

φ :

1,
d∏

j=1

Mj

→ G(M1,M2, . . . ,Md),

which we call mixed radix vector (MRV) mappings. Whenever such a mapping φ is
one to one, then it gives an admissible labeling of

G(M1,M2, . . . ,Md) = [0,M1 − 1]× [0,M2 − 1]× · · · × [0,Md − 1].

A mixed radix expansion is specified by an r-dimensional vectorB := (B1, B2, . . . ,
Br) of positive integers, with all Bi > 1, called the mixed base. The mixed radix
expansion to base B of an integer m satisfying 0 ≤ m <

∏r
i=1 Bi is

m =

r∑

i=1

di

i−1∏

j=1

Bj , with 0 ≤ di < Bi for 1 ≤ i ≤ r,(2.1)

To apply this to the grid G(M1, . . . ,Md) we need

r∏

i=1

Bi ≥
d∏

j=1

Mj .(2.2)

The general construction is as follows. An MRV mapping of G(M1, . . . ,Md) is
specified by a set of r ≥ 1 nonzero vectors y1, . . . ,yr ∈ Z

d and by a mixed radix base

B = (B1, B2, . . . , Br),

such that
∏r
i=1 Bi ≥

∏d
j=1 Mj . For 1 ≤ m ≤∏d

j=1 Mj take the mixed radix expansion

m− 1 = dr

r∏

i=1

Bi + dr−1

r−1∏

i=1

Bi + · · ·+ d2B1 + d1

with 0 ≤ di < Bi, and associate to it the integer vector

v(m) :=

r∑

i=1

diyi = (v1(m), v2(m), . . . ,vd(m)).(2.3)

The MRV map φ : [1,
∏d
j=1 Mj]→ G(M1,M2, . . . ,Md) is given by

φ(m) = (v1(m)(mod M1), . . . ,vd(m)(mod Md)).(2.4)

524 JEFFREY C. LAGARIAS

The integer r is called the rank of the MRV mapping. It bears no relation to the
dimension d of the image space and can be smaller or larger than d.

We are interested in the special case of MRV mappings φ that are one to one. We
call these MRV labelings. There does not seem to be a simple general criterion for
an MRV mapping to be one to one, but we give a sufficient condition in Theorem 2.1
below.

To formulate this sufficient condition we need a definition. Given a set Y =
{y1, . . . ,yr} of vectors in Z

d, and a grid G = G(M1, . . . ,Md), and given m =
(m1, . . . ,mr) ∈ Z

r, set

w(m) = (w1, w2, . . . ,wm) := m1y1 + · · ·+mryr.(2.5)

We associate to Y and the grid G the r-dimensional integer lattice

Λ := ΛY,G = {m ∈ Z
r : wj ≡ 0 (mod Mj) for 1 ≤ j ≤ d}.(2.6)

We call Λ the embedding lattice of (Y, G), since it describes how the vectors Y fall
into G. The embedding lattice satisfies

(M1M2 · · ·MdZ)
d ⊆ Λ ⊆ Z

d,(2.7)

and the index [Zd : Λ] := #(Zd/Λ) always divides
∏d
j=1 Mj . We say that Y is

nondegenerate for the grid G(M1, . . . ,Md) if [Z
d : Λ] =

∏d
j=1 Mj .

Theorem 2.1. Suppose that an MRV map φ of G(M1,M2, . . . ,Md) is specified by
the set of vectors Y = {y1,y2, . . . ,yr} and the mixed radix base B = (B1, B2, . . . , Br).

(i) If each nonzero vector m = (m1,m2, . . . ,mr) in the embedding lattice ΛY,G
satisfies

there is some coordinate i with |mi| ≥ Bi,(2.8)

then the map φ is one to one.
(ii) If Πri=1Bi = Π

d
j=1Mj, then (2.8) is a necessary and sufficient condition for φ

to be one to one.
Proof of Theorem 2.1. (i). We argue by contradiction. Suppose that φ is not one

to one, so that there exist 1 ≤ m1 < m2 ≤ M1M2 · · ·Md such that φ(m1) = φ(m2).
Let the mixed radix expansions be

m� − 1 =
r∑

i=1

d
(�)
i

i−1∏

k=1

Bk for � = 1, 2,(2.9)

and set d(�) ≡ (d(�)
1 , . . . , d

(�)
r) for � = 1, 2. Now φ(m1) = φ(m2) means that the

vector w = (w1, . . . , wd) given by

w =
r∑

i=1

(d
(1)
i − d

(2)
i)yi

satisfies wj ≡ 0 (mod Mj) for 1 ≤ j ≤ d. Thus d(1) − d(2) ∈ ΛY,G. However the
mixed radix expansion property gives

−Bi < d
(1)
i − d

(2)
i < Bi, 1 ≤ i ≤ r,

WELL-SPACED LABELINGS 525

because 0 ≤ d
(�)
i < Bi. Since d

(1) �= d(2), this contradicts property (2.8).

(ii). We must show that if
∏r
i=1 Bi =

∏d
j=1 Mj , then any one-to-one MRV labeling

map φ satisfies condition (2.8). Indeed {φ(m) : 1 ≤ m ≤ M1M2 · · ·Md} enumerates
the set of M1 · · ·Md = B1 · · ·Br vectors w (mod M), given by

w = d1v1 + d2v2 + · · ·+ drvr, with 0 ≤ di < Bi, 1 ≤ i ≤ r,(2.10)

and

w (mod M) := (w1 (mod M1), w2 (mod M2), . . . ,wd(mod Md)).

By hypothesis these residues are all distinct, and this implies that [Zr : ΛY,G] ≥
M1M2 · · ·Md. Thus

[Zr : Λ] =M1M2 · · ·Md,(2.11)

and Y is nondegenerate. It follows that

W = {w : w given by (2.10)}

is a fundamental domain for the quotient lattice Z
r/ΛY,G. In particular, given any

nonzero vector

e = (e1, . . . ,er) ∈ Z
r with −Bi < ei < Bi for 1 ≤ i ≤ r,(2.12)

set

w′ = e1v1 + · · ·+ ervr.

Then we can find two distinct vectors w1,w2 of the form (2.10) such that

w′ = w1 −w2.

Since the wi are all distinct (mod M) we conclude that w′ �≡ 0 (mod M), and hence
e �∈ ΛY,G. Thus the embedding lattice ΛY,G contains no vector of the form (2.12)
except the zero vector, which verifies (2.8).

As an example, consider the rectangular grid G(6, 6), and take the MRV mapping
given by Y = {y1,y2,y3,y4} with

y1 = (3, 0), y2 = (0, 3), y3 = (1, 0), and y4 = (0, 1)

and with radix vector B = (2, 2, 3, 3). We have r = 4 and Π4
i=1Bi = Π

2
i=1Mi = 36.

The mixed radix expansion is

m− 1 = 12d4 + 4d3 + 2d2 + d1, 0 ≤ d1 < Bi,

and

φ(m) = d1v1 + d2v2 + d3v3 + d4v4.

The embedding lattice Λ in Z
4 is

Λ = (2Z× 2Z× 6Z× 6Z) + {(0, 0, 0, 0), (1, 0, 3, 0), (0, 1, 0, 3), (1, 1, 3, 3)}.

526 JEFFREY C. LAGARIAS

This lattice satisfies the criterion (2.8); hence Theorem 2.1 shows that φ is one to
one. The resulting labeling is pictured below, using matrix notation, so that rows are
numbered downward from 0 to 5, and columns are numbered across, from 0 to 5.

1 5 9 2 6 10
13 17 21 14 18 22
25 29 33 26 30 34
3 7 11 4 8 12
15 19 23 16 20 24
27 31 35 28 32 36

We end our discussion of the d-dimensional case by commenting on the problem
of computing the inverse of the map φ when it is one to one. This map may be
hard to invert in the general case. In the special case that Πri=1Bi = Π

d
j=1Mj , the

inversion problem reduces to solving a system of linear Diophantine equations, and
for this there are polynomial-time algorithms. In the two-dimensional case it appears
that there exist good MRV labelings of this sort having rank r ≤ 4.

3. Two-dimensional case: Separating consecutive points. We consider
the problem of labeling theM1M2 cells in an M1×M2 rectangular grid in such a way
that consecutively labeled cells are far apart. The rectangular grid is

G(M1,M2) := {(i, j) : 0 ≤ i ≤M1 − 1, 0 ≤ j ≤M2 − 1}.
Recall that we measure distance in the grid using the Manhattan metric or (L1-norm)

||(i, j)− (i′, j′)||1 := |i− i′|+ |j − j′|.
An admissible labeling of theM1×M2 gridG(M1,M2) is a bijection φ : [1,M1M2]→

G(M1,M2). The 2-spacing s2(φ) of a labeling is

s2(φ) = min{||φ(m)− φ(m+ 1)||1 : 1 ≤ m ≤M1M2 − 1}.(3.1)

The circular 2-spacing w∗
2(φ) is the minimumManhattan distance between consecutive

points in GM1,M2
, viewing GM1,M2

as a torus. That is,

s∗2(φ) = min{||φ(m)− φ(m+ 1)||T : 1 ≤ m ≤M1M2 − 1},(3.2)

in which || · ||T is the torus Manhattan metric
||(i, j)− (i′, j′)||T := |i− i′ mod ∗ M1|+ |j − j′ mod ∗ M2|,(3.3)

where r mod ∗ M denotes the least absolute value residue mod M , i.e., that residue
which lies in the range [−M/2, (M − 1)/2]. Clearly

s∗2(φ) ≤ s2(φ).(3.4)

We start with an easy upper bound.
Theorem 3.1. For any labeling φ,

s2(φ) ≤

⌊
M1 +M2

2

⌋
if M1 or M2 is even,

M1 +M2

2
− 1 if M1,M2 are both odd.

(3.5)

WELL-SPACED LABELINGS 527

Proof. The “central cell” in the grid is v :=
(�M1+1

2 �, �M2+1
2 �). All cells in the

grid are at Manhattan distance at most �M1+M2

2 � from v if M1 or M2 is even and at

distance at most M1+M2

2 − 1 from v if M1, M2 are both odd. The “extreme” cell is
(M1,M2).

Now let φ(v) = k. At least one of the values k− 1 and k+1 falls inside the range
[1,M1M2]. If k

′ denotes this value, then

s2(φ) ≤ ||φ(k)− φ(k′)||1 = ||
(⌊

M1 + 1

2

⌋
,

⌊
M2 + 1

2

⌋)
− (i, j)||1,

which gives (3.5).
Theorem 3.2. For all M1, M2 ≥ 2 there exists an MRV labeling φ such that

s∗2(φ) =

⌊
M1 +M2

2

⌋
− 1 if M1 or M2 is odd,

⌊
M1 +M2

2

⌋
− 2 if M1 and M2 are even.

(3.6)

Proof. We exhibit MRV labelings having the desired property. We use different
constructions according to the parity of M1 and M2.

Case 1. M1 and M2 are both odd.
Set
L = least common multiple (l.c.m.) of M1 and M2,
G = greatest common divisor (g.c.d.) of M1 and M2

and note that M1M2 = LG. We use the MRV mapping φ of rank 2 given by

y1 =

(
M1 − 1
2

,
M2 + 1

2

)
and y2 = (1, 0),

with mixed radix B = (L,G). If m = iL+ j with 0 ≤ i < G and 0 ≤ j < L, then

φ(m) =

(
i+ j

(
M1 − 1
2

)
(mod M1), j

(
M2 + 1

2

)
(mod M2)

)
.

We prove that φ is an MRV labeling. Suppose that φ(m) = φ(m′) with associated
radix expansions (i, j) and (i′, j′). Then

j

(
M2 − 1
2

)
≡ j′

(
M2 − 1
2

)
(mod M2).

Since M2 is odd, 2 is invertible (mod M2); hence this gives j ≡ j′ (mod M2), so
j = j′. Now

i+ j

(
M1 − 1
2

)
= i+ j′

(
M1 − 1
2

)
≡ i′ + j′

(
M1 − 1
2

)
(mod M1);

hence i ≡ i′ (mod M1) so i = i′, and φ is one to one.
We now show that

s∗2(φ) ≥
⌊
M1 +M2

2

⌋
− 1.(3.7)

528 JEFFREY C. LAGARIAS

To see this, note that incrementing m by 1 increments j by 1 (mod L), while

L

(
M1 − 1
2

,
M2 − 1
2

)
≡ (0, 0) (mod M).

Thus we always add the vector
(
M1−1

2 , M2−1
2

)
, which has torus Manhattan length

M1+M2

2 − 1. At certain steps the vector (1,0) is also added, which gives the vector(
M1+1

2 , M2−1
2

)
, which also has torus Manhattan length M1+M2

2 − 1. Thus (3.10)
follows.

Case 2. One of M1, M2 is even and the other is odd.
We treat the case M1 is even and M2 is odd, the other case being similar. For

1 ≤ K ≤M1M2 set L
∗ = 2M2 and consider the MRV mapping φ with

y1 =

(
M1

2
,
M2 − 1
2

)
and y2 = (1, 0),

and mixed radix base B :=
(
2M2,

M1

2

)
. We will show that this is the desired MRV

labeling. We have

φ(m) =

(
i+ j

M1

2
(mod M1), j

(
M2 − 1
2

)
(mod M2)

)
,(3.8)

where

m− 1 := iL∗ + j, with 0 ≤ j ≤ L∗ − 1, 0 ≤ i <
M1

2
.(3.9)

To see that φ is one to one, observe that the second coordinate of φ(m) determines
j (mod M2), since M2 is odd. Then the first coordinate determines i(mod

M1

2), and
also j(mod 2), which determines j (mod 2M2). Now m is reconstructible by (3.9).

Next, since φ(m+ 1)− φ(m) is one of
(
M1

2 , M2−1
2

)
by
(
M1+2

2 , M2−1
2

)
, we obtain

s∗2(φ) ≥
M1 +M2 − 3

2
=

⌊
M1 +M2

2

⌋
− 1,

as desired.
Case 3. M1 and M2 are both even.
This is the most complicated case. A rank-3 MRV labeling is required. Define L∗

to be the least � > 0 such that

�

(
M1

2
− 1
)
≡ 0 (mod M1),

�

(
M2

2
− 1
)
≡ 0 (mod M2).

Then L∗ is given by

L∗ =

1

2
l.c.m. (M1,M2) if

M1M2

4
is odd,

l.c.m. (M1,M2) if
M1M2

4
is even.

WELL-SPACED LABELINGS 529

Set G∗ = g.c.d. (M1,M2) so that M1M2 = H∗G∗L∗, with

H∗ =

2 if
M1M2

4
is odd,

1 if
M1M2

4
is even.

We use the MRV mapping φ defined by

y1 =

(
M1 − 2
2

,
M2 − 2
2

)
, y2 = (0, 1), and y3 = (1, 0),

with mixed radix base B = (B1, B2, B3) := (L
∗, G∗, H∗). In the case that H∗ = 1

this simplifies to an MRV mapping on two generators, since y3 can be omitted. If

m = �G∗L∗ + iL∗ + j

with

0 ≤ j ≤ L∗ − 1; 0 ≤ i ≤ G∗ − 1; 0 ≤ � ≤ H∗ − 1,

then

φ(m) :=

(
�+ j

(
M1 − 2
2

)
(mod M1), i+ j

(
M2 − 2
2

)
(mod M2)

)
.(3.10)

We omit a proof that φ is one to one, which can be derived from (3.10) by an
argument similar to that in Case 2.

To establish the bound

s∗2(φ
∗) ≥ M1 +M2

2
− 2,

use the fact that each step from φ(m) to φ(m+ 1) is one of

(
M1 − 2
2

,
M2 − 2
2

)
,

(
M1

2
,
M2 − 2
2

)
, or

(
M1

2
,
M2

2

)
.

Examples. As a Case 1 example, take M1 = 5, M2 = 5, in which case L =
5, G = 5. Here

(
M1−1

2 , M2−1
2

)
= (2, 2) and the labeling is given below. (We use

matrix notation, with rows numbered 0 to 4, reading down, and columns numbered
0 to 4, reading across.)

1 24 17 15 8
6 4 22 20 13
11 9 2 25 18
16 14 7 5 23
21 19 12 10 3

In this example

s∗2(φ) = 4 =
⌊
M1 +M2

2

⌋
− 1.

530 JEFFREY C. LAGARIAS

Note that φ(5) and φ(6) are at distance 4 in the torus Manhattan metric.
As a Case 3 example, forM1 = 4, M2 = 6, we have L

∗ = 12, G∗ = 2, andM∗ = 1
and obtain the labeling (in matrix form)

1 13 5 17 9 21
10 22 2 14 6 18
7 19 11 23 3 15
4 16 8 20 12 24

 .

4. Two-dimensional case: Separating several points. We consider the
problem of finding labelings φ of G(M1,M2) that well-separate all sequences of k
consecutive points. We define the k-spacing of a labeling to be

sk(φ) := min{||φ(m)− φ(m+ j)|| : 1 ≤ m < m+ j ≤M1M2, 1 ≤ j ≤ k}.(4.1)

We define the circular k-spacing s∗k(φ) analogously to be

s∗k(φ) := min{||φ(m)− φ(m+ j)||T : 1 ≤ m < m+ j ≤M1M2, 1 ≤ j ≤ k},(4.2)

using the torus Manhattan distance measure (3.3). Note that s∗k(φ) ≤ sk(φ).
How large can one make sk(φ)? We define

Sk(M1,M2) := max{sk(φ) : φ a labeling for GM,N}.

Upper bounds for Sk(M1,M2) depend on the shape of the rectangular gridG(M1,M2).
Using symmetry considerations we may reduce to the case that M1 ≤M2. If the grid
is narrow in one direction, there is an upper bound proportional to M1+M2

k , while
if M1 and M2 are within a constant ratio of one another, there is an upper bound
proportional to M1+M2√

k
, as the following result shows.

Theorem 4.1. Suppose that k ≥ 3 and that M1 ≤M2.
(i) If M2 ≥ k

3M1, then

Sk(M1,M2) ≤ 3M2

k
.(4.3)

(ii) If M1 ≤M2 ≤ k
3M1, then

Sk(M1,M2) ≤
(
8M1M2

k

)1/2

.(4.4)

Proof. Let V (x;D) denote the set of cells within Manhattan distance at most D
of a cell x in the square lattice Z

2. The number of such cells is

1 + 4

(
D + 1

2

)
= 2D2 + 2D + 1.

We obtain upper bounds for S = Sk(M1,M2) using a packing argument, based on
the geometric fact that none of the regions V (xi;D) ∩ G(M1,M2) can overlap for
D = � 12S�. If we define

N(x;D) := |V (x;D) ∩G(M1,M2)|,

WELL-SPACED LABELINGS 531

then we have the bound

k∑

i=1

N

(
xi,

⌊
1

2
S

⌋)
≤M1M2.(4.5)

To bound S from above we need lower bounds for N(x;D).
Claim. (i) If D ≤M1 ≤M2, then

N(x;D) ≥
(
D + 2

2

)
=
1

2
D2 +

3

2
D + 1,(4.6)

and equality occurs if x is a corner cell of G(M1,M2).
(ii) If M1 ≤ D ≤M2, then

N(x;D) ≥ (D −M1)M1 +

(
M1 + 1

2

)
= DM1 − 1

2
M2

1 +
1

2
M1,(4.7)

and equality occurs if x is a corner cell of G(M1,M2).
The claim follows by inspection of the possible ways that the region N(x, D) may

intersect the boundary of G(M1,M2). Figure 4.1 illustrates two cases for D ≤ M1;
Figure 4.2 illustrates cases with M1 ≤ D ≤ M2. The distinction below D ≤ M1 and
D ≥ M1 arises because for D ≥ M1 two opposite sides of N(x, D) always lie on the
boundary of the rectangle G(M1,M2). In all cases the corner cell x minimizes the
number of points in V (x, D) ∩G(M1,M2).

Fig. 4.1. Regions V (x, D) ∩G(M1,M2) for D ≤M1 ≤M2.

Fig. 4.2. Regions V (x, D) ∩G(M1,M2) for M1 ≤ D ≤M2.

532 JEFFREY C. LAGARIAS

We note that when M1 ≤M2 the bound (4.7) of the claim is actually valid for all
D ≤ M2, because it is weaker than the bound (4.6) when D ≤ M1. However, (4.6)
can be applied only when we know that D = � 12S� ≤ M1. Note that D = � 12S� ≤
1
2 (M1 +M2) ≤M2.

We obtain upper bounds for S by substituting the bounds of the claim into (4.5).
Substituting (4.7) in (4.5) yields

k

(⌊
1

2
S

⌋
M1 − 1

2
M2

1 +
1

2
M1

)
≤M1M2;

hence

1

2
S ≤

⌊
1

2
S

⌋
+
1

2
≤ M2

k
+
1

2

M1

k
;(4.8)

since M1 ≤M2, this yields

S ≤ 3M2

k
.(4.9)

This bound is universally valid and gives (i) as a special case.
Now if M2 ≤ k

3M1, then (4.9) gives S ≤ M1. In this case we may legitimately
apply the bound (4.6) in (4.5) to obtain

k

(
1

2

(⌊
1

2
S

⌋)2

+
3

2

⌊
1

2
S

⌋
+ 1

)
≤M1M2.

Thus
(
1

2
S + 1

)2

≤
(⌊
1

2
S

⌋
+
3

2

)2

=

⌊
1

2
S

⌋2

+ 3

⌊
1

2
S

⌋
+
9

4
≤ 2M1M2

k
+
1

4
,

which yields

(S + 2)2 ≤ 8M1M2

k
+ 1,(4.10)

from which the bound of (ii) follows.
The upper bounds of Theorem 4.1 are conservative and can potentially be im-

proved by a multiplicative constant, which varies between
√
2 and 2, for most values

of M1 and M2. This occurs because “nearly all” cells x ∈ G(M1,M2) have N(x, D)
at least twice as large as the value of N(x, D) of a corner cell, but N(x, D) is never
more than four times as large the value of N(x, D) for a corner cell.

We show that there exist MRV labelings that achieve k-spacings within a multi-
plicative constant of 1

3 of the upper bound (i) of Theorem 4.1.
Theorem 4.2. Suppose that k ≥ 3 and consider a grid G(M1,M2) with

M2 ≥M1 ≥ 3. If M2 ≥ k
3M1, then there exists an MRV labeling φ with

s∗k(φ) ≥
⌊
M2

k

⌋
− 2.(4.11)

Proof. We use an MRV labeling φ that fills the rows of G(M1,M2) one at a time.
The hypotheses imply M2 ≥ k, so �M2

k � ≥ 1. Let φ be the MRV mapping of rank 3
that uses the vectors

y1 =

(
0,

⌊
M2

k

⌋)
, y2 = (0, 1), y3 = (1, 0)

WELL-SPACED LABELINGS 533

and the base B = (B1, B2, B3) given by

B1 =
M2

g.c.d.

(
M2,

⌊
M2

k

⌋) , B2 = g.c.d.

(
M2,

⌊
M2

k

⌋)
, B3 =M1.

If B2 = 1, then the rank drops to 2, in which case y2 is omitted. We have B1B2B3 =
M1M2 and the lattice Λ = ΛY,G is the set of vectors (m1,m2,m3) ∈ Z

3 such that

(4.12a) m3 ≡ 0 (mod M1),

(4.12b) m1

⌊
M2

k

⌋
+m2 ≡ 0 (mod M2).

The criterion of Theorem 2.1(ii) for Λ is easily checked: either |m1| ≥ B1 or |m2| ≥ B2

follows from (4.12b) if (m1,m2) �= (0, 0) while (4.12a) gives |m3| ≥M1 = B3 ifm3 �= 0.
Thus φ is one to one, and hence is an MRV labeling.

Any k consecutive values of y1 have each pair of values separated by at least
||y1|| = �M2

k � in their second coordinate, in the torus metric. Also the cycle of y1

values which occur before a repeated value is of length at least k; hence the updates
by y2 and y3 occur at time intervals more than k units apart. It follows that each k
consecutive vectors differ from a translate of consecutive multiples of y1 by at most
||y2||+ ||y3|| ≤ 2. This yields (4.11).

Constructing MRV labelings to get within a multiplicative constant factor of
the optimal spacing in the remaining upper bound range (ii) of Theorem 4.1 appears
complicated, and a general proof would seem to require consideration of many different
MRV mappings. We do not attempt it here. In the special case that M1 =M2 =M ,
k = �2, and � divides M , a good MRV labeling is easy to come by. It is of rank 4 with

y1 =

(
0,
M

�

)
, y2 =

(
M

�
, 0

)
, y3 = (0, 1), and y4 = (1, 0),

with mixed radix B = (�, �, M� ,
M
�). In this example

sk(φ) ≥
(⌊

M1M2

k

⌋)1/2

− 2.

A special case of this mapping appears in the example at the end of section 2, with
M = 6, k = 4, and � = 2. It has

s4(φ) = 2 ≥
(⌊
36

4

⌋)1/2

− 2 = 1.

We conjecture that for k ≥ 3 and M1 ≤ M2 ≤ k
3M1 there exist MRV labelings

that achieve

sk(φ) ≥ c0

(⌊
M1M2

k

⌋)1/2

− 2(4.13)

for some positive constant c0, e.g., c0 =
1
2 .

534 JEFFREY C. LAGARIAS

Acknowledgment. The author thanks the referee for helpful comments and for
pointing out reference [4, Problem D1].

REFERENCES

[1] A. Adler, Magic cubes and the 3-adic zeta function, Math. Intelligencer, 14 (1992), pp. 14–23.
[2] A. Adler and S.-Y. R. Li, Magic N-cubes and Prouhet sequences, Amer. Math. Monthly, 84

(1977), pp. 618–627.
[3] A. M. Bruckstein, R. J. Holt, and A. Netravali, Holographic representations of images,

IEEE Trans. Image Process., 7 (1998), pp. 1583–1597.
[4] H. T. Croft, K. J. Falconer, and R. J. Guy, Unsolved Problems in Geometry, Springer-

Verlag, New York, 1991.
[5] M. Kraitchik, Traite de Carrés Magiques, Gauther–Villiers, Paris, 1930.
[6] R. P. Stanley, Magic labelling of graphs, symmetric magic squares, systems of parameters

and Cohen-Macaulay rings, Duke Math. J., 43 (1976), pp. 511–531.

LEARNING POLYNOMIALS WITH QUERIES: THE HIGHLY NOISY
CASE∗

ODED GOLDREICH† , RONITT RUBINFELD‡ , AND MADHU SUDAN§

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 4, pp. 535–570

Abstract. Given a function f mapping n-variate inputs from a finite field F into F , we consider
the task of reconstructing a list of all n-variate degree d polynomials that agree with f on a tiny
but nonnegligible fraction, δ, of the input space. We give a randomized algorithm for solving this
task. The algorithm accesses f as a black box and runs in time polynomial in n

δ
and exponential

in d, provided δ is Ω(
√

d/|F |). For the special case when d = 1, we solve this problem for all

ε
def
= δ − 1

|F | > 0. In this case the running time of our algorithm is bounded by a polynomial in
1
ε

and n. Our algorithm generalizes a previously known algorithm, due to Goldreich and Levin [in
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, Seattle, WA, ACM Press,
New York, 1989, pp. 25–32.], that solves this task for the case when F = GF(2) (and d = 1).

In the process we provide new bounds on the number of degree d polynomials that may agree

with any given function on δ ≥
√

d/|F | fraction of the inputs. This result is derived by generalizing
a well-known bound from coding theory on the number of codewords from an error-correcting code
that can be “close” to an arbitrary word; our generalization works for codes over arbitrary alphabets,
while the previous result held only for binary alphabets.

Key words. multivariate polynomials, noisy reconstruction, error-correcting codes

AMS subject classification. 68Q15

PII. S0895480198344540

1. Introduction. We consider the following archetypal reconstruction problem:

Given: An oracle (black box) for an arbitrary function f : Fn → F , a class of
functions C, and a parameter δ.
Output: A list of all functions g ∈ C that agree with f on at least δ fraction of the
inputs.

The reconstruction problem can be interpreted in several ways within the frame-
work of computational learning theory. First, it falls within the framework of learning
with persistent noise. Here one assumes that the function f is derived from some
function in the class C by “adding” noise to it. Typical works in this direction either
tolerate only small amounts of noise [2, 42, 21, 39] (i.e., that the function is modified
only at a small fraction of all possible inputs) or assume that the noise is random
[1, 26, 20, 25, 33, 13, 36] (i.e., that the decision of whether or not to modify the

∗Received by the editors September 14, 1998; accepted for publication (in revised form) August
22, 2000; published electronically November 21, 2000. A preliminary version of this paper appeared
in the Proceedings of the 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
WI, IEEE, New York, 1995, pp. 294–303.

http://www.siam.org/journals/sidma/13-4/34454.html
†Department of Applied Mathematics and Computer Science, Weizmann Institute of Science,

Rehovot, Israel 76100 (oded@wisdom.weizmann.ac.il). The research of this author was supported
by grant 92-00226 from the United States–Israel Binational Science Foundation (BSF), Jerusalem,
Israel.

‡NEC Research Institute, 4 Independence Way, Princeton, NJ, 08540 (ronitt@research.nj.nec.
com). This work was done when this author was at Cornell University. This research was supported
in part by ONR Young Investigator Award N00014-93-1-0590 and grant 92-00226 from the United
States–Israel Binational Science Foundation (BSF), Jerusalem, Israel.

§MIT Laboratory for Computer Science, Cambridge, MA 02139 (madhu@mit.edu). Part of this
work was done when this author was at the IBM Thomas J. Watson Research Center. This research
was supported in part by a Sloan Foundation Fellowship and NSF Career Award CCR-9875511.

535

536 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

function at any given input is made by a random process). In contrast, we take the
setting to an extreme by considering a very large amount of (possibly adversarially
chosen) noise. In particular, we consider situations in which the noise disturbs the
outputs for almost all inputs.

A second interpretation of the reconstruction problem is within the framework
of “agnostic learning” introduced by Kearns, Shapire, and Sellie [23] (see also [29,
30, 24]). In the setting of agnostic learning, the learner is to make no assumptions
regarding the natural phenomenon underlying the input-output relationship of the
function, and the goal of the learner is to come up with a simple explanation that
best fits the examples. Therefore the best explanation may account for only part of
the phenomenon. In some situations, when the phenomenon appears very irregular,
providing an explanation that fits only part of it is better than nothing. Kearns,
Shapire, and Sellie did not consider the use of queries (but rather examples drawn
from an arbitrary distribution) since they were skeptical that queries could be of any
help. We show that queries do seem to help (see below).

Yet another interpretation of the reconstruction problem, which generalizes the
“agnostic learning” approach, is the following. Suppose that the natural phenomena
can be explained by several simple explanations that together cover most of the input-
output behavior but not all of it. Namely, suppose that the function f agrees almost
everywhere with one of a small number of functions gi ∈ C. In particular, assume
that each gi agrees with f on at least a δ fraction of the inputs but that for some
(say 2δ) fraction of the inputs f does not agree with any of the gi’s. This setting
was investigated by Ar et al. [3]. The reconstruction problem described above may be
viewed as a (simpler) abstraction of the problem considered in [3]. As in the case of
learning with noise, there is no explicit requirement in the setting of [3] that the noise
level be small, but all their results require that the fraction of inputs left unexplained
by the gi’s be smaller than the fraction of inputs on which each gi agrees with f . Our
relaxation (and results) do not impose such a restriction on the noise and thus make
the setting more appealing and closer in spirit to “agnostic learning.”

1.1. Our results. In this paper, we consider the special case of the reconstruc-
tion problem when the hypothesis class is the set of n-variate polynomials of bounded
total degree d. (The total degree of a monomial

∏
i x
di
i is

∑
i di, that is, the sum of

the degrees of the variables in the monomial. The total degree of a polynomial is the
maximum total degree of monomials with nonzero coefficient in the polynomial. For
example, the total degree of the polynomial x21x

3
2 + 5x42 is 5.) The most interesting

aspect of our results is that they relate to very small values of the parameter δ (the
fraction of inputs on which the hypothesis has to fit the function f). Our main results
are as follows:

• An algorithm that given d, F , and δ = Ω(
√
d/|F |) and, provided oracle access

to an arbitrary function f : Fn → F , runs in time (n/δ)O(d) and outputs a list
including all degree d polynomials that agree with f on at least a δ fraction of
the inputs.

• An algorithm that given F and ε > 0 and, provided oracle access to an arbitrary
function f : Fn → F , runs in time poly(n/ε) and outputs a list including all
linear functions (degree d = 1 polynomials) that agree with f on at least a

δ
def
= 1

|F | + ε fraction of the inputs.

• A new bound on the number of degree d polynomials that may agree with a
given function f : Fn → F on a δ ≥√d/|F | fraction of the inputs. This bound

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 537

is derived from a more general result about the number of codewords from an
error-correcting code that may be close to a given word.

A special case of interest is when the function f is obtained by picking an arbitrary

degree d polynomial p, and letting f agree with p on an arbitrary δ = Ω(
√
d
|F |) fraction

of the inputs and be set at random otherwise.1 In this case, with high probability,
only one polynomial (i.e., p) agrees with f on a δ fraction of the inputs (see section 5).
Thus, in this case, the above algorithm will output only the polynomial p.

Additional Remarks.

1. Any algorithm for the explicit reconstruction problem as stated above would
need to output all the coefficients of such a polynomial, requiring time at least(
n+d
d

)
. Moreover, the number of such polynomials could grow as a function of

1
δ . Thus it seems reasonable that the running time of such a reconstruction
procedure should grow as a polynomial function of 1

δ and
(
n
d

)
.

We stress that the above comment does not apply to “implicit reconstruction”
algorithms as discussed in section 1.4.

2. For d < |F |, the condition δ > d
|F | seems a natural barrier for our investiga-

tion, since there are exponentially many (in n) degree d polynomials that are
at distance ≈ d

|F | from some functions (see Proposition 4.8).

3. Queries seem essential to our learning algorithm. We provide two indications
to our belief, both referring to the special case of F = GF(2) and d = 1. First,
if queries are not allowed, then a solution to the reconstruction problem yields
a solution to the longstanding open problem of “decoding random (binary)
linear codes.” (Note that each random example given to the reconstruction
algorithm corresponds to a random linear equation on the information vari-
ables. We admit that the longstanding open problem is typically stated for
a linear number of equations, but nothing is known even in case the number
of equations is polynomial in the information length.)
Another well-studied problem that reduces to the problem of noisy reconstruc-
tion is the problem of “learning parity with noise” [20], which is commonly
believed to be hard when one is only allowed uniformly and independently
chosen examples [20, 7, 22]. Learning parity with noise is considered hard
even for random noise, whereas here the noise is adversarial.

4. In section 6, we give evidence that the reconstruction problem may be hard,
for δ very close to d/|F |, even in the case where n = 2. A variant is shown
to be hard even for n = 1.

1.2. A coding theory perspective. We first introduce the formal definition
of an error-correcting code (see, e.g., [31]). For positive integers N,K,D, and q,
an [N,K,D]q error-correcting code is a collection of qK sequences of N -elements
each from {1, . . . , q}, called codewords, in which no two sequences have a “Hamming
distance” of less thanD (i.e., every pair of codewords disagree on at leastD locations).

Polynomial functions lead to some of the simplest known constructions of error-
correcting codes: A function from Fn to F may be viewed as an element of F |F |n—by
writing down explicitly the function’s value on all |F |n inputs. Then the “distance
property” of polynomials yields that the set of sequences corresponding to bounded-
degree polynomial functions form an error-correcting code with nontrivial parameters

1This is different from “random noise” as the set of corrupted inputs is selected adversarially—
only the values at these inputs are random.

538 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

(for details, see Proposition 4.3). Specifically, the set of n-variate polynomials of total
degree d over F = GF(q) yields an [N,K,D]q error-correcting code with N = |F |n,
K =

(
n+d
d

)
, and D = (|F | − d) · |F |n−1. These constructions have been studied in the

coding theory literature. The case n = 1 leads to “Reed–Solomon codes,” while the
case of general n is studied under the name “Reed–Muller codes.”

Our reconstruction algorithm may be viewed as an algorithm that takes an arbi-
trary word from F |F |n and finds a list of all codewords from the Reed–Muller code
that agree with the given word in δ fraction of the coordinates (i.e., 1 − δ fraction
of the coordinates have been corrupted by errors). This task is referred to in the
literature as the “list-decoding” problem [11]. For codes achieved by setting d such
that d/|F | → 0, our list decoding algorithm recovers from errors when the rate of
errors approaches 1. We are not aware of any other case where an approach other
(and better) than brute-force can be used to perform list decoding with the error-rate
approaching 1. Furthermore, our decoding algorithm works without examining the
entire codeword.

1.3. Related previous work. For the sake of scholarly interest, we discuss
several related areas in which related work has been done. In this subsection, it
would be more convenient to refer to the error-rate 1 − δ rather than to the rate of
agreement δ.

Polynomial interpolation. When the noise rate is 0, our problem is simply that
of polynomial interpolation. In this case the problem is well analyzed and the reader
is referred to [48], for instance, for a history of the polynomial interpolation problem.

Self-correction. In the case when the noise rate is positive but small, one ap-
proach used to solving the reconstruction problem is to use self-correctors, introduced
independently in [8] and [28]. Self-correctors convert programs that are known to be
correct on a fraction δ of inputs into programs that are correct on each input. Self-
correctors for values of δ that are larger than 3/4 have been constructed for several
algebraic functions [5, 8, 9, 28, 34], and in one case this was done for δ > 1/2 [15].2 We
stress that self-correctors correct a given program using only the information that the
program is supposed to be computing a function from a given class (e.g., a low-degree
polynomial). Thus, when the error is larger than 1

2 and the class contains more than
a single function, such self-correction is no longer possible since there could be more
than one function in the class that agrees with the given program on an δ < 1/2
fraction of the inputs.

Cryptography and learning theory. In order to prove the security of a certain
“hardcore predicate” relative to any “one-way function,” Goldreich and Levin solved a
special case of the (explicit) reconstruction problem [17]. Specifically, they considered
the linear case (i.e., d = 1) for the Boolean field (i.e., F = GF(2)) and any agreement
rate that is bigger than the error-rate (i.e., δ > 1

2). Their ideas were subsequently
used by Kushilevitz and Mansour [25] to devise an algorithm for learning Boolean
decision trees.

1.4. Subsequent work. At the time this work was first published [18] no al-
gorithm other than brute force was known for reconstructing a list of degree d poly-
nomials agreeing with an arbitrary function on a vanishing fraction of inputs, for

2Specifically, self-correctors correcting 1
Θ(d)

fraction of error for f that are degree d polynomial

functions over a finite field F , |F | ≥ d + 2, were found by [5, 28]. For d/|F | → 0, the fraction of
errors that a self-corrector could correct was improved to almost 1/4 by [14] and then to almost 1/2
by [15] (using a solution for the univariate case given by [45]).

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 539

any d ≥ 2. Our algorithm solves this problem with exponential dependence on d,
but with polynomial dependence on n, the number of variables. Subsequently some
new reconstruction algorithms for polynomials have been developed. In particular,
Sudan [40] and Guruswami and Sudan [19] have provided new algorithms for recon-
structing univariate polynomials from large amounts of noise. Their running time
depends only polynomially in d and works for δ = Ω(

√
d/|F |). Notice that the agree-

ment required in this case is larger than the level at which our NP-hardness result
(of section 6) holds. The results of [40] also provide some reconstruction algorithms
for multivariate polynomials, but not for as low an error as given here. In addition,
the running time grows exponentially with n. Wasserman [44] gives an algorithm for
reconstructing polynomials from noisy data that works without making queries. The
running time of the algorithm of [44] also grows exponentially in n and polynomially
in d.

As noted earlier (see remark 1 in section 1.1), the running time of any explicit
reconstruction algorithm has to have an exponential dependence on either d or n.
However, this need not be true for implicit reconstruction algorithms: By the latter
term we mean algorithms that produce as output a sequence of oracle machines, such
that for every multivariate polynomial that has agreement δ with the function f , one
of these oracle machines, given access to f , computes that polynomial. Recently,
Arora and Sudan [4] gave an algorithm for this implicit reconstruction problem. The
running time of their algorithm is bounded by a polynomial in n and d, and it works
correctly provided that δ ≥ (dO(1))/|F |Ω(1); that is, their algorithm needs a much
higher agreement but works in time polynomial in all parameters. The reader may
verify that such an implicit reconstruction algorithm yields an algorithm for the ex-
plicit reconstruction problem with running time that is polynomial in

(
n+d
d

)
(e.g., by

applying noise-free polynomial-interpolation to each of the oracle machines provided
above, and testing the resulting polynomial for agreement with f). Finally, Sudan,
Trevisan, and Vadhan [41] have recently improved the result of [4], further reducing
the requirement on δ to δ > 2

√
d/|F |. The algorithm of [41] thus subsumes the

algorithm of this paper for all choices of parameters, except d = 1.

1.5. Rest of this paper. The rest of the paper is organized as follows. In sec-
tion 2 we motivate our algorithm, starting with the special case of the reconstruction
of linear polynomials. The general case algorithm is described formally in section 3,
along with an analysis of its correctness and running time assuming an upper bound
on the number of polynomials that agree with a given function at δ fraction of the
inputs. In section 4 we provide two such upper bounds. These bounds do not use any
special (i.e., algebraic) property of polynomials, but rather apply in general to col-
lections of functions that have large distance between them. In section 5 we consider
a random model for the noise applied to a function. Specifically, the output either
agrees with a fixed polynomial or is random. In such a case we provide a stronger
upper bound (specifically, 1) on the number of polynomials that may agree with the
black box. In section 6 we give evidence that the reconstruction problem may be
hard for small values of the agreement parameter δ, even in the case when n = 1.
We conclude with an application of the linear-polynomial reconstruction algorithm
to complexity theory: Specifically, we use it in order to prove the security of new,
generic, hard-core functions (see section 7).

Notation. In what follows, we use GF(q) to denote the finite field on q elements.
We assume arithmetic in this field (addition, subtraction, multiplication, division, and
comparison with zero) may be performed at unit cost. For a finite set A, we use the

540 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

notation a ∈R A to denote that a is a random variable chosen uniformly at random
from A. For a positive integer n, we use [n] to denote the set {1, . . . , n}.

2. Motivation to the algorithm. We start by presenting the algorithm for
the linear case, and next present some of the ideas underlying the generalization to
higher degrees. We stress that whereas section 2.1 provides a full analysis of the
linear case, section 2.2 merely introduces the additional ideas that will be employed
in dealing with the general case. The presentation in section 2.1 is aimed to facilitate
the generalization from the linear case to the general case.

2.1. Reconstructing linear polynomials. We are given oracle access to a
function f : GF(q)n → GF(q) and need to find a polynomial (or actually all polyno-
mials) of degree d that agrees with f on at least a δ = d

q + ε fraction of the inputs,

where ε > 0. Our starting point is the linear case (i.e., d = 1); namely, we are looking
for a polynomial of the form p(x1, . . . , xn) =

∑n
i=1 pixi. In this case our algorithm

is a generalization of an algorithm due to Goldreich and Levin [17].3 (The original
algorithm is regained by setting q = 2.)

We start with a definition: The i-prefix of a linear polynomial p(x1, . . . , xn) is the
polynomial that results by summing up all of the monomials in which only the first i
variables appear. That is, the i-prefix of the polynomial

∑n
j=1 pjxj is

∑i
j=1 pjxj . The

algorithm proceeds in n rounds, so that in the ith round we find a list of candidates
for the i-prefixes of p.

In the ith round, the list of i-prefixes is generated by extending the list of (i− 1)-
prefixes. A simple (and inefficient) way to perform this extension is to first extend
each (i − 1)-prefix in all q possible ways, and then to “screen” the resulting list of
i-prefixes. A good screening is the essence of the algorithm. It should guarantee that
the i-prefix of a correct solution p does pass and that not too many other prefixes
pass (as otherwise the algorithm consumes too much time).

The screening is done by subjecting each candidate prefix, (c1, . . . , ci), to the
following test. Pick m = poly(n/ε) sequences uniformly from GF(q)n−i. For each
such sequence s̄ = (si+1, . . . , sn) and for every σ ∈ GF(q), estimate the quantity

Ps̄(σ)
def
= Pr1,...,ri∈GF(q)

f(r̄, s̄) =

i∑

j=1

cjrj + σ

 ,(2.1)

where r̄ = (r1, . . . , ri). The value σ can be thought of as a guess for
∑n
j=i+1 pjsj .

For every fixed suffix s̄, all these probabilities can be approximated simultaneously
by using a sample of poly(n/ε) sequences (r1, . . . , ri), regardless of q. If one of these
probabilities is significantly larger than 1/q, then the test accepts due to this suffix,
and if no suffix makes the test accept, then it rejects. The actual algorithm is presented
in Figure 2.1.

Observe that a candidate (c1, . . . , ci) passes the test of Figure 2.1 if for at least
one sequence of s̄ = (si+1, . . . , sn), there exists a σ so that the estimate for Ps̄(σ)
is greater than 1

q + ε
3 . Clearly, for a correct candidate (i.e., (c1, . . . , ci) that is a

prefix of a polynomial p = (p1, . . . , pn) having at least 1
q + ε agreement with f) and

σ =
∑n
j=i+1 pjsj , it holds that Es̄[Ps̄(σ)] ≥ 1

q + ε. Using Markov’s inequality, it

follows that for a correct candidate, an ε/2 fraction of the suffixes are such that for

3We refer to the original algorithm as in [17], not to a simpler algorithm that appears in later
versions (cf. [27, 16]).

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 541

Test-prefix(f, ε, n, (c1, . . . , ci))
Repeat poly(n/ε) times:

Pick s̄ = si+1, . . . , sn ∈R GF(q).

Let t
def
= poly(n/ε).

for k = 1 to t do

Pick r̄ = r1, . . . , ri ∈R GF(q)

σ(k) ← f(r̄, s̄)−∑ij=1 cjrj.

endfor

If ∃ σ s.t. σ(k) = σ for at least 1
q + ε

3 fraction of the k’s

then output accept and halt.

endRepeat.

If all iterations were completed without accepting, then reject.

Fig. 2.1. Implementing the screening process.

each such suffix s̄ and some σ, it holds that Ps̄(σ) ≥ 1
q + ε

2 ; thus the correct candidate
passes the test with overwhelming probability. On the other hand, for any suffix s̄, if
a prefix (c1, . . . , ci) is to pass the test (with nonnegligible probability) due to suffix s̄,

then it must be the case that the polynomial
∑i
j=1 cjxj has at least agreement rate

of 1
q + ε

4 with the function f ′(x1, . . . , xi)
def
= f(x1, . . . , xi, si+1, . . . , sn). It is possible

to bound the number of (i-variate) polynomials that have so much agreement with
any function f ′. (Section 4 contains some such bounds.) Thus, in each iteration, only
a small number of prefixes pass the test, thereby limiting the total number of prefixes
that may pass the test in any one of the poly(n/ε) iterations.

The above yields a poly(nq/ε)-time algorithm. In order to get rid of the q factor
in running-time, we need to modify the process by which candidates are formed.
Instead of extending each (i − 1)-prefix, (c1, . . . , ci−1), in all q possible ways, we do

the following: We pick uniformly s
def
= (si+1, . . . , sn) ∈ GF(q)n−i, r def

= (r1, . . . , ri−1) ∈
GF(q)i−1, and r′, r′′ ∈ GF(q), and solve the system of equations

r′x+ y = f(r1, . . . , ri−1, r
′, si+1, . . . , sn)−

i−1∑

j=1

cjrj ,(2.2)

r′′x+ y = f(r1, . . . , ri−1, r
′′, si+1, . . . , sn)−

i−1∑

j=1

cjrj(2.3)

using the solution for x as the value of the ith coefficient (i.e., set ci = x). This
extension process is repeated poly(n/ε) many times, obtaining at most poly(n/ε)
candidate i-prefixes, per each candidate (i− 1)-prefix. We then subject each i-prefix
in the list to the screening test (presented in Figure 2.1), and keep only the candidates
that pass the test.

We need to show that if the (i − 1)-prefix of a correct solution is in the list
of candidates (at the beginning of round i), then the i-prefix of this solution will
be found in the extension process. Let p = (p1, . . . , pn) be a correct solution (to
the reconstruction problem for f). Then Pr,r,s[p(r, r, s) = f(r, r, s)] ≥ 1

q + ε > ε. It

follows that for at least an ε/2 fraction of the sequences (r, s), the polynomial p satisfies
p(r, r, s) = f(r, r, s) for at least an ε/2 fraction of the possible r’s. Let σ represent

542 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

the value of the sum
∑n
j=i+1 pjsj , and note that p(r, r, s) =

∑i−1
j=1 pjrj + pir + σ.

Then, with probability Ω(ε3) over the choices of r1, . . . , ri−1, si+1, . . . , sn and r′, r′′,
the following two equations hold:

r′pi + σ = f(r1, . . . , ri−1, r
′, si+1, . . . , sn)−

i−1∑

j=1

pjrj ,

r′′pi + σ = f(r1, . . . , ri−1, r
′′, si+1, . . . , sn)−

i−1∑

j=1

pjrj ,

and r′ �= r′′. (That is, with probability at least ε2 , the pair (r̄, s̄) is good, and
conditioned on this event r′ is good with probability at least ε2 , and similarly for r′′

losing a term of 1
q <

ε
4 to account for r′′ �= r′. We may assume that 1/q < ε/4,

since otherwise q < 4/ε and we can afford to perform the simpler procedure above.)
Thus, with probability Ω(ε3), solving the system (2.2)–(2.3) with (c1, . . . , ci−1) =
(p1, . . . , pi−1) yields x = pi. Since we repeat the process poly(n/ε) times for each
(i− 1)-prefix, it follows that the correct prefix always appears in our candidate list.

Recall that correct prefixes pass the screening process with overwhelmingly high
probability. Using Theorem 4.5 (of section 4) to bound the number of prefixes passing
the screening process, we have the following.

Theorem 2.1. Given oracle access to a function f and parameters ε, k, our
algorithm runs in poly(k·nε)-time and outputs, with probability at least 1− 2−k, a list
satisfying the following properties:

1. The list contains all linear polynomials that agree with f on at least a δ = 1
q+ε

fraction of the inputs.
2. The list does not contain any polynomial that agrees with f on less than a

1
q + ε

4 fraction of the inputs.

2.2. Generalizing to higher degree. We remind the reader that in this sub-
section we merely introduce the additional ideas used in extending the algorithm from
the linear case to the general case. The algorithm itself is presented and analyzed in
section 3.

Dealing with polynomials of degree d > 1 is more involved than dealing with
linear polynomials; still, we employ a similar strategy. Our plan is again to “iso-
late” the terms/monomials in the first i variables and find candidates for their co-
efficients. In particular, if p(x1, . . . , xn) is a degree d polynomial on n variables,
then p(x1, . . . , xi, 0, . . . , 0) is a degree ≤ d polynomial on i variables that has the
same coefficients as p on all monomials involving only variables in {1, . . . , i}. Thus,
p(x1, . . . , xi, 0, . . . , 0) is the i-prefix of p.

We show how to extend a list of candidates for the (i− 1)-prefixes of polynomials
agreeing with f into a list of candidates for the i-prefixes. Suppose we get the (i−1)-
prefix p that we want to extend. We select d + 1 distinct elements r(1), . . . , r(d+1) ∈
GF(q), and consider the functions

f (j)(x1, . . . , xi−1)
def
= f(x1, . . . , xi−1, r

(j), 0, . . . , 0)− p(x1, . . . , xi−1).(2.4)

Suppose that f equals some degree d polynomial and that p is indeed the (i−1)-prefix
of this polynomial. Then f (j) is a polynomial of degree d − 1 (since all the degree d
monomials in the first i variables have been canceled by p). Furthermore, given an
explicit representation of f (1), . . . , f (d+1), we can find (by interpolation) the extension
of p to a i-prefix. The last assertion deserves some elaboration.

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 543

Consider the i-prefix of f , denoted p′ = p′(x1, . . . , xi−1, xi). In each f (j), the
monomials of p′ that agree on the exponents of x1, . . . , xi−1 are collapsed together
(since xi is instantiated and so monomials containing different powers of xi are added
together). However, using the d+1 collapsed values, we can retrieve the coefficients of
the different monomials (in p′). That is, for each sequence of exponents (e1, . . . , ei−1)

such that
∑i−1
j=1 ej ≤ d, we retrieve the coefficients of all the (

∏i−1
j=1 x

ej) · xki in p′, by

interpolation that refers to the coefficients of
∏i−1
j=1 x

ej in the f (�)’s.4

To complete the high level description of the procedure we need to show how to
obtain the polynomials representing the f (j)’s. Since in reality we have only access to
a (possibly highly noisy) oracle for the f (j)’s, we use the main procedure for finding
a list of candidates for these polynomials. We point out that the recursive call is to a
problem of degree d− 1, which is lower than the degree we are currently handling.

The above description ignores a real difficulty that may occur: Suppose that the
agreement rate of f with some p∗ is at least δ, and so we need to recover p∗. For our
strategy to work, the agreement rate of the f (j)’s with p∗(. . . , 0n−i) must be close to
δ. However, it may be the case that p∗ does not agree with f at all on the inputs
in GF(q)i0n−i, although p∗ does agrees with f on a δ fraction of inputs in GF(q)n.
Then solving the subproblem (i.e., trying to retrieve polynomials close to the f (j)’s)
gives us no information about p∗. Thus, we must make sure that the agreement
rate on the subproblems on which we recurse is close to the original agreement rate.
This can be achieved by applying a random linear transformation to the coordinate
system as follows: Pick a random nonsingular matrix R and define new variables
y1, . . . , yn as (y1, . . . , yn) = ȳ ≡ Rx̄ (each yi is a random linear combination of the
xi’s and vice versa). This transformation can be used to define a new instance of the
reconstruction problem in terms of the yi’s, and for the new instance the agreement
rate on the subproblems on which we recurse is indeed close to the original agreement
rate. Observe that

1. the total degree of the problem is preserved;
2. the points are mapped pairwise independently, and so the fraction of agree-

ment points in all subspaces of the new problem is close to the agreement
rate in the original space; and

3. one can easily transform the coordinate system back to the xi’s, and so it is
possible to construct a new black box consistent with f that takes ȳ as an
input.

(It may be noted that the transformation does not preserve other properties of the
polynomial, e.g., its sparsity.)

Comment. The above solution to the above difficulty is different than the one in
the original version of this paper [18]. The solution there was to pick many different
suffixes (instead of 0n−i) and to argue that at least in one of them the agreement rate is
preserved. However, picking many different suffixes creates additional problems, which
needed to be dealt with carefully. This resulted in a more complicated algorithm in
the original version.

3. Algorithm for degree d > 1 polynomials. Recall that we are given oracle
access to a function f : GF(q)n → GF(q), and need to find all polynomials of degree
d that agrees with f on at least a δ fraction of the inputs.

4Let ck be the coefficient of (
∏i−1

j=1
xej) · xk

i in p′, and v
 be the coefficient of
∏i−1

j=1
xej in f (
).

Then, v
 =
∑d

k=0
(r(
))kck, and the ck’s can be found given the v
’s.

544 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

The main algorithm Find-all-poly will use several subroutines: Compute-coefficients,
Test-valid, Constants, Brute-force, and Extend. The main algorithm is recursive, in n
(the number of variables) and d (the degree), with the base case d = 0 being handled
by the subroutine Constants and the other bases cases corresponding to n ≤ 4 being
handled by the subroutine Brute-force. Most of the work is done in Find-all-poly and
Extend, which are mutually recursive.

The algorithms have a number of parameters in their input. We describe the
commonly occurring parameters first:

• q is the size of the field we will be working with; i.e., F = GF(q). (Unlike
other parameters, the field never changes in the recursive calls.)
• f will be a function from GF(q)

n
to GF(q) given as an oracle to the current

procedure, and n will denote the number of variables of f .
• d will denote the degree of the polynomial we are hoping to reconstruct, and
δ will denote the agreement parameter. Typically, the algorithm will have to
reconstruct all degree d polynomials having agreement at least δ with f .

Many of the algorithms are probabilistic and make two-sided error.
• ψ will be the error parameter controlling the probability with which a valid

solution may be omitted from the output.
• φ will be the error parameter controlling the error with which an invalid

solution is included in the output list.
Picking a random element of GF(q) is assumed to take unit time, as are field operations
and calls to the oracle f .

The symbol x will typically stand for a vector in GF(q)
n
, while the notation xi

will refer to the ith coordinate of x. When picking a sequence of vectors, we will

use superscripts to denote the vectors in the sequence. Thus, x
(j)
i will denote the

ith coordinate of the jth element of the sequence of vectors x(1), x(2), For two
polynomials p1 and p2, we write p1 ≡ p2 if p1 and p2 are identical. (In this paper,
we restrict ourselves to polynomials of degree less than the field size; thus identity of
polynomials as functions is equivalent to identity of polynomials as a formal sum of
monomials.) We now generalize the notion of the prefix of a polynomial in two ways.
We extend it to arbitrary functions, and then extend it to arbitrary suffixes (and not
just 0i).

Definition 3.1. For 1 ≤ i ≤ n and a1, . . . , an−i ∈ F , the (a1, . . . , an−i)-prefix
of a function f : Fn → F , denoted f |a1,...,an−i , is the i-variate function f |a1,...,an−i

:
F i → F , given by f |a1,...,an−i(x1, . . . , xi) = f(x1, . . . , xi, a1, . . . , an−i). The i-prefix of
f is the function f |0n−i .

When specialized to a polynomial p, the i-prefix of p yields a polynomial on the
variables x1, . . . , xi whose coefficients are exactly the coefficients of p on monomials
involving only x1, . . . , xi.

Fixing a field GF(q), we will use the notation Nn,d,δ to denote the maximum
(over all possible f) of the number of polynomials of degree d in n variables that
have agreement δ with f . In this section we will first determine our running time
as a function of Nn,d,δ, and only next use bounds on Nn,d,δ (proven in section 4) to
derive the absolute running times. We include the intermediate bounds since it is
possible that the bounds of section 4 may be improved, and this would improve our
running time as well. By definition, Nn,d,δ is monotone nondecreasing in d and n and
monotone nonincreasing in δ. These facts will be used in the analysis.

3.1. The subroutines. We first axiomatize the behavior of each of the sub-
routines. Next we present an implementation of the subroutine and analyze it with

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 545

respect to the axiomatization.

(P1) Constants(f, δ, n, q, ψ), with probability at least 1 − ψ, returns every degree 0
(i.e., constant) polynomial p such that f and p agree on δ fraction of the
points.5

Constants works as follows: Set k = O(1
δ2 log 1

ψ) and pick x(1), . . . , x(k) indepen-

dently and uniformly at random from GF(q)
n
. Output the list of all constants a (or

equivalently the polynomial pa = a) such that |{i ∈ [k]|f(x(i)) = a}| ≥ 3
4δk.

An easy application of Chernoff bounds indicates that the setting k = O(1
δ2 log 1

ψ)
suffices to ensure that the error probability is at most ψ. Thus the running time of
Constants is bounded by the time to pick x(1), . . . , x(k) ∈ GF(q)

n
which is O(kn) =

O(1
δ2n log 1

ψ).

Proposition 3.2. Constants(f, δ, n, q, ψ) satisfies (P1). Its running time is
O(1
δ2n log 1

ψ).

Another simple procedure is the testing of agreement between a given polynomial
and a black box.

(P2) Test-valid(f, p, δ, n, d, q, ψ, φ) returns true, with probability at least 1−ψ, if p is
an n-variate degree d polynomial with agreement at least δ with f . It returns
false with probability at least 1− φ if the agreement between f and p is less
than δ2 . (It may return anything if the agreement is between δ2 and δ.)

Test-valid works as follows: Set k = O(1
δ2 log 1

min{ψ,φ}) and pick x(1), . . . , x(k)

independently and uniformly at random from GF(q)
n
. If f(x(i)) = p(x(i)) for at least

3
4δ fraction of the values of i ∈ [k], then output true else false.

Again an application of Chernoff bounds yields the correctness of Test-valid. The
running time of Test-valid is bounded by the time to pick the k points from GF(q)

n

and the time to evaluate p on them, which is O(1
δ2 (log 1

min{ψ,φ})
(
n+d
d

)
).

Proposition 3.3. Test-valid(f, p, δ, n, d, q, ψ, φ) satisfies (P2). Its running time
is bounded by O(1

δ2 (log 1
min{ψ,φ})

(
n+d
d

)
).

Next we describe the properties of a “brute-force” algorithm for reconstructing
polynomials.

(P3) Brute-force(f, δ, n, d, q, ψ, φ) returns a list that includes, with probability 1− ψ,
every degree d polynomial p such that f and p agree on δ fraction of the
points. With probability at least 1− φ it does not output any polynomial p
whose agreement with f is less than δ2 .

Notice that the goal of Brute-force is what one would expect to be the goal of
Find-all-poly. Its weakness will be its running time, which is doubly exponential in n
and exponential in d. However, we invoke it only for n ≤ 4. In this case its running
time is of the order of δ−d

4

. The description of Brute-force is given in Figure 3.1.

Lemma 3.4. Brute-force(f, δ, n, d, q, ψ, φ) satisfies (P3). Its running time is at

most O(kl
3

δ2 (log kφ)), where l =
(
n+d
d

)
and k = O((δ − dq)−l(log 1

ψ)).

Proof. The running time of Brute-force is immediate from its description (using
the fact that a naive interpolation algorithm for a (multivariate) polynomial with
l coefficients runs in time O(l3) and the fact that each call to Test-valid takes at
most O(lδ2 log kφ) time). If a polynomial p that is the output of the multivariate

5Notice that we do not make any claims about the probability with which constants that do not
have significant agreement with f may be reported. In fact we do not need such a condition for our
analysis. If required, such a condition may be explicitly enforced by “testing” every constant that is
returned for sufficient agreement. Note also that the list is allowed to be empty if no polynomial has
sufficiently large agreement.

546 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

Brute-force(f, δ, n, d, q, ψ, φ)

Set l =
(
n+d
d

)

k = O
(
(δ − dq)−l

(
log 1

ψ

))

L ← λ.
Repeat k times

Pick x(1), . . . , x(l) ∈R GF(q)
n
.

Multivariate interpolation step:

Find p : GF(q)
n → GF(q) of degree d s.t. ∀i ∈ [l], p(x(i)) = f(x(i)).

If Test-valid(f, p, δ, n, d, q, 12 , φ/k) then L ← L ∪ {p}.
endRepeat

return(L)

Fig. 3.1. Brute-force.

interpolation step has agreement less than δ2 with f , then by the correctness of Test-
valid it follows that p is passed with probability at most φ/k. Summing up over the
k iterations, we have that the probability that any polynomial with agreement less
than δ2 is included in the output list is at most φ.

To prove that with probability at least 1−ψ, Test-valid outputs every polynomial
p with δ agreement f , let us fix p and argue that in any one of the k iterations, p is
likely to be added to the output list with probability ζ = 1

2(δ− d
q)

l . The lemma follows

from the fact that the number of iterations is a sufficiently large multiple of 1
ζ .

To prove that with probability at least ζ the polynomial p is added to L (in a
single iteration), we show that with probability at least 2ζ the polynomial interpolated
in the iteration equals p. The lemma follows from the fact that Test-valid will return
true with probability at least 1

2 .

To show that p is the polynomial returned in the interpolation step, we look at
the task of finding p as the task of solving a linear system. Let (p denote the l dimen-
sional vector corresponding to the coefficients of p. Let M be the l × l dimensional
matrix whose rows correspond to the points x(1), . . . , x(l) and whose columns corre-
spond to the monomials in p. Specifically, the entry Mi,j , where j corresponds to

the monomial xd11 . . . x
dn
n , is given by (x

(i)
1)d1 . . . (x

(i)
n)dn . Finally let (f be the vector

(f(x(1)), . . . , f(x(l))). To show that p is the polynomial returned in this step, we show
that with high probability, M is of full rank and p(x(i)) = f(x(i)) for every i.

The last assertion is proven by induction on i. Let M (i) denote the i × l matrix
with the first i rows of M . Fix x(1), . . . , x(i−1) such that p(x(j)) = f(x(j)) for every
j ∈ [i − 1]. We argue that with probability at least δ − dq over the choice of x(i), it

holds that p(x(i)) = f(x(i)) and the rank of M (i) is greater than that of M (i−1). It is
easy to see that f(x(i)) = p(x(i)) with probability at least δ. To complete the proof it
suffices to establish that the probability, over a random choice of x(i), that M (i) has
the same rank as M (i−1) is at most dq . Consider two polynomials p1 and p2 such that

p1(x
(j)) = p2(x

(j)) for every j ∈ [i − 1]. Then for the rank of M (i) to be the same
as the rank of M (i−1), it must be that p1(x

(i)) = p2(x
(i)) (else the solutions to the

ith system are not the same as the solutions to the i− 1th system). But for distinct
polynomials p1 and p2 the event p1(x

(i)) = p2(x
(i)) happens with probability at most

d
q for randomly chosen x(i). This concludes the proof of the lemma.

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 547

As an extension of univariate interpolations, we have the following.
(P4) Compute-coefficients(p(1), . . . , p(d+1), r(1), . . . , r(d+1), n, d, q, ψ) takes as input d+

1 polynomials p(j) in n−1 variables of degree d−1 and d+1 values r(j) ∈ GF(q)
and returns a degree d polynomial p : GF(q)

n → GF(q) such that p|r(j) ≡ p(j)
for every j ∈ [d + 1], if such a polynomial p exists (otherwise it may return
anything).

Compute-coefficients works as a simple interpolation algorithm: Specifically it
finds d + 1 univariate polynomials h1, . . . , hd+1 such that hi(r

(j)) equals 1 if i =

j and 0 otherwise and then returns the polynomial p(x1, . . . , xn) =
∑d+1
j=1 hj(xn) ·

p(j)(x1, . . . , xn−1). Note that indeed

p(x1, . . . , xn−1, r
(j)) =

d+1∑

k=1

hk(xn) · p(k)(x1, . . . , xn−1)

= p(j)(x1, . . . , xn−1).

Note that the polynomials hi(x) =
∏
j∈{1,...,d+1},j
=i(

x−r(j)
r(i)−r(j)) depend only on the

r(j)’s. (Thus, it suffices to compute them once, rather than computing them from
scratch for each monomial of p as suggested in section 2.2.)

Proposition 3.5. Compute-coefficients(p(1), . . . , p(d+1), r(1), . . . , r(d+1), n, d, q, ψ)
satisfies (P4). Its running time is O(d2(n+dd)).

3.2. The main routines. As mentioned earlier, the main subroutines are Find-
all-poly and Extend, whose inputs and properties are described next. They take,
among other inputs, a special parameter α which will be fixed later. For the sake
of simplicity, we do not require Find-all-poly and Extend at this point to output only
polynomials with good agreement. We will consider this issue later when analyzing
the running times of Find-all-poly and Extend.
(P5) Find-all-poly(f, δ, n, d, q, ψ, φ, α) returns a list of polynomials containing every

polynomial of degree d on n variables that agrees with f on at least a δ
fraction of the inputs. Specifically, the output list contains every degree d
polynomial p with agreement δ with f , with probability at least 1− ψ.

The algorithm is described formally in Figure 3.2. Informally, the algorithm uses
the (“trivial”) subroutines for the base cases n ≤ 4 or d = 0, and in the remaining
(interesting) cases it iterates a randomized process several times. Each iteration is
initiated by a random linear transformation of the coordinates. Then in this new
coordinate system, Find-all-poly finds (using the “trivial” subroutine Brute-force) a
list of all 4-variate polynomials having significant agreement with the 4-prefix of the
oracle.6 It then extends each polynomial in the list one variable at a time till it finds
the n-prefix of the polynomial (which is the polynomial itself). Thus the crucial piece
of the work is relegated to the subroutine Extend, which is supposed to extend a given
(i − 1)-prefix of a polynomial with significant agreement with f to its i-prefix. The
goals of Extend are described next.

6In principle we could apply Brute-force for any constant number of variables (and not just 4).
However, since the running time is doubly-exponential in the number of variables, we try to use
Brute-force only for a small number of variables. The need for using Brute-force when the number
of variables is very small comes about due to the fact that in such a case (e.g., two variables) the
randomization of the coordinate system does not operate well. Furthermore, applying Brute-force for
univariate polynomials seems unavoidable. For simplicity of exposition, we choose to apply Brute-
force also for 2-, 3-, and 4-variate polynomials. This allows better settings of some parameters and
simplifies the calculations at the end of the proof of Lemma 3.6.

548 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

To simplify our notation, from here onwards we assume that the elements of the
field are named 0, . . . , q−1. In particular, we often use p|j , for some integer 0 ≤ j ≤ d,
to represent the (j)-prefix of a function p.
(P6) Extend(f, p, δ, n, d, q, ψ, φ, α) takes as input a degree d polynomial p in n − 1

variables and, with probability at least 1− ψ, returns a list of degree d poly-
nomials in n variables that includes every polynomial p∗ that satisfies the
following conditions:

1. p∗ has agreement at least δ with f .
2. p∗|j has agreement at least α · δ with f |j for every j ∈ {0, . . . , d}.
3. p∗|0 ≡ p.

Figure 3.3 describes the algorithm formally. Extend returns all n-variable exten-
sions p∗, of a given (n−1)-variable polynomial p, provided p∗ agrees with f in a strong
sense: p∗ has significant agreement with f and each p∗|j has significant agreement
with f |j (for every j ∈ {0, . . . , d}). (The latter agreement requirement is slightly
lower than the former.) To recover p∗, Extend first invokes Find-all-poly to find the
polynomials p∗|j for d + 1 values of j. This is feasible only if a polynomial p∗|j has
good agreement with f |j , for every j ∈ {0, . . . , d}. Thus, it is crucial that when Extend
is called with f and p, all p∗’s with good agreement with f also satisfy the stronger
agreement property (above). We will show that the calling program (i.e., Find-all-poly
at the higher level of recursion) will, with high probability, satisfy this property, by
virtue of the random linear transformation of coordinates.

All the recursive calls (of Find-all-poly within Extend) always involve a smaller
degree parameter, thereby ensuring that the algorithms terminate (quickly). Having
found a list of possible values of p∗|j , Extend uses a simple interpolation (subroutine
Compute-coefficients) to find a candidate for p∗. It then uses Test-valid to prune out
the many invalid polynomials that are generated this way, returning only polynomials
that are close to f .

We now go on to the formal analysis of the correctness of Find-all-poly and Extend.

3.3. Correctness of Find-all-poly and Extend.
Lemma 3.6. If α ≤ 1 − 1

q , δ ≥ d+1
q , and q ≥ 3, then Find-all-poly satisfies (P5)

and Extend satisfies (P6).
Proof. We prove the lemma by a double induction, first on d and for any fixed d,

we perform induction on n. We shall rely on the properties of Compute-coefficients,
Test-valid, Constants, and Brute-force, as established above.

Assume that Find-all-poly is correct for every d′ < d (for every n′ ≤ n for any
such d′). We use this to establish the correctness of Extend(f, p, n′, d, q, ψ, α) for every
n′ ≤ n. Fix a polynomial p∗ satisfying the hypothesis in (P6). We will prove that
p∗ is in the output list with probability 1− ψ

Nn′,d,δ
. The correctness of Extend follows

from the fact that there are at most Nn′,d,δ such polynomials p∗ and the probability
that there exists one for which the condition is violated is at most ψ.

To see that p∗ is part of the output list, notice that, by the inductive hypothesis
on Find-all-poly, when invoked with agreement parameter α · δ, it follows that for
any fixed j ∈ {0, . . . , d}, the polynomial p∗|j − p is included in L(j) with probability

1− ψ
2(d+1)Nn′,d,δ

. This follows from the fact that p∗|j−p and f |j−p have agreement at

least α·δ, the fact that p∗|j−p = p∗|j−p∗|0 is a degree d−1 polynomial,7 and thus, by

7To see that p∗|j − p∗|0 is a polynomial of total degree at most d− 1, notice that p∗(x1, . . . , xn)
can be expressed uniquely as r(x1, . . . , xn−1) + xnq(x1, . . . , xn), where degree of q is at most d− 1.
Thus p∗|j − p∗|0 = j · q(x1, . . . , xn−1, j) is also of degree d− 1.

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 549

Find-all-poly(f, δ, n, d, q, ψ, φ, α);
If d = 0 return(Constants(f, δ, n, q, ψ));
If n ≤ 4 return(Brute-force(f, δ, n, d, q, ψ, φ));

L ← {};
Repeat O(log

Nn,d,δ

ψ) times:

Pick a random nonsingular n× n matrix R over GF(q)
Pick a random vector b ∈ GF(q)

n
.

Let g denote the oracle given by g(y) = f(R−1(y − b)).
L4 ← Brute-force(g|0n−4 , δ, 4, d, q, 1

10n , φ).

for i = 5 to n do

Li ← {} /* List of (d, i)-prefixes */

for every polynomial p ∈ Li−1 do

Li = Li ∪ Extend(g|0n−i , p, δ, i, d, q, 1
10n , φ, α)

endfor

endfor

Untransform Ln: L′
n ← {p′(x) def

= p(Rx+ b)|p ∈ Ln}.
L ← L ∪ L′

n.

endRepeat

return(L)

Fig. 3.2. Find-all-poly.

Extend(f, δ, p, n, d, q, ψ, φ, α).

L′ ← {}.
L(0) ← {0̄} (where 0̄ is the constant 0 polynomial).

for j = 1 to d do

f (j) ← f |j − p.
L(j) ←Find-all-poly(f (j), α · δ, n, d− 1, q, ψ

2Nn,d,α·δ(d+1) , φ, α).

endfor

for every (d+ 1)-tuple (p(0), . . . , p(d)) with p(k) ∈ L(k) do

p′ ← Compute-coefficients(p(0), . . . , p(d), 0, . . . , d; n, d, q).
if Test-valid(f, p+ p′, δ, n, d, q, ψ/(2Nn,d,α·δ), φ) then

L′ ← L′ ∪ {p+ p′};
endfor

return(L′).

Fig. 3.3. Extend.

the inductive hypothesis on the correctness of Find-all-poly, such a polynomial should
be in the output list. By the union bound, we have that for every j ∈ {0, . . . , d}, the
polynomial p∗|j−p is included in L(j) with probability 1− ψ

2Nn′,d,α·δ
, and in such a case

p∗−p will be one of the polynomials returned by an invocation of Compute-coefficients.
In such a case p∗ will be tested by Test-valid and accepted with probability at least

550 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

1− ψ
2Nn′,d,α·δ

. Again summing up all the error probabilities, we have that p∗ is in the

output list with probability at least 1 − ψ
Nn′,d,α·δ

. This concludes the correctness of

Extend.
We now move on to the correctness of Find-all-poly(f, δ, n, d, q, ψ, φ, α). Here we

will try to establish that for a fixed polynomial p with agreement δ with f , the
polynomial p is added to the list L with constant probability in each iteration of the
Repeat loop. Thus the probability that it is not added in any of the iterations is
at most ψ

Nn,d,δ
and thus the probability that there exists a polynomial that is not

added in any iteration is at most ψ. We may assume that n ≥ 5 and d ≥ 1 (or else
correctness is guaranteed by the trivial subroutines).

Fix a degree d polynomial p with agreement δ with the function f : GF(q)
n →

GF(q). We first argue that (R, b) form a “good” linear transformation with con-
stant probability. Recall that from now onwards Find-all-poly works with the or-
acle g : GF(q)

n → GF(q) given by g(y) = f(R−1(y − b)). Analogously define
p′(y) = p(R−1(y − b)), and notice p′ is also a polynomial of degree d. For any
i ∈ {5, . . . , n} and j ∈ {0, . . . , d}, we say that (R, b) is good for (i, j) if the agreement
between g|j,0n−i and p′|j,0n−i is at least αδ. Lemma 3.7 (below) shows that the proba-
bility that (R, b) is good for (i, j) with probability at least 1− 1

qi−1 ·(2+ 1
δ(1−α)2). Now

call (R, b) good if it is good for every pair (i, j), where i ∈ {5, . . . , n} and j ∈ {0, . . . , d}.
Summing up the probabilities that (R, b) is not good for (i, j) we find that (R, b) is
not good with probability at most

d∑

j=0

n∑

i=5

(
2 +

1

δ(1− α)2

)
· q−i+1

= (d+ 1) ·
(

2 +
1

δ(1− α)2

)
·
n∑

i=5

q−i+1

< (d+ 1) ·
(

2 +
1

δ(1− α)2

)
· q

−3

q − 1

≤ 2

q2(q − 1)
+

1

q − 1
(using α ≤ 1− 1

q , δ ≥ d+1
q , and d+ 1 ≤ q)

≤ 11

18
(using q ≥ 3).

Conditioned upon (R, b) being good and relying on the property of Brute-force, it
follows that L4 contains the 4-prefix of p with probability at least 1− 1

10n . Inductively,
we have that the i-prefix of p is not contained in the list Li with probability at most
i

10n . (By the inductive hypothesis on Extend, with probability at most 1
10n , the

(i − 1)-prefix of p is in Li−1 and yet the i-prefix is not returned by Extend.) Thus,
with probability at most 1

10 , the polynomial p is not included in Ln (conditioned upon
(R, b) being good). Adding back the probability that (R, b) is not good, we conclude
that with probability at most 11

18 + 1
10 <

3
4 , the polynomial p is not in Ln in any single

iteration. This concludes the proof of the correctness of Find-all-poly.

3.4. Analysis of the random linear transformation. We now fill in the
missing lemma establishing the probability of the “goodness” of a random linear
transformation.

Lemma 3.7. Let f and g be functions mapping GF(q)
n
to GF(q) that have δ

agreement with each other, and let R be a random nonsingular n× n matrix and b be

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 551

a random element of GF(q)
n
. Then, for every i ∈ {1, . . . , n} and j ∈ GF(q)

Pr
R,b

[
f ′|j,0n−i and g′|j,0n−i have less than αδ agreement

] ≤ 1

qi−1
·
(

2 +
1

δ(1− α)2

)
,

where f ′(y) = f(R−1(y − b)) and g′(y) = g(R−1(y − b)).
Proof. Let G = {x ∈ GF(q)

n|f(x) = g(x)} be the set of “good” points. Observe
that δ = |G|/qn. Let SR,b = {x ∈ GF(q)

n|Rx+ b has j0n−i as suffix}. Then we wish
to show that

Pr
R,b

[|SR,b ∩G|
|SR,b| < α · |G|

qn

]
≤ 1

qi−1

(
2 +

1

δ(1− α)2

)
.(3.1)

Observe that the set SR,b can be expressed as the preimage of (j, 0n−i) in the map
π : GF(q)

n → GF(q)
m

, where m = n− i+1, given by π(x) = R′x+b′, where R′ is the
m×n matrix obtained by taking the bottomm rows of R and b′ is the vector obtained
by taking the last m elements of b. Note that R′ is a uniformly distributed m × n
matrix of full rank over GF(q) and b′ is just a uniformly distributed m dimensional
vector over GF(q). We first analyze what happens when one drops the full-rank
condition on R′.

Claim 3.8. Let R′ be a random m × n matrix over GF(q) and b′ be a random
element of GF(q)

m
. For some fixed vector (s ∈ GF(q)

m
let S = {x|R′x + b′ = (s}.

Then, for any set G ⊆ GF(q)
n
,

Pr
R′,b′

[|S ∩G|
|S| < α · |G|

qn

]
≤ qm

(1− α)2|G| + q
−(n−m).

Proof. We rewrite the probability in the claim as

Pr
R′,b′

[
|S ∩G| < α · |G| · |S|

qn

]

≤ Pr
R′,b′

[
|S ∩G| < α · |G| · q

n−m

qn
or |S| > qn−m

]

≤ Pr
R′,b′

[
|S ∩G| < α · |G|

qm

]
+ Pr
R′,b′

[|S| > qn−m] .

The event in the second term occurs only if the matrix R′ is not full rank, and so the
second term is bounded by q−(n−m) (see Claim 3.9). We thus focus on the first term.

For x ∈ G ⊆ GF(q)
n
, let I(x) denote an indicator random variable that is 1 if

x ∈ S (i.e., R′x + b′ = (s) and 0 otherwise. Then, the expected value of I(x), over
the choice of (R′, b′), is q−m. Furthermore, the random variables I(x1) and I(x2)
are independent, for any distinct x1 and x2. Now, |S ∩G| =∑x∈G I(x), and we are
interested in the probability that the sum

∑
x∈G I(x) is smaller than α · |G| · q−m

(whereas the expected value of the sum is |G| · q−m). A standard application of
Chebyschev’s inequality yields the desired bound.8

To fill the gap caused by the “full-rank clause” (in the above discussion), we use
the following claim.

8Specifically, we obtain a probability bound of
|G|·q−m

((1−α)·(|G|·q−m))2
= qm

(1−α)2·|G| as required.

552 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

Claim 3.9. The probability that a randomly chosen m× n matrix over GF(q) is
not of full rank is at most q−(n−m).

Proof. We can consider the matrix as being chosen one row at a time. The
probability that the jth row is dependent on the previous j − 1 rows is at most
qj−1/qn. Summing up over j going from 1 to m we get that the probability of getting
a matrix not of full rank is at most q−(n−m).

Finally we establish (3.1). Let ER′,b′ denote the event that |S∩G|
|S| < α · |G|qn (recall

that S = SR′,b′) and let FR′,b′ denote the event that R′ is of full row rank. Then
considering the space of uniformly chosen matrices R′ and uniformly chosen vectors
b′ we are interested in the quantity

Pr
R′,b′

[ER′,b′ |FR′,b′] ≤ Pr
R′,b′

[ER′,b′] + Pr
R′,b′

[¬(FR′,b′)]

≤ qm

(1− α)2|G| + 2 · q−(n−m).

The lemma follows by substituting m = n− i+ 1 and |G| = δ · 2n.
3.5. Analysis of the running time of Find-all-poly.
Lemma 3.10. For integers d0, n0, q, and α, δ0 ∈ [0, 1] satisfying αd0δ0 ≥ 2d0/q,

let M = max0≤d≤d0{Nn0,d,(αd0−d)·(δ0/2)}. Then, with probability 1 − φ · (n20(d0 +

1)2M logM)d0+1 · log(1/ψ0), the running time of Find-all-poly(f, δ0, n0, d0, q, ψ0, φ, α)

is bounded by a polynomial in Md0+1, (n0 + d0)
d0 , (1

αd0δ0
)(d0+4)4 , log 1

ψ0
, and log 1

φ .
Proof. We fix n0 and d0. Observe that in all recursive calls to Find-all-poly, δ and d

are related by the invariant δ = αd0−dδ0. Now, assuming the algorithms run correctly,
they should return only polynomials with agreement at least δ/2 (which motivates the
quantity M). Further, in all such calls, we have that αd0δ0 − dq ≥ αd0δ0/2. Observe
further that the parameter φ never changes and the parameter ψ affects only the
number of iterations of the outermost call to Find-all-poly. In all other calls, this

parameter (i.e., ψ) is at least ψ1
def
= 1

20n0(d0+1)M . Assume for simplicity that ψ0 ≤ ψ1.
Let T1, T2, T3, and T4 denote the maximum running time of any of the subroutine
calls to Constants, Test-valid, Brute-force, and Compute-coefficients, respectively. Let
T = max{T1, T2, T3, T4}. Then

T1 = O

(
n

α2d0δ20
· log

1

ψ0

)
,

T2 = O

(
1

α2d0δ20
·
(
n0 + d0
d0

)
· log

1

min{ψ0, φ}
)
,

T3 = O

(
kl3

(αd0δ0/2)2
· log

k

φ

)
,

where l = O((d0 + 4)4) and k = O
(
α−(d0+4)4 · (δ0/2)−(d0+4)4 · log 1

ψ 0

)
,

T4 = O

(
d20 ·
(
n0 + d0
d0

))
.

Note that all the above quantities are upper bounded by polynomials in (n0 + d0)
d0 ,

(2
αd0δ0

)(d0+4)4 , logM , log 1
φ , and thus so is T . In what follows we show that the

running time is bounded by some polynomial in (n0d0M)(d0+1) and T and this will
suffice to prove the lemma.

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 553

Let P (d) denote an upper bound on the probability that any of the recursive calls
made to Find-all-poly by Find-all-poly(f, αd0−dδ0, n, d, q, ψ, φ, α) returns a list of length
greater than M , maximized over f , 1 ≤ n ≤ n0, ψ ≥ ψ0. Let F (d) denote an upper
bound on the running time on Find-all-poly(f, αd0−dδ0, n, d, q, ψ, φ, α), conditioned
upon the event that no recursive call returns a list of length greater thanM . Similarly
let E(d) denote an upper bound on the running time of Extend, under the same
condition.

We first derive recurrences for P . Notice that the subroutine Constants never
returns a list of length greater than 2

αd0δ0
(every constant output must have a fraction

of α
d0δ0
2 representation in the sampled points). Thus P (0) = 0. To bound P (d)

in other cases, we observe that every iteration of the Repeat loop in Find-all-poly
contributes an error probability of at most φ from the call to Brute-force, and at
most n0 − 4 times the probability that Extend returns an invalid polynomial (i.e., a
polynomial with agreement less than δd/2 with its input function f). The probability
that Extend returns such an invalid polynomial is bounded by the sum of (d+1)·P (d−
1) (from the recursive calls to Find-all-poly) andMd+1 ·φ (from the calls to Test-valid).
(Notice that to get the final bound we use the fact that we estimate this probability
only when previous calls do not produce too long a list.) Finally the number of
iterations of the Repeat loop in Find-all-poly is at most log(M/ψ), by the definition
of M . Recall that in the outer most call of Find-all-poly, we have ψ = ψ0 whereas in
all other calls ψ ≥ ψ1, where log(1/ψ1) = log(20n0(d0 + 1)M) < n0(d0 + 1) logM , for
sufficiently large n0. Thus summing up all the error probabilities, we have

P (d) < log(M/ψ) · n0 ·
(
(d+ 1) · P (d− 1) +Md+1 · φ) ,

where for d = d0 we use ψ = ψ0 and otherwise ψ = ψ1. It follows that

P (d0) < log(M/ψ0) · n0 ·
(
(d0 + 1) · P (d0 − 1) +Md+1 · φ)

< log(M/ψ0) · n0 · (d0 + 1) · ((n0 · (d0 + 1))2 logM
)d0 ·Md+1 · φ

<
(
n20 · (d0 + 1)2 ·M logM

)d0+1 · φ · log(1/ψ0).

A similar analysis for F and E yields the following recurrences:

F (0) ≤ T,
F (d) ≤ n20(d0 + 1)(logM) · E(d),

E(d) ≤ (d+ 1)F (d− 1) +Md+1T.

Solving the recurrence yields F (d) ≤ (n20(d0 + 1)2M logM)d+1T . This concludes the
proof of the lemma.

Lemma 3.11. For integers d0, n0, and α, δ0 ∈ [0, 1], let

M = max
0≤d≤d0

{Nn0,d,(αd0−d)·(δ0/2)}.

If α ≥ 1− 1
d0+1 and δ0 ≥ 2e

√
d0
q , then M ≤ O(1

δ20
).

Proof. We use part 2 of Theorem 4.4, which claims that Nn,d,δ ≤ 1
δ2−(d/q) ,

provided δ2 ≥ d/q. Let δd = αd0−dδ0. Then δd/2 ≥ (1 − 1
d0+1)d0+1 · (δ0/2) ≥

δ0/2e ≥
√
d/q, by the condition in the lemma. Thus M is at most 1

δ2
d
−(d/q)

≤ 2
δ2
d

=

O(1
δ20

).

554 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

Theorem 3.12. Given oracle access to a function f and suppose δ, k, d, and
q are parameters satisfying δ ≥ max{d+1

q , 2e
√
d/q} and q ≥ 3. Let α = 1 − 1

d+1 ,

ψ = 2−k, and φ = 2−k · (n(d + 1) 1
δ20

)−2(d+1). Then, given oracle access to a func-

tion f : GF(q)
n → GF(q), the algorithm Find-all-poly(f, δ, n, d, q, ψ, φ, α) runs in

poly((k ·nd/δ)O(d4))-time and outputs, with probability at least 1−2−k, a list contain-
ing all degree d polynomials that agree with f on at least an δ fraction of the inputs.
Furthermore, the list does not contain any polynomials that agree with f on less than
an δ2 fraction of the inputs.

Remarks.

1. Thus, combining Theorems 2.1 and 3.12, we get reconstruction algorithms
for all d < q, provided δ is large enough. Specifically, for the case q = 2 and
d = 1, we invoke Theorem 2.1.

2. The constant 2e in the lower bound on δ can be replaced by (1 + ε)ed/q, for
any ε > 0, by recalibrating the subroutine Test-valid and by setting α = 1− 1

q .

Proof. The main part of the correctness claim follows from Lemma 3.6, and the
running-time bound follows from Lemmas 3.10 and 3.11. (In particular, note that the
condition αd0δ0 ≥ 2d/q from Lemma 3.10 is met, since αd0 = 1

e and δ0 ≥ 2
√
d/q ≥

2d/q.) The furthermore part follows from the proof of Lemma 3.10.

4. Counting: Worst case. In this section we give a worst-case bound on the
number of polynomials that agree with a given function f on δ fraction of the points.
In the case of linear polynomials our bound works for any δ > 1

q , while in the general
case our bound works only for δ that is large enough. The bounds are derived using
a very elementary property of polynomial functions, namely that two of them do not
agree on too many points. In fact we first state and prove bounds for any generic
“error-correcting code” and then specialize the bound to the case of polynomials.

4.1. General error-correcting bounds. We first recall the standard definition
of error-correcting codes. To do so we refer to strings over an alphabet [q]. For a string
R ∈ [q]N (R for received word) and i ∈ [N], we let R(i) denote the ith coordinate
of R. The Hamming distance between strings R1 and R2, denoted ∆(R1, R2), is the
number of coordinates i where R1(i) �= R2(i).

Definition 4.1 (error-correcting code). For integers N,K,D, and q an [N,K,D]q
code is a family of qK strings from [q]N such that for any two distinct strings in the
family, the Hamming distance between them is at least D. That is, if C ⊆ [q]N

is an [N,K,D]q code, then |C| = qK and for every C1 �= C1 ∈ C it holds that
∆(C1, C2) ≥ D.

In the following theorem we take an arbitrary word R ∈ [q]N and consider the
number of codewords that may have a Hamming distance of at most (1− δ) ·N from
R (i.e., codewords that agree with R on at least δ ·N coordinates). We give an upper
bound provided δ is sufficiently large (as a function of D/N).

Theorem 4.2. Let N,D, and q satisfy DN < 1 and define γ
def
= 1− DN > 0. Let

δ > 0 and R ∈ [q]N . Suppose that C1, . . . , Cm ∈ [q]N are distinct codewords from an
[N,K,D]q code that satisfy ∆(R,Cj) ≤ (1 − δ) · N for all j ∈ {1, . . . ,m}. Then the
following bounds hold:

1. If δ >
√

2 + γ
4 ·
√
γ − γ2 , then m < 2

δ+ γ
2
. It follows that if δ >

√
2γ, then

m < 2/δ.

2. If γ ≥ 1
q and δ >

1
q +
√

(γ − 1
q) · (1− 1

q), then m ≤
(1−γ)·(1− 1

q)
(δ−(1/q))2−(1− 1

q)(γ− 1
q)
.

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 555

It follows that if (γ ≥ 1
q and) δ > min{√γ, 1q +

√
γ − 1

q}, then m ≤ 1−γ
δ2−γ <

1
δ2−γ . In particular, for γ = 1

q , the bounds hold for every δ >
1
q .

For small γ, the latter (simpler) expressions given in each of the two parts of the
theorem provide good approximations to the former (tighter) expressions. The fact
that the former expressions imply the latter ones is obvious for part 1 and is proved
below for part 2.

Additional remarks.
1. The bounds in the two parts of the theorem apply in different situations and

yield different bounds on m. The first bound applies for somewhat larger
values of δ and yields a stronger bound that is O(1δ). The second bound
applies also for smaller values of δ and yields a bound that grows as Θ(1

δ2).
2. Note that part 2 considers only codes with distance D ≤ (1 − 1/q) ·N (i.e.,

γ ≥ 1/q). Still, the bound m ≤ (1−γ)·(1− 1
q)

(δ−(1/q))2−(1− 1
q)(γ− 1

q)
holds also in case

γ < 1/q, provided δ ≥ 1/q. (See footnote 9 at the end of the proof of part 2.)
We mention that it is well known that codes with distance D ≥ (1− 1/q) ·N
have at most qN codewords, which immediately implies m ≤ qN ≤ N/γ (for
any γ ≥ 1/q regardless of δ).

Proof of part 1. The bound in part 1 is proven by a simple inclusion-exclusion
argument. For any m′ ≤ m, we count the number of coordinates i ∈ [N] that satisfy
the property that one of the firstm′ codewords agrees with R on coordinate i. Namely,
let χj(i) = 1 if Cj(i) = R(i) and χj(i) = 0 otherwise. Then, by inclusion-exclusion
we get

N ≥ |{i : ∃j χj(i) = 1}|

≥
m′∑

j=1

∑

i

χj(i)−
∑

1≤j1<j2≤m′

∑

i

χj1(i)χj2(i)

≥ m′ · δN −
(
m′

2

)
· max
1≤j1<j2≤m′

|{i : Cj1(i) = Cj2(i)}|,

where the last inequality is due to the fact that Cj agrees with R on at least δN
coordinates. Since two codewords R1 and R2 can agree on at most N−D coordinates,
we get

for all m′ ≤ m, m′δN − m
′(m′ − 1)

2
· (N −D) ≤ N.(4.1)

Consider the function g(y)
def
= γ

2 · y2 − (δ + γ
2) · y + 1. Then (4.1) says that g(m′) ≥ 0

for every integer m′ ≤ m. Let α1 and α2 be the roots of g. To establish part 1 we
show that

• the roots α1 and α2 are both real numbers,
• the roots are both nonnegative,
• |α1 − α2| > 1,
• min(α1, α2) <

2
δ+ γ

2
.

Without loss of generality, suppose α1 ≤ α2. It follows that m ≤ α1, since otherwise
g(m′) < 0 for every m′ ∈ (α1, α2) and in particular for the integer m′ = �α1�+ 1, in
contradiction to the above (i.e., g(m′) ≥ 0 for every m′ ≤ m).

Let β = γ/2. Then g(y) = βy2 − (β + δ) · y + 1. The roots α1 and α2 are real,

provided that ζ
def
= (β + δ)2 − 4β is positive which follows from a stronger requirement

556 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

(see below). Without loss of generality, suppose α1 ≤ α2. To guarantee α2 − α1 > 1,

we require 2 ·
√
ζ

2β > 1, which translates to ζ > β2 (and hence ζ > 0 as required above).
We need to show that

(β + δ)2 − 4β > β2,

which occurs if δ >
√
β2 + 4β − β. Plugging in the value of β we find that the last

inequality is exactly what is guaranteed in the hypothesis of part 1 of the theorem
statement. Thus α1 and α2 are real and α2 − α1 > 1. Last, we bound the smaller
root α1. First we prove the upper bound:

α1 =
β + δ −√(β + δ)2 − 4β

2β

=
β + δ

2β
·
[
1−
(

1− 4β

(β + δ)2

)1/2
]

<
β + δ

2β
·
[
1−
(

1− 4β

(β + δ)2

)]

=
2

β + δ
,

where the inequality follows by ζ > 0. Again by plugging in the value of β we get the
desired bound. For the lower bound, consider the first equality in the above displayed
set of inequalities and note that since β > 0, we have

α1 =
β + δ −√(β + δ)2 − 4β

2β
> 0.

Proof of part 2. We first introduce some notation. In what follows we will use
the arithmetic of integers modulo q to simplify some of our notation. This arithmetic
will be used on the letters of the alphabet, i.e., the set [q]. For j ∈ {1, . . . ,m} and
i ∈ [N] let Γj(i) = 1 if Cj(i) �= R(i) and 0 otherwise. (Notice that Γj(i) = 1− χj(i).)
For j ∈ {1, . . . ,m}, t ∈ {0, . . . , q − 1}, and i ∈ [N] let Γ

(t)
j (i) = 1 if Cj(i) − R(i) ≡ t

(mod q) and 0 otherwise. Thus Γj(i) = 1 if and only if there exists t �= 0 such that

Γ
(t)
j (i) = 1. Let wj

def
= |{i : Cj(i) �= R(i)}| =∑i Γj(i) and let w =

∑m

j=1
wj

m . The fact
that the Cj ’s are close to R implies that wj ≤ (1− δ) ·N for all j.

Our proof generalizes a proof due to S. Johnson (cf. MacWilliams and Sloane
[31]) for the case q = 2. The central quantity used to bound m in the binary case can
be generalized in one of the two following ways:

S ≡
∑

j1,j2,i

Γj1(i)Γj2(i),

S′ ≡
∑

j1,j2,i

∑

t
=0

Γ
(t)
j1

(i)Γ
(t)
j2

(i).

The first quantity sums, over all j1, j2, the number of coordinates for which Cj1
and Cj2 both differ from R. The second quantity sums, over all j1, j2, the number
of coordinates where Cj1 and Cj2 agree with each other but disagree from R by t.
(Notice that the two quantities are the same for the case q = 2.) While neither one
of the two quantities are sufficient for our analysis, their sum provides good bounds.

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 557

Lower bound on S +S′. The following bound is shown using counting arguments
which consider the worst way to place a given number of differences between the Cj ’s

and R. Let Ni = |{j|Cj(i) �= R(i)}| = ∑j Γj(i) and let N
(t)
i = |{j|Cj(i) − R(i) ≡ t

(mod q)}| =
∑
j Γ

(t)
j (i). Note that

∑
iNi =

∑
i

∑
t
=0N

(t)
i = mw. We can lower

bound S as follows:

S =
∑

j1,j2,i

Γj1(i)Γj2(i) =
∑

i

N2
i ≥

(mw)2

N
,

where the last inequality above follows from the fact that subject to the condition∑
iNi = mw, the sum of Ni’s squared is minimized when all the Ni’s are equal.

Similarly, using
∑
i

∑
t
=0N

(t)
i = mw, we lower bound S′ as follows:

S′ =
∑

j1,j2,i

∑

t
=0

Γ
(t)
j1

(i)Γ
(t)
j2

(i) =
∑

i

∑

t
=0

(N
(t)
i)2 ≥ (mw)2

(q − 1)N
.

By adding the two lower bounds above we obtain

S + S′ ≥ (mw)2

N
+

(mw)2

(q − 1)N
=

q
q−1m

2w2

N
.(4.2)

Upper bound on S + S′. For the upper bound we perform a careful counting
argument using the fact that the Cj ’s are codewords from an error-correcting code.
For fixed j1, j2 ∈ {1, . . . ,m} and t1, t2 ∈ [q], let

M
(j1j2)
t1t2 ≡ |{i|Γ(t1)

j1
(i) = Γ

(t2)
j2

(i) = 1}|.

For every j1, j2, we view the M
(j1j2)
t1t2 ’s as elements of a q × q matrix M (j1j2). Now,

S and S′ can be expressed as sums of some of the elements of the matrices M (j1j2).
Summing over the (q − 1)× (q − 1) minors of all the matrices we get

S =
∑

j1,j2

∑

t1
=0

∑

t2
=0

M
(j1j2)
t1t2

and summing the diagonal elements of M (j1j2) over all j1j2, we get

S′ =
∑

j1j2

∑

t
=0

M
(j1j2)
tt .

We start by upper bounding the internal sum above for fixed pair (j1, j2), j1 �= j2.
Since the Cj ’s are codewords from an [N,K,D]q code we have Rj1(i) = Rj2(i) for at
most N −D values of i, so

∑

t
=0

M
(j1j2)
tt ≤ N −D −M (j1j2)

00 = γN −M (j1j2)
00 .

Note that the sum of the values of all elements ofM (j1j2) equals N , and N−wj1 (resp.,
N − wj2) is equal to the sum of the values of the 0th column (resp., row) of M (j1j2).

558 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

To bound the remaining term in the summation above we use inclusion-exclusion as
follows:

∑

t1
=0

∑

t2
=0

M
(j1j2)
t1t2

=
∑

t1

∑

t2

M
(j1j2)
t1t2 −

∑

t1

M
(j1j2)
t10

−
∑

t2

M
(j1j2)
0t2

+M
(j1j2)
00

= N − (N − wj1)− (N − wj2) +M
(j1j2)
00

= wj1 + wj2 −N +M
(j1j2)
00 .

Combining the bounds above we have (for j1 �= j2)

∑

t
=0

M
(j1j2)
tt +

∑

t1
=0

∑

t2
=0

M
(j1j2)
t1t2 ≤ (γN −M (j1j2)

00) + (wj1 + wj2 −N +M
(j1j2)
00)

= wj1 + wj2 − (1− γ) ·N.

(The key point above is the cancellation of M
(j1j2)
00 .) Observe that if j1 = j2 = j,

then the quantity
∑
t1
=0

∑
t2
=0M

(jj)
t1t2 =

∑
t
=0M

(jj)
tt = wj .

We now combine the bounds above as follows:

S + S′ =
∑

j

∑

t
=0

M
(jj)
tt +

∑

t1
=0

∑

t2
=0

M
(jj)
t1t2

+
∑

j1
=j2

∑

t
=0

M
(j1j2)
tt +

∑

t1
=0

∑

t2
=0

M
(j1j2)
t1t2

≤ 2
∑

j

wj +
∑

j1
=j2
(wj1 + wj2 − (1− γ)N)

= 2m2w −m(m− 1)(1− γ)N.

Thus, we get

S + S′ ≤ (2w − (1− γ) ·N) ·m2 + (1− γ) ·N ·m.(4.3)

Putting it together. Combining (4.2) and (4.3) and letting δ = 1− w/N , we get

m ≤ (1− γ) · 1

(wN)2 q
q−1 + 1− γ − 2 · wN

= (1− γ) · 1

(1− δ)2 q
q−1 + 1− γ − 2(1− δ) ,

provided (1− δ)2 q
q−1 + 1− γ − 2(1− δ) ≥ 0. Let g(x)

def
= q
q−1x

2 − 2x+ (1− γ). Note

that g(x) is monotone decreasing when x ≤ q−1
q . Note further that 1

q ≤ δ ≤ δ and
thus we get

m ≤ (1− γ) · 1

g(1− δ) ,

provided g(1 − δ) > 0. We need to bound δ so that g(1 − δ) > 0. Observe first that

g(x) = q
q−1 · (q−1

q − x)2 − (γ − 1
q). Thus g(x) > 0 if q−1

q − x >
√
q−1
q · (γ − 1

q). (Note

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 559

that the expression in the square root is nonnegative, since γ ≥ 1
q .)

9 In other words,

g(1 − δ) > 0, provided δ > 1
q +

√
(1− 1

q) · (γ − 1
q). In this case the bound obtained

on m is 1−γ
g(1−δ) = 1−γ

q
q−1 ·(δ− 1

q)
2−(γ− 1

q)
. This is exactly as claimed in the main part of

part 2.

We now move on to prove secondary bounds claimed in part 2. First, we show

that g(1− δ) > 0 for δ > 1
q +
√
γ − 1

q . This follows immediately from the above and

the inequality

1

q
+

√
γ − 1

q
>

1

q
+

√(
1− 1

q

)
·
(
γ − 1

q

)
.

Next, we verify that g(1−δ) > 0 for every δ >
√
γ. Let x = 1−δ. Then 1−x = δ >

√
γ.

In this case we have

g(x) =

(
1 +

1

q − 1

)
x2 − 2x+ 1− γ

= (1− x)2 +
1

q − 1
x2 − γ

≥ (1− x)2 − γ
> 0.

Thus g(1 − δ) > 0 provided δ > min{√γ, 1q +
√
γ − 1

q}. We now derive the claimed

upper bounds on m. Setting x = 1 − δ, and using g(x) ≥ (1 − x)2 − γ, we get
g(1− δ) ≥ δ2 − γ. Thus m ≤ 1−γ

g(1−δ) ≤ 1−γ
δ2−γ <

1
δ2−γ .

4.2. The special case of polynomials. Recall that a function f : GF(q)
n →

GF(q) may be viewed as a string of length qn with letters from the set [q]. Viewed in
this way we get the following construction of a code using multivariate polynomials.
These codes are known as Reed–Muller codes in the coding theory literature.

Proposition 4.3. The collection of degree d polynomials in n variables over
GF(q) form an [N,K,D]q code for N = qn, K =

(
n+d
d

)
, and D = (q − d) · qn−1.

Proof. The parameters N and K follow by definition. The distance bound D
is equivalent to the well-known fact [10, 38, 46] that two degree d (multivariate)
polynomials over GF(q) may agree in at most d/q fraction of the inputs.

Combining Theorem 4.2 with Proposition 4.3 (and using γ = d
q in the theorem),

we get the following upper bound on the number of polynomials with δ agreement
with an arbitrary function.

Theorem 4.4. Let δ > 0 and f : GF(q)n → GF(q). Suppose that p1, . . . , pm :
GF(q)n → GF(q) are distinct degree d polynomials that satisfy

Pr
x∈GF(q)n

[f(x) = pi(x)] ≥ δ for all i ∈ {1, . . . ,m}.

9For γ < 1
q
, the function g is positive everywhere. However, to use the inequality g(1 − δ) ≤

g(1− δ), we need δ ≥ 1
q
. This gives the bound claimed in the additional remark 2 after Theorem 4.2.

560 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

Then the following bounds hold:

1. If δ >
√

2 + d
4q ·
√
d
q − d

2q , then m < 2
δ+ d

2q

. In particular, if δ >
√

2d/q, then

m < 2/δ.

2. If δ >
1+
√

(d−1)(q−1)

q , then m ≤ (q−d)(q−1)
q2 · 1

(δ− 1
q)

2− (q−1)(d−1)

q2

. In particular,

if δ > min
{√

d
q ,

1
q +
√
d−1
q

}
, then m < 1

δ2−(d/q) .

We emphasize the special case of linear polynomials (i.e., d = 1).
Theorem 4.5. Let ε > 0 and f : GF(q)n → GF(q). Suppose that p1, . . . , pm :

GF(q)n → GF(q) are distinct linear functions that satisfy Prx∈GF(q)n [f(x) = pi(x)] ≥
1
q + ε for all i ∈ {1, . . . ,m}. Then m ≤ (1− 1

q)
2 · 1
ε2 ≤ 4

ε2 .

Proof. Just substitute d = 1 and δ = 1
q + ε in the main part of part 2 of

Theorem 4.4.

4.3. On the tightness of the upper bounds. We show that several aspects of
the bounds presented above are tight. We start with the observation that Theorem 4.2
cannot be extended to smaller δ without (possibly) relying on some special properties
of the code.

Proposition 4.6. Let δ0, γ0 satisfy the identity

δ0 =
1

q
+

√(
γ0 − 1

q

)
·
(

1− 1

q

)
.(4.4)

Then for any ε > 0, and for sufficiently large N , there exists an [N,K,D]q code C,
with N−D

N ≤ γ0 + ε, a word R ∈ [q]N and M ≥ 2Ω(ε
2N) codewords C1, . . . , CM ∈ C

such that ∆(R,Cj) ≤ (1− (δ0 − ε)) ·N , for every j ∈ [M].
Remark. The proposition above should be compared against part 2 of Theo-

rem 4.2. That part says that for δ0 and γ0 satisfying (4.4) and any [N,K,D]q code
with N−D

N = γ0, there exist at most O(1
δ20

) codewords at distance at most (1− δ0) ·N
from any string of length N . In contrast, the proposition says that if δ0 is reduced
slightly (to δ0− ε) and γ0 increased slightly (to γ0 + ε), then there could be exponen-
tially many codewords at this distance.

Proof. The bound is proven by a standard probabilistic argument. The code C
will consist only of the codewords C1, . . . , CM that will be close to the string R. The
codewords Cj ’s are chosen randomly and independently by the following process. Let
p ∈ [0, 1], to be determined shortly.

For every codeword Cj , each coordinate is chosen independently as follows: With
probability p it is set to be 1, and with probability 1− p it is chosen uniformly from
{2, . . . , q}. The string R is simply 1N .

Observe that for any fixed j, the expected number of coordinates where R and
Cj agree is pN . Thus with probability at most 2−Ω(ε2N), the agreement between R

and Cj is less than (p− ε)N . It is possible to set M = 2Ω(ε
2N) so that the probability

that there exists such a word Cj is less than 1
2 .

Similarly, the expected agreement between Ci and Cj is (p2 + (1−p)2
q−1) ·N . Thus

the probability that the agreement between a fixed pair is εN larger than this number
is at most 2−Ω(ε2N). Again it is possible to set M = 2Ω(ε

2N) such that the probability
that such a pair Ci and Cj exists is less than 1

2 .

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 561

Thus there is a positive probability that the construction yields an [N,Ω(ε
2N

log q), D]q

code with N−D
N = p2 + (1−p)2

q−1 + ε so that all codewords are within a distance of

(1 − (p − ε))N of the word R. Thus, the setting δ0 = p and γ0 = p2 + (1−p)2
q−1 would

yield the proposition, once it is verified that this setting satisfies (4.4). The latter fact
is easily verified by the following algebraic manipulations, starting with our setting of
δ0 and γ0:

γ0 = δ20 +
(1− δ0)2
q − 1

⇔ q

q − 1
· δ20 −

2

q − 1
· δ0 +

1

q − 1
− γ0 = 0

⇔δ20 −
2

q
· δ0 +

1

q
− q − 1

q
· γ0 = 0

⇔
(
δ0 − 1

q

)2

=

(
γ0 − 1

q

)
·
(

1− 1

q

)

⇔δ0 =
1

q
+

√(
γ0 − 1

q

)
·
(

1− 1

q

)
.

This concludes the proof.

Next we move on to the tightness of the bounds regarding polynomials. We show
that Theorem 4.5 is tight for δ = O(1/q), whereas part 1 of Theorem 4.4 is tight
for δ = Θ(1/

√
q) and d = 1. The results below show that for a given value of δ that

meets the conditions of the appropriate theorem, the value ofm cannot be made much
smaller.

Proposition 4.7. Given a prime p, and an integer k satisfying 1 < k ≤ p/3, let
δ = k/p. Then there exists a function f : GF(p)→ GF(p) and at least m

def
= 1

18(k−1)δ2

linear functions f1, . . . , fm : GF(p) → GF(p) such that |{x|fi(x) = f(x)}| ≥ δp = k
for all i ∈ {1, . . . ,m}. Furthermore, if δ >√1/p, then m > 1

δ−1. For δ = 2
p = 1

p+ε,

we get m = 1
18δ2 (which establishes tightness of the bound m ≤ 4

ε2 = 16
δ2 given in

Theorem 4.5). For δ =
√

2
p + 1

p >
√

2
p , we get m > 1

δ − 1 (which establishes tightness

of the bound m ≤ 2
δ given for d = 1 in part 1 of Theorem 4.4).

Proof. We start by constructing a relation R ⊂ GF(p) × GF(p) such that |R| ≤
p and there exist many linear functions g1, . . . , gm such that |R ∩ {(x, gi(x))|x ∈
GF(p)}| ≥ k for all i. Later we show how to transform R and the gi’s so that R
becomes a function that still agrees with each transformed gi on k inputs.

Let l = �p/k� and recall that δ = k/p. Notice l ≈ 1
δ and l ≥ 1

δ − 1. The
relation R consists of the k · l ≤ p pairs in the square {(i, j)|0 ≤ i < k, 0 ≤ j < l}.
Let G be the set of all linear functions that agree with R in at least k places. We
shall show that G has size at least 1/(18δ2(k − 1)). Given nonnegative integers a, b
subject to a · (k − 1) + b < l, consider the linear function ga,b(x) = ax+ b mod p.
Then ga,b(i) ∈ {0, . . . , l− 1} for every such (a, b) and i ∈ {0, . . . , k− 1}. Thus, ga,b(i)
intersects R in k places. Last, we observe that there are at least 1/(18δ2(k − 1))
distinct pairs (a, b) such that a · (k − 1) + b < l. Fixing any a < l, there are at least

562 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

l− (k− 1)a− 1 possible values for b, and so that the total number of pairs is at least

l−1
k−1∑

a=0

l − (k − 1)a− 1 =

(
l − 1

k − 1
+ 1

)
· (l − 1)− (k − 1) ·

l−1
k−1 ·

(
l−1
k−1 + 1

)

2

>
(l − 1)2

2(k − 1)

≥ (1− 2δ)2

2δ2(k − 1)
(using l ≥ 1−δ

δ)

≥ 1

18δ2(k − 1)
(using δ ≤ 1

3).

Next, we convert the relation R into a function in two stages. First we stretch the

relation by a factor of l to get a new relation R′. That is, R′ def= {(l · i, j)|(i, j) ∈ R}.
We modify the functions ga,b ∈ G accordingly. That is, g′a,b(x)

def
= ga,b(l

−1 · x) =

(a · l−1)x+ b, where l−1 is the multiplicative inverse of l (mod p) and ga,b(x) = ax+ b.
Thus, if ga,b(i) = j, then g′a,b(l·i) = j, and so if (i, ga,b(i)) ∈ R, then (l·i, g′a,b(l·i)) ∈ R′.
It follows that if ga,b agrees with R on at least k places, then g′a,b agrees with R′ on at
least k places. Thus, letting G′ denote the set of linear functions that agree with R′ in
k places, we have g′a,b ∈ G′ if ga,b ∈ G. Moreover, the map from G to G′ is one-to-one
(i.e., ga,b is mapped to g′a,b ≡ gl−1·a,b), implying |G′| ≥ |G|. (Actually, the argument
above extends to show that |G′| = |G|.)

We note that for all a < l (which in turn is smaller than p/2), it holds that
l−1 · a�≡ − 1(mod p). (This is the case since otherwise a ≡ −l ≡ p − l(mod p), in
contradiction to a < p/2.)

Last we introduce a slope to R′, so that it becomes a function. Specifically,

R′′ def
= {(i + j, j)|(i, j) ∈ R′} = {(l · i + j, j)|(i, j) ∈ R}. Notice that for any two

distinct (i1, j1), (i1, j2) ∈ R′′, we have i1 �= i2 (since i1 = l · i′1 + j1, i2 = l · i′2 + j2, and
j1, j2 ∈ {0, . . . , l − 1}), and so R′′ can be extended to a function f : GF(p)→ GF(p)
(i.e., if (i, j) ∈ R′′, then j = f(i)). Now for every function g′(x) = a′x + b′ ∈ G′,
consider the function g′′(x) = a′′x + b′′, where a′′ = a′/(1 + a′) and b′′ = b′/(1 + a′)
(and recalling that a′ �≡ − 1(mod p)). Observe that if g′(x) = y, then

g′′(x+ y) =
a′

1 + a′
· (x+ g′(x)) +

b′

1 + a′

=
a′

1 + a′
· (x+ a′x+ b′) +

1

1 + a′
· b′

= a′x+ b′ = y.

Thus, if g′ agrees with R′ in at least k places, then g′′ agrees with R′′ in at least k
places (since (x, g′(x)) ∈ R′ implies (x+ g′(x), g′′(x+ g′(x))) ∈ R′′ and x1 + g′(x1) =
(a′ + 1) · x1 + b′1 �= (a′ + 1) · x2 + b′1 = x2 + g′(x2) for all x1 �= x2), and hence g′′

agrees with f in at least k places. Again, the mapping of g′ to g′′ is one-to-one (since
the system a′′ = a′/(1 + a′) and b′′ = b′/(1 + a′) has at most one solution in (a′, b′)).
Thus, if we use G′′ to denote the set of linear functions that agree with f in k places,
then we have |G′′| ≥ |G′| ≥ |G| ≥ 1

18δ2(k−1) , as desired.

For the furthermore clause, observe that if δ >
√

1/p, then our setting dictates
l − 1 <

√
p < k and so l−1

k−1 < 1. Actually, in this case we may use {g0,b : b =

0, . . . , l − 1} in place of G, G′, and G′′, and derive |G| ≥ l ≥ 1
δ − 1.

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 563

Finally we note that the bounds in Theorem 4.4 always require δ to be larger than
d/q. Such a threshold is also necessary, or else there can be exponentially many degree
d polynomials close to the given function. This is shown in the following proposition.

Proposition 4.8. Let q be a prime-power, d < q, and δ = d
q − d−1

q2 . Then, there

exists an n-variate function f over GF(q), and at least qn−1 degree d polynomials that
agree with f on at least a δ fraction of the inputs.

Note that for d = 1 we have δ = 1
q . Also, by a minor extension of the following

proof, we may use in role of f any n-variate degree d polynomial over GF(q).
Proof. We use the all-zero function in role of f . Consider the family of polynomi-

als having the form
∏d−1
i=1 (x1− i) ·

∑n
i=2 cixi, where c2, . . . , cn ∈ GF(q). Clearly, each

member of this family is a degree d polynomial and the family contains qn−1 different
polynomials. Now, each polynomial in the family is zero on inputs (a1, . . . , an) satis-
fying either a1 ∈ {1, . . . , (d− 1)} or

∑n
i=2 ciai = 0, where the ci’s are these specifying

the polynomial in the collection. Since at least a d−1
q + (1 − d−1

q) · 1q fraction of the
inputs satisfy this condition, the proposition follows.

5. Counting: A random case. In this section we present a bound on the
number of polynomials that can agree with a function f if f is chosen to look like
a polynomial p on some domain D and random on other points. Specifically, for
|D| ≥ 2(d+ 1)·qn−1, we show that with high probability p itself is the only polynomial
that agrees with f on at least |D| (and even |D|/2) points.

Theorem 5.1. Let δ ≥ 2(d+1)
q . Suppose that D is an arbitrary subset of density δ

in GF(q)n and p(x1, . . . , xn) is a degree d polynomial. Consider a function f selected
as follows:

1. f agrees with p on D;
2. the value of f on each of the remaining points is uniformly and independently

chosen. That is, for every x ∈ D def
= GF(q)n \D, the value of f(x) is selected

at random in GF(q).
Then, with probability at least 1 − exp{(nd log2 q)− δ2qn−2}, the polynomial p is the
only degree d polynomial that agrees with f on at least a δ/2 fraction of the inputs.

Thus, for functions constructed in this manner, the output of our reconstruction
algorithm will be a single polynomial, namely, p itself.

Proof. We use the fact that for two polynomials p1 �= p2 in GF(q)n, p1(x) = p2(x)
on at most d/q fraction of the points in GF(q)n [10, 38, 46]. Thus, except for p, no
other degree d polynomial can agree with f on more than d

q · qn points in D. The

probability that any polynomial p′ agrees with f on more than a 1
q + ε fraction of the

points in D is at most exp{−ε2qn}. Furthermore, in order to agree with f on more
than an δ2 fraction of all points, p′ must agree with f on at least (δ2− dq)·qn of the points

in D, and so we can use ε ≥ (δ/2)−(d/q)
1−δ − 1

q >
δ
2 − d+1

q + δ·((δ/2)−(d/q))
q ≥ δ

q . Thus,
the probability that there exists a degree d n-variate polynomial, other than p, that

agrees with f on at least an δ/2 fraction of all points is at most qn
d · exp{−(δq)

2qn},
and the theorem follows.

6. Hardness results. In this section we give evidence that the (explicit or im-
plicit) reconstruction problem may be hard for some choices of d and the agreement
parameter δ, even in the case when n = 1. We warn the reader that the problems
shown to be hard do differ in some very significant ways from the reconstruction
problems considered in previous sections. In particular, the problems will consider
functions and relations defined on some finite subset of a large field, either the field

564 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

of rational numbers or a sufficiently large field of prime order, where the prime is
specified in binary. The hardness results use the “large” field size crucially.

Furthermore, the agreement threshold for which the problem is shown hard is
very small. For example, the hardness results of section 6.2, defines a function f :
H1 × H2 → F , where F is a large field and H1, H2 are small subsets of F . In such
a hardness result, one should compare the threshold δ of agreement that is required,
against d

max{|H1|,|H2|} , since the latter ratio that determines the “distance” between

two polynomials on this subset of the inputs. Our hardness results typically hold for
δ ≈ d+2

max{|H1|,|H2|} . We stress that the agreement is measured as a fraction of the

subset mentioned above, rather than as a fraction of the n-tuples over the field (in
case it is finite), which is much smaller.

6.1. NP-hardness for a variant of the univariate reconstruction prob-
lem. We define the following (variant of the) interpolation problem PolyAgree:

Input: Integers d, k,m, and a set of pairs P = {(x1, y1), . . . , (xm, ym)} such that for
all i ∈ [m], xi ∈ F , yi ∈ F , where F is either the field of rationals or a prime field
given by its size in binary.10

Question: Does there exist a degree d polynomial p : Fn → F for which p(xi) = yi
for at least k different i’s?

We stress that the pairs in P are not required to have distinct x-components (i.e.,
xi = xj may hold for some i �= j). Our result takes advantage of this fact.

Theorem 6.1. PolyAgree is NP-hard.

Remark. This result should be contrasted with the results of [40, 19]. They
show that PolyAgree is easy provided k ≥ √dm, while our result shows it is hard
without this condition. In particular, the proof uses m = 2d+ 3 and k = d+ 2 (and
so k <

√
dm). Furthermore, our result is established using a set of pairs in which

xi = xj holds for some i �= j, whereas this never happens when given oracle access to
a function (as in previous sections and in [40, 19]). In the next subsection, we show
that it is hard even in the oracle setting when the number of variables is at least two.

Proof. We present the proof for the case of the field of rational numbers only. It is
easy to verify that the proof also holds if the field F has prime order that is sufficiently
large (see parenthetical comments at the end of the proof for further details.)

We reduce from subset sum: Given integers B, a1, . . . , a�, does there exist a subset
of the ai’s that sum to B (without loss of generality, ai �= 0 for all i).

In our reduction we use the fact that degree d polynomials satisfy certain interpo-
lation identities. In particular, let αi = (−1)i+1

(
d+1
i

)
for 1 ≤ i ≤ d+ 1 and α0 = −1.

Then
∑d+1
i=0 αif(i) = 0 if and only if (0, f(0)), (1, f(1)), . . . , (d+ 1, f(d+ 1)) lies on a

degree d univariate polynomial.

We construct the following instance of PolyAgree. Set d = l− 1, m = 2d+3, and
k = d+2. Next, set xi ← i, xd+1+i ← i, yi ← ai/αi, and yd+1+i ← 0 for 1 ≤ i ≤ d+1.
Finally, set x2d+3 ← 0 and y2d+3 ← B.

No polynomial can pass through both (xi, yi) = (i, ai/αi) and (xd+1+i, yd+1+i) =
(i, 0) for any i, since ai �= 0. We show that there is a polynomial of degree d that
passes through (0, B) and one of either (i, 0) or (i, ai/αi) for each 1 ≤ i ≤ d+1 if and
only if there is a subset of a1, . . . , ad+1 whose sum is B.

10When F is the field of rational numbers, the input elements are assumed to be given as a ratio
of two N -bit integers. In such a case the input size is measured in terms of the total bit length of all
inputs.

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 565

Assume that there is a polynomial p of degree d that passes through (0, B) and
one of (i, 0) and (i, ai/αi) for each 1 ≤ i ≤ d+ 1. Let S denote the set of indices for
which p(i) = ai/αi (and p(i) = 0 for i ∈ [d+ 1]\S). Then

0 =

d+1∑

i=0

αip(i) = α0 ·B +
∑

i∈S
αi · ai

αi
= −B +

∑

i∈S
ai.(6.1)

Similarly, if there is set of indices S such that
∑
i∈S ai = B, then we define f so that

f(0) = B, f(i) = ai/αi for i ∈ S, and f(i) = 0 for i ∈ [d + 1]\S. Observing that∑d+1
i=0 αif(i) = 0 it follows that there is a degree d polynomial that agrees with f on

i = 0, . . . , d+ 1.
For the case where F is a finite field of order q, we assume that the integers B

and a1, . . . , ad+1 are all multiples of αi for every i. (This assumption can be realized
easily by multiplying all integers in the input by lcm(|α0|, . . . , |αd+1|).) Further we

pick q > |B|+∑d+1
i=1 |ai|. The only change to the proof is that the equalities in (6.1)

directly hold only modulo q. At this stage, we use the condition q > |B|+∑d+1
i=1 |ai|

to conclude that B =
∑
i∈S ai.

6.2. NP-hardness of the reconstruction problem for n ≥ 2. In the above
problem, we did not require that the xi’s be distinct. Thus this result does not directly
relate to the black box model used in this paper. The following result applies to our
black box model for n-variate functions, for any n ≥ 2.

We define a multivariate version of PolyAgree that requires that the xi’s be dis-
tinct. We actually define a parameterized family FunctionalPolyAgreen, for any n ≥ 1.
Input: Integer d, a field F , a finite subset H ⊆ Fn, a rational number δ, and a
function f : H → F , given as a table of values.
Question: Does there exist a degree d polynomial p : Fn → F for which p(x) = f(x)
for at least δ fraction of the x’s from H?

Theorem 6.2. For every n ≥ 2, FunctionalPolyAgreen is NP-hard.
Proof. We prove the theorem for n = 2. The other cases follow by simply making

an instance where only the values of first two variables vary in the set H and the
remaining variables are assigned some fixed value (say 0).

The proof of this theorem builds on the previous proof. As above we reduce
from subset sum. Given an instance B, a1, . . . , al of the subset sum problem, we
set d = l − 1 and k = 2(d + 1) and F to be the field of rationals. (We could also
work over any prime field GF(q), provided q ≥ |B| +∑ni=1 |ai|.) Let δ = d+3

2(d+2) .

We set H1 = {0, . . . , d + 1}, H2 = [2k], and let H = H1 × H2. For i ∈ H1 we let
αi = (−1)i+1

(
d+1
i

)
as before. For i ∈ H1−{0}, let yi = ai/αi as before. The function

f is defined as follows:

f(i, j) =

B if i = 0,
yi if i ∈ H1 − {0} and j ∈ [k],
0 otherwise (i.e., if i ∈ H1 − {0} and j ∈ {k + 1, . . . , 2k}.

This completes the specification of the instance of the FunctionalPolyAgree2 problem.
We now argue that if the subset sum instance is satisfiable, then there exists a poly-
nomial p with agreement δ (on inputs from H) with f . Let S ∈ [l] be a subset such
that

∑
i∈S ai = B. Then the function

p(i, j)
def
= p′(i) def

=

B if i = 0,
yi if i ∈ S,
0 if i ∈ H1 \ S

566 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

is a polynomial in i of degree d (since
∑d+1
i=0 αip

′(i) = −B +
∑
i∈S ai = 0). Further-

more, p and f agree in 2k+k(d+1) inputs from H. In particular p(0, j) = f(0, j) = B
for every j ∈ [2k], p(i, j) = f(i, j) = yi if i ∈ S and j ∈ [k] and p(i, j) = f(i, j) = 0 if

i �∈ S and j ∈ {k+1, . . . , 2k}. Thus p and f agree on a fraction 2k+k(d+1)
2(d+2)k = d+3

2(d+2) = δ

of the inputs from H, as required.

We now argue that if instance of the FunctionalPolyAgree2 problem produced
by the reduction is satisfiable, then the subset sum instance is satisfiable. Fix a
polynomial p that has agreement δ with f ; i.e., p(i, j) = f(i, j) for at least 2k+k(d+1)
inputs from H. We argue first that in such a case p(i, j) = p′(i) for some polynomial
p′(i) and then the proof will be similar to that of Theorem 6.1. The following claim
is crucial in this proof.

Claim 6.3. For any i ∈ [d + 1], if |{j|p(i, j) = f(i, j)}| ≥ k, then there exists
ci ∈ {0, yi} such that p(i, j) = ci for every j ∈ [2k].

Proof. Consider the function p(i)(j)
def
= p(i, j). p(i) is a degree d polynomial in j.

By hypothesis (and the definition of f(i, j)) we have p(i)(j) ∈ {0, yi} for k values of
j ∈ [2k]. Hence p(i)(j) = 0 for k/2 values of j or p(i)(j) = yi for k/2 values of j. In
either case we have that p(i), a degree d polynomial, equals a constant polynomial for
k/2 = d+ 1 points implying that p(i) is a constant. That p(i)(j) = ci ∈ {0, yi} follows
from the hypothesis and definition of f .

From the claim above it follows immediately that for any i ∈ [d+1], |{j|f(i, j) =
p(i, j)}| ≤ k. Now using the fact that f and p agree on 2k + k(d + 1) inputs it
follows that for every i ∈ [d + 1], f(i, j) = p(i, j) for exactly k values of j, and
f(0, j) = p(0, j) = B for all values of j. Using the above claim again we conclude that

we can define a function p′(i) def
= ci ∈ {0, yi} if i ∈ [d + 1] and p′(0) = B such that

p(i, j) = p′(i) for every (i, j) ∈ H. Furthermore p′(i) is a degree d polynomial, since p

is a degree d polynomial; and hence
∑d+1
i=0 αip

′(i) = 0. Letting S = {i ∈ [d+1]|yi �= 0},
we get −B +

∑
i∈S αiyi = 0, which in turns implies B =

∑
i∈S ai. Thus the instance

of the subset sum problem is satisfiable. This concludes the proof.

7. An application to complexity theory. In this section we use the recon-
struction algorithm for linear-polynomials to prove the security of new, generic, hard-
core functions. This generalizes the result of Goldreich and Levin [17] that provided
hard-core predicates. We comment that an alternative construction of generic hard-
core functions was also presented in [17], where its security was reduced to the security
of a specific hard-core predicate via a “computational XOR lemma” due to [43]. For
further details, see [16].

Loosely speaking, a function h : {0, 1}∗ → {0, 1}∗ is called a hard-core of a
function f : {0, 1}∗ → {0, 1}∗ if h is polynomial-time, but given f(x) it is infeasible to
distinguish h(x) from a random |h(x)|-bit long string. Thus, not only is h(x) hard to
find given f(x), it is even hard to recognize pairs of the form (h(x), f(x)). Intuitively,
if h is a hard-core of f , then it must be hard to invert f (i.e., given f(x) find x). We
formulate all these notions below, assuming for simplicity that f is length-preserving,
i.e., |f(x)| = |x| for all x ∈ {0, 1}∗.

Definition 7.1 (one-way function). A function f : {0, 1}∗ → {0, 1}∗ is called
one-way if the following two conditions hold:

1. The function f is computable in polynomial-time.
2. For every probabilistic polynomial-time algorithm A, every polynomial p, and

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 567

all sufficiently large n

Px∈{0,1}n [A(f(x)) ∈ f−1(f(x))] <
1

p(n)
.

Definition 7.2 (hard-core function). A function h : {0, 1}∗ → {0, 1}∗ is called
a hard-core of a function f : {0, 1}∗ → {0, 1}∗ if the following two conditions hold:

1. The function h is computable in polynomial-time.
2. For every probabilistic polynomial-time algorithm D, every polynomial p, and
all sufficiently large n

∣∣Px∈{0,1}n [D(f(x), h(x)) = 1]−Px∈{0,1}n , r∈{0,1}|h(x)| [D(f(x), r) = 1]
∣∣ < 1

p(n)
.

Theorem 7.3. Let f ′ be a one-way function and : be a polynomial-time com-
putable integer function satisfying :(m) = O(logm). For x = (x1, . . . , xm) ∈ GF(2�(m))m

and y = (y1, . . . , ym) ∈ GF(2�(m))m, let f(x, y)
def
= (f ′(x), y) and h(x, y) def

=
∑m
i=1 xiyi.

Then h is a hard-core of f .
This theorem generalizes the result of Goldreich and Levin [17] from : ≡ 1 to any

logarithmically bounded :.
Proof. Assume for contradiction that there exists a probabilistic polynomial-time

algorithm D and a polynomial p so that for infinitely many m’s

∣∣∣∣
Px,y∈GF(2�(m))m [D(f(x, y), h(x, y)) = 1]
− Px,y∈GF(2�(m))m , r∈GF(2�(m))[D(f(x, y), r) = 1]

∣∣∣∣ ≥
1

p(m)
.

Let M denote the set of integers m for which the above inequality holds; and let
ε(m) denote the difference (inside the absolute value), and assume, without loss of
generality, that it is positive. Using the above D we first prove the following.

Claim. There exists a probabilistic polynomial-time algorithm A that satisfies

Px,y∈GF(2�(m))m [A(f(x, y)) = h(x, y)] ≥ 2−�(m) +
ε(m)

2�(m) − 1

for every m ∈M .
Proof. The claim may be established by analyzing the success probability of the

following algorithm A: On input z = f(x, y), uniformly select r ∈ GF(2�(m)), invoke
D(z, r), and return r if D(z, r) = 1 and a uniformly selected value in GF(2�(m)) \ {r}
otherwise. Details follow.

Px,y[A(f(x, y)) = h(x, y)] = Px,y,r[A(f(x, y)) = h(x, y) & r = h(x, y)]

+Px,y,r[A(x, y) = h(x, y) & r �= h(x, y)]

= Px,y,r[D(f(x, y), r) = 1 & r = h(x, y)]

+Px,y,r,r′ [D(f(x, y), r) = 0 & r′ = h(x, y) �= r],

where r′ denotes a uniformly selected value in GF(2�(m))\ {r}. Letting L = 2�(m), we
have

Px,y,r[D(f(x, y), r) = 1 & r = h(x, y)] =
1

L
·Px,y,r[D(f(x, y), r) = 1 | r = h(x, y)]

=
1

L
·Px,y,r[D(f(x, y), h(x, y)) = 1].

568 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

On the other hand

Px,y,r,r′ [D(f(x, y), r) = 0 & r′ = h(x, y) �= r]

=
1

L− 1
·Px,y,r[D(f(x, y), r) = 0 & r �= h(x, y)]

=
1

L− 1
· (Px,y,r[D(f(x, y), r) = 0]−Px,y,r[D(f(x, y), r) = 0 & r = h(x, y)])

=
1

L− 1
·
(

1−Px,y,r[D(f(x, y), r) = 1]− 1

L
+

1

L
·Px,y[D(f(x, y), h(x, y)) = 1]

)
.

Combining the above, we get

Px,y[A(f(x, y)) = h(x, y)]

=
1

L
·Px,y,r[D(f(x, y), h(x, y)) = 1]

+
1

L
+

1

L− 1
·
(

1

L
·Px,y[D(f(x, y), h(x, y)) = 1]−Px,y,r[D(f(x, y), r) = 1]

)

=
1

L
+

1

L− 1
· (Px,y[D(f(x, y), h(x, y)) = 1]−Px,y,r[D(f(x, y), r) = 1])

≥ 1

L
+

1

L− 1
· ε(m),

and the claim follows.

Let A be as in the above claim. Recalling that f(x, y) = (f ′(x), y), observe that A

gives rise to a function Fz′ : GF(2�(m))m → GF(2�(m)) defined by Fz′(y)
def
= A(z′, y),

and it holds that

Px,y∈GF(2�(m))m

[
Ff ′(x)(y) =

m∑

i=1

xiyi

]
≥ 2−�(m) +

ε(m)

2�(m) − 1
.

Thus, for at least an ε(m)
2�(m)+1 fraction of the possible x = (x1, . . . , xm)’s it holds that

Py∈GF(2�(m))m

[
Ff ′(x)(y) =

m∑

i=1

xiyi

]
≥ 2−�(m) +

ε(m)

2�(m)+1
.

Applying Theorem 2.1 to such Ff ′(x), with δ = 2−�(m) + ε(m)
2�(m)+1 , we obtain a list

of all polynomials that agree with Ff ′(x) on at least a 2−�(m) + ε(m)
2�(m)+1 fraction of

the inputs. This list includes x, and hence we have inverted the function f ′ in time
poly(m/δ) = poly(|x|). This happens on a polynomial fraction of the possible x’s,
and thus we have reached a contradiction to the hypothesis that f ′ is a one-way
function.

Acknowledgments. We are grateful to Mike Kearns and Dana Ron for discus-
sion regarding agnostic learning. We thank Eyal Kushilevitz and Yishay Mansour for
comments regarding an early version of this paper. We thank Salil Vadhan for clari-
fying discussions. We thank Felix Wu for pointing out an error in a previous version
of the paper. We thank the anonymous referees for pointing out numerous errors and
other helpful comments.

LEARNING POLYNOMIALS WITH QUERIES: HIGHLY NOISY CASE 569

REFERENCES

[1] D. Angluin and P. Laird, Learning from noisy examples, Machine Learning, 2 (1988), pp. 343–
370.

[2] D. Angluin and M. Kriķis, Learning with malicious membership queries and exceptions, in
Proceedings of the Seventh Annual ACM Conference on Computational Learning Theory,
New Brunswick, NJ, ACM Press, New York, 1994, pp. 57–66.

[3] S. Ar, R. J. Lipton, R. Rubinfeld, and M. Sudan, Reconstructing algebraic functions from
mixed data, SIAM J. Comput., 28 (1999), pp. 487–510.

[4] S. Arora and M. Sudan, Improved low degree testing and its applications, in Proceedings of
the 29th Annual ACM Symposium on Theory of Computing, El Paso, TX, 1997, ACM
Press, New York, pp. 485–495.

[5] D. Beaver and J. Feigenbaum, Hiding instances in multioracle queries, in 7th Annual Sym-
posium on Theoretical Aspects of Computer Science, Rouen, France, Lecture Notes in
Comput. Sci., 415, Springer, New York, 1990, pp. 37–48.

[6] A. Blum and P. Chalasani, Learning switching concepts, in Proceedings of the 5th Annual
ACM Workshop on Computational Learning Theory, ACM Press, Pittsburgh, PA, 1992,
pp. 231–242.

[7] A. Blum, M. Furst, M. Kearns, and R. J. Lipton, Cryptographic primitives based on hard
learning problems, in Advances in Cryptology—CRYPTO ’93, D. R. Stinson, ed., Lecture
Notes in Comput. Sci. 773, Springer-Verlag, New York, pp. 278–291.

[8] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numerical
problems, J. Comput. System Sci., 47 (1993), pp. 549–595.

[9] R. Cleve and M. Luby, A Note on Self-Testing/Correcting Methods for Trigonometric Func-
tions, International Computer Science Institute Technical Report TR-90-032, ICSI, Berke-
ley, CA, 1990.

[10] R. A. DeMillo and R. J. Lipton, A probabilistic remark on algebraic program testing, Inform.
Process. Lett., 7 (1978), pp. 193–195.

[11] P. Elias, List decoding for noisy channels, in 1957-IRE WESCON Convention Record, Part
2, IRE-IEEE Press, New York, 1957, pp. 94–104.

[12] Y. Freund and D. Ron, Learning to model sequences generated by switching distributions, in
Proceedings of the Eighth Annual Conference on Computational Learning Theory, ACM
Press, Santa Cruz, CA, 1995, pp. 41–50.

[13] S. A. Goldman, M. J. Kearns, and R. E. Schapire, Exact identification of read-once formu-
las using fixed points of amplification functions, SIAM J. Comput., 22 (1993), pp. 705–726.

[14] P. Gemmell, R. J. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson, Self-
testing/correcting for polynomials and for approximate functions, in Proceedings of the
23rd Annual ACM Symposium on Theory of Computing, New Orleans, LA, ACM Press,
New York, 1991, pp. 32–42.

[15] P. Gemmell and M. Sudan, Highly resilient correctors for polynomials, Inform. Process. Lett.,
43 (1992), pp. 169–174.

[16] O. Goldreich, Foundations of Cryptography—Fragments of a Book, Weizmann Insti-
tute of Science, Rehovot, Israel, 1995. Available from the ECCC, http://www.eccc.uni-
trier.de/eccc/.

[17] O. Goldreich and L. A. Levin, A hard-core predicate for all one-way functions, in Proceedings
of the 21st Annual ACM Symposium on Theory of Computing, Seattle, WA, ACM Press,
New York, 1989, pp. 25–32.

[18] O. Goldreich, R. Rubinfeld, and M. Sudan, Learning polynomials with queries: The highly
noisy case, in 36th Annual Symposium on Foundations of Computer Science, IEEE, Mil-
waukee, WI, IEEE, New York, 1995, pp. 294–303.

[19] V. Guruswami and M. Sudan, Improved decoding of Reed-Solomon and algebraic-geometric
codes, IEEE Trans. Inform. Theory, 45 (1999), pp. 1757–1767.

[20] M. Kearns, Efficient noise-tolerant learning from statistical queries, J. ACM, 45 (1998),
pp. 983–1006.

[21] M. Kearns and M. Li, Learning in the presence of malicious errors, SIAM J. Comput., 22
(1993), pp. 807–837.

[22] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie, On the
learnability of discrete distributions (extended abstract), in Proceedings of the 26th Annual
ACM Symposium on the Theory of Computing, Montreal, Canada, ACM Press, New York,
1994, pp. 273–282.

[23] M. J. Kearns, R. E. Schapire, and L. M. Sellie, Toward efficient agnostic learning (extended
abstract), in Proceedings of the 5th Annual ACM Workshop on Computational Learning

570 ODED GOLDREICH, RONITT RUBINFELD, AND MADHU SUDAN

Theory, Pittsburgh, PA, ACM Press, New York, 1992.
[24] P. Koiran, Efficient learning of continuous neural networks, in Proceedings of the 7th Annual

ACM Conference on Computational Learning Theory, New Brunswick, NJ, ACM Press,
New York, 1994, pp.348–355.

[25] E. Kushilevitz and Y. Mansour, Learning decision trees using the Fourier spectrum, SIAM
J. Comput., 22 (1993), pp. 1331–1348.

[26] P. D. Laird, Learning From Good and Bad Data, Kluwer Academic Publishers, Boston, 1988.
[27] L. A. Levin, Randomness and non-determinism, J. Symbolic Logic, 58 (1993), pp. 1102–1103.
[28] R. J. Lipton, New directions in testing, in Distributed Computing and Cryptography: Pro-

ceedings of a DIMACS Workshop, J. Feigenbaum and M. Merritt, eds., AMS, Providence,
RI, 1991, pp. 191–202.

[29] W. Maass, Efficient agnostic PAC-learning with simple hypotheses, in Proceedings of the 7th
Annual ACM Conference on Computational Learning Theory, New Brunswick, NJ, ACM
Press, New York, 1994, pp. 67–75.

[30] W. Maass, Agnostic PAC-learning of functions on analog neural nets, in Proceedings of the
6th Conference on Advances in Neural Information Processing Systems, J. D. Cowan, G.
Tesauro, and J. Alspector, eds., Morgan Kaufmann, San Mateo, CA, 1994, pp. 311–318.

[31] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-
Holland, Amsterdam, 1981.

[32] Y. Mansour, Randomized interpolation and approximation of sparse polynomials, SIAM J.
Comput., 24 (1995), pp. 357–368.

[33] D. Ron and R. Rubinfeld, Learning fallible deterministic finite automata, Machine Learning
18 (1995), pp. 149–185.

[34] R. Rubinfeld, On the robustness of functional equations, SIAM J. Comput., 28 (1999),
pp. 1972–1997.

[35] R. Rubinfeld and M. Sudan, Robust characterizations of polynomials with applications to
program testing, SIAM J. Comput., 25 (1996), pp. 252–271.

[36] Y. Sakakibara, On learning from queries and counterexamples in the presence of noise, In-
form. Process. Lett., 37 (1991), pp. 279–284.

[37] Y. Sakakibara and R. Siromoney, A noise model on learning sets of strings, in Proceed-
ings of the 5th Annual ACM Workshop on Computational Learning Theory, ACM Press,
Pittsburgh, PA, ACM Press, New York, 1992, pp. 295–302.

[38] J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. ACM,
27 (1980), pp. 701–717.

[39] R. Sloan, Types of noise in data for concept learning (extended abstract), in Proceedings of the
1988 Workshop on Computational Learning Theory, Cambridge, MA, Morgan Kaufmann,
San Mateo, CA, 1988, pp. 91–96.

[40] M. Sudan, Decoding of Reed Solomon codes beyond the error-correction bound, J. Complexity,
13 (1997), pp. 180–193.

[41] M. Sudan, L. Trevisan, and S. Vadhan, Pseudorandom generators without the XOR lemma,
in Proceedings of the 31st Annual ACM Symposium on Theory of Computing, Atlanta,
GA, ACM Press, New York, 1999, pp. 537–546.

[42] L. G. Valiant, Learning disjunctions of conjunctions, in Proceedings of the 9th International
Joint Conference on Artificial Intelligence, Los Angeles, 1985, Morgan Kauffman Publish-
ers, San Mateo, CA, 1985, pp. 560–566.

[43] U. V. Vazirani and V. V. Vazirani, Efficient and secure pseudo-random number generation,
in Proceedings of the 25th IEEE Symposium on Foundations of Computer Science, Singer
Island, FL, 1984, IEEE, New York, 1984, pp. 458–463.

[44] H. Wasserman, Reconstructing randomly sampled multivariate polynomials from highly noisy
data, in Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms,
San Francisco, CA, ACM Press, New York, SIAM, Philadelphia, 1998, pp. 59–67.

[45] L. R. Welch and E. R. Berlekamp, Error Correction of Algebraic Block Codes, US patent
4,633,470, December 30, 1986.

[46] R. E. Zippel, Probabilistic algorithms for sparse polynomials, in Proceedings of EUROSAM
’79: International Symposium on Symbolic and Algebraic Manipulation, E. Ng, ed., Lecture
Notes in Comput. Sci., 72, Springer, New York, 1979, pp. 216–226.

[47] R. E. Zippel, Interpolating polynomials from their values, J. Symbolic Comput., 9 (1990),
pp. 375–403.

[48] R. E. Zippel, Effective Polynomial Computation, Kluwer Academic Publishers, Boston, 1993.

UNIQUENESS OF SOME RESOLUTION IV TWO-LEVEL REGULAR
FRACTIONAL FACTORIAL DESIGNS∗

HEGANG CHEN† AND CHING-SHUI CHENG‡

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 4, pp. 571–575

Abstract. It is well known that if there exists a resolution IV 2n−m design, then n ≤ 2n−m−1.
A resolution IV 2n−m design with n = 2n−m−1 is known to be unique in the sense that all such
designs can be obtained from one another by relabeling the factors. By using a projective geometric
approach, we show that resolution IV 2n−m designs with n = 2n−m−1 − 1 and n = 2n−m−1 − 2 are
also unique.

Key words. experimental design, projective geometry, resolution, saturated design

AMS subject classifications. 62K15, 05B25

PII. S0895480199363544

1. Introduction. Two-level regular fractional factorial designs are among the
most widely used experimental designs. Suppose there are n two-level factors. Denote
the two levels by 0 and 1, and identify them with the elements of GF(2), the finite
field with two elements. Then the set of all the 2n level combinations is conveniently
represented by the n-dimensional linear space {x : x = (x1, . . . , xn), xi = 0, 1} over
GF(2), denoted by V n. Without loss of generality, a 2n−m regular fractional factorial
design can be defined as an (n−m)-dimensional subspace of V n, or equivalently, the
solution set of m simultaneous linear equations

xbi = 0, i = 1, . . . ,m,(1)

where b1, . . . , bm are linearly independent vectors in V n, written as column vectors.
Let W be the n× (2m− 1) matrix whose columns are all the nonnull linear combina-
tions of b1, . . . , bm. Then (1) is equivalent to

xW = 0.(2)

In factorial design literature, (2) is called the defining relation of the design, and each
column of W is referred to as a defining word. The number of nonzero components
that a defining word contains is called its length (or weight in coding theory literature),
and the resolution of a design is defined as the length of a shortest defining word.
This important concept, introduced by Box and Hunter (1961a, 1961b), is useful for
classifying fractional factorial designs.

It is well known that if there exists a resolution III 2n−m design, then n ≤
2n−m − 1, and if a resolution IV 2n−m design exists, then n ≤ 2n−m−1; these follow,
for example, from the two Rao’s inequalities on p. 13 of Hedayat, Sloane, and Stufken

∗Received by the editors October 27, 1999; accepted for publication (in revised form) August
14, 2000; published electronically November 27, 2000. This research was supported by the National
Science Foundation. The U.S. Government retains a nonexclusive, royalty-free license to publish or
reproduce the published form of this contribution, or allows others to do so, for U.S. Government
purposes. Copyright is owned by SIAM to the extent not limited by these rights.

http://www.siam.org/journals/sidma/13-4/36354.html
†Division of Biostatistics, University of Minnesota, MMC 303, 420 Delaware St. S.E., Minneapolis,

MN 55455-0378 (hegangc@biostat.umn.edu).
‡Department of Statistics, University of California, Berkeley, CA 94720-3860 (cheng@stat.

berkeley.edu).

571

572 HEGANG CHEN AND CHING-SHUI CHENG

(1999). A resolution III 2n−m design with n = 2n−m−1 is called saturated. Saturated
resolution III designs are unique in the sense that they can be obtained from one
another by relabeling the factors. We shall also call a resolution IV 2n−m design
with n = 2n−m−1 saturated. (In this case, the number of factors is exactly half of
the run size.) It follows from Margolin (1969) that a saturated resolution IV 2n−m

design must be the foldover of a saturated resolution III 2(n−1)−m design. Thus
saturated resolution IV 2n−m designs are also unique. In this note, we shall show the
uniqueness of some nearly saturated resolution IV 2n−m designs. Specifically, we show
that resolution IV 2n−m designs with n = 2n−m−1− 1 (respectively, n = 2n−m−1− 2)
must be obtained by deleting one factor (respectively, two factors) from a saturated
resolution IV design, when n−m ≥ 3 (respectively, n−m ≥ 4).

In general, for n = 2n−m−1 − q, a design obtained by deleting q factors from a
saturated resolution IV design with 2n−m runs is of resolution at least IV. However,
when q > 2, this is not the only design of resolution at least IV. Clearly, for q > 2,
there is more than one way to delete q factors from a saturated resolution IV design.
A more fundamental question is whether a design of resolution at least IV can always
be obtained by deleting q factors from a saturated resolution IV design. The answer
to this general question is no, but it holds when q is small relative to 2n−m−1.

Connections between fractional factorial designs and finite projective geometry is
well known (Bose (1947)). In section 2, we briefly review this connection and show
that our uniqueness results are equivalent to the following theorem which is proved
in section 3.
Theorem. Let G be a PG(k − 1, 2), a (k − 1)-dimensional projective geometry

based on GF (2), and t = 2k−1 − 1 + q, q ≥ 1.
(a) For k ≥ 3 and q = 1, a t-subset of G contains the maximum number of lines

if and only if it is obtained by adding an arbitrary point to a (k−2)-flat in G.
(b) For k ≥ 4 and q = 2, a t-subset of G contains the maximum number of lines

if and only if it is obtained by adding two arbitrary points to a (k − 2)-flat
in G.

Recall that an f -flat consists of all the 2f+1−1 nonnull linear combinations of f+1
linearly independent points of a projective geometry. Some recent papers exploiting
the connection between fractional factorial designs and projective geometry include
Chen and Hedayat (1996), Chen and Cheng (1999), Cheng and Mukerjee (1997, 1998),
Mukerjee and Wu (1999). Chen and Hedayat (1996) is particularly relevant since it
also considered the problem of maximizing the number of lines.

Throughout this note, |A| denotes the cardinality of a set A.

2. A projective-geometric formulation. Let k = n−m and G be a PG(k−
1, 2). Each of the g points of G, where g = 2k − 1, can be represented by a nonnull
k × 1 vector. Let T be an n-subset of G and VT be the k × n matrix with the points
of T as its columns. If VT has full row rank, then its row space gives a regular 2n−m

design. Thus each regular 2n−m design corresponds to an n-subset of PG(k − 1, 2),
where k = n−m. A defining word of length t corresponds to t of the n chosen points,
say, αi1 , . . . ,αit , with αi1 + · · · + αit = 0. Thus, for example, a defining word of
length three corresponds to three collinear points and constructing a 2n−m design
with resolution at least four amounts to choosing a set of n points from PG(k− 1, 2)
which contains no lines, where k = n−m.

When all the 2k − 1 points of a PG(k − 1, 2) are chosen, one obtains a saturated
resolution III design. A saturated resolution IV design can also be constructed easily.
Let A be a (k − 2)-flat in G. Then G = A ∪ {a} ∪ (a + A) for a point a
∈ A. It is

UNIQUENESS OF SOME RESOLUTION IV DESIGNS 573

clear that {a} ∪ (a+A) contains no lines; consequently choosing all the 2k−1 points
in {a}∪ (a+A) leads to a resolution IV design with 2k−1 factors, which is saturated.
In other words, a saturated resolution IV 2n−m design can be obtained by choosing
all the points in the complement of a (k − 2)-flat.

Now suppose n = 2k−1 − q, q ≥ 1. Let A be obtained by adding q points to a
(k−2)-flat. Then A, the complement of A, has 2k−1−q points and obviously contains
no lines. Hence A defines a 2n−m design for n = 2k−1 − q factors with resolution at
least IV. The question raised in the introduction is essentially whether this is the
only way to choose an n-subset which contains no lines. As remarked there and will
be shown in the following, the answer is yes for q = 1 and 2 when k ≥ 3 and 4,
respectively.

For any subset A of G, let N(G) and N(A) be the numbers of lines contained in
G and A, respectively, and let N(A,A) be the number of lines with at least one point
in each of A and A. Then

N(G) = N(A) +N(A) +N(A,A).(3)

Since N(A,A) = 1
2 |A||A| and N(G) is a constant, when |A| ≤ 2k−1, N(A) = 0 if and

only if A maximizes N(A). Thus an equivalent problem is, for q = 1 and 2, whether
the only way to maximize N(A) over all (2k−1 − 1 + q)-subsets of G is to let A be a
(k − 2)-flat supplemented by q points. This is what the theorem in the introduction
is about. Note that for q = 0 (the saturated case), N(A) is obviously maximized by a
(k−2)-flat, thus providing a geometric proof of the uniqueness of saturated resolution
IV designs; see Bose (1947) and Chen (1993).

In the rest of the paper, 〈H〉 denotes the flat generated by a subset H of G. A
subset of G is said to be of rank p if it contains p, but not more than p, linearly
independent points.

3. Proof of the theorem. We first prove several lemmas.
Lemma 1. Suppose G is a PG(k − 1, 2), t = 2k−1 − 1 + q, q ≥ 1, and A is a

t-subset of G. Then there exists an H ⊂ A such that H has rank k− 1, H = A∩ 〈H〉
and A = H ∪ {a,a+ b1, . . . ,a+ bs}, where b1, . . . , bs ∈ 〈H〉, and a
∈ 〈H〉.

Proof. First of all, A must contain k linearly independent points, say, a1, . . . ,ak;
for otherwise, t = |A| ≤ 2k−1 − 1, a contradiction. Let H = A ∩ 〈a1, . . . ,ak−1〉 and
a = ak. Then H has rank k− 1, and 〈H〉 = 〈a1, . . . ,ak−1〉 is a (k− 2)-flat. It follows
that each x ∈ A\H with x
= a has the form a+ b for some b ∈ 〈H〉.
Lemma 2. In Lemma 1, suppose A contains the maximum number of lines among

all t-subsets of G. Then the complement A of A in G contains no lines.
Proof. This has been shown in the sentence following (3).
Lemma 3. In Lemma 1, suppose A contains the maximum number of lines among

all t-subsets of G. Then the set H has the following properties:
(i) 〈H〉\H contains no lines,
(ii) |H| ≥ 2k−2 − 1 (so s ≤ 2k−2 + q − 1), and
(iii) if |H|
= 2k−1− 1 (i.e., H is not a (k− 2)-flat), then |H| ≤ 2k−2+ q− 1 (i.e.,

s ≥ 2k−2 − 1).
Proof. Since 〈H〉\H ⊂ A, by Lemma 2, it contains no lines. This proves (i). Then

we must have y, z ∈ 〈H〉\H ⇒ y + z ∈ H. Therefore |〈H〉\H| ≤ |H|+ 1. Thus (ii)
follows from |〈H〉| = 2k−1 − 1.

Suppose |H|
= 2k−1 − 1. Then 〈H〉 contains at least one point x such that
x
∈ A. Let C = {a,a + b1, . . . ,a + bs} and D be the complement of C in {a} ∪
(a + 〈H〉). Then since A contains no line, we must have x + y ∈ C for all y ∈ D.

574 HEGANG CHEN AND CHING-SHUI CHENG

Therefore |C| ≥ |D|. Since |C ∪ D| = 2k−1, |C| ≥ 2k−2; therefore s ≥ 2k−2 − 1,
proving (iii).
Lemma 4. In Lemma 1, suppose A contains the maximum number of lines among

all t-subsets of G. Let E be a (k− 3)-flat in 〈H〉. If neither E nor 〈H〉\E is a subset
of {b1, . . . , bs}, then |A ∩ (〈H〉\E)| ≥ 2k−2 − 1

2 (s+ 1).

Proof. Since G\〈H〉 = {a}∪ (a+ 〈H〉), we can decompose A∩ (G\〈H〉) as P ∪Q,
where P = A∩ (a+E) and Q = A∩ (a+ (〈H〉\E)). By the assumption that neither
E nor 〈H〉\E is a subset of {b1, . . . , bs} and noting that P ∪ Q is the complement
of {a,a+ b1, . . . ,a+ bs} in G\〈H〉, we see that both P and Q are nonempty. Then
since A contains no lines, and y+z ∈ 〈H〉\E for all y ∈ a+E and z ∈ a+(〈H〉\E),
we must have y + z ∈ A ∩ (〈H〉\E) for all y ∈ P and z ∈ Q. It follows that
|A∩ (〈H〉\E)| ≥ max{|P |, |Q|} ≥ 1

2 |P ∪Q| = 1
2 |A∩ (G\〈H〉)| = 1

2 (2
k−1−s−1).

We shall prove the theorem by induction, first establishing the validity of part (a)
for k = 3 and part (b) for k = 4. Also, it is enough to prove the necessity part since
the sufficiency has already been established by the construction in section 2.

Part (a) of the theorem holds for k = 3 trivially. We now prove that (b) holds for
k = 4. In this case, A has nine points. It suffices to show that A contains a 2-flat.

Let H be a set of rank three as in Lemma 1. If H is itself a 2-flat, then there
is nothing to prove. Otherwise, by Lemma 3, 3 ≤ |H| ≤ 5. On the other hand, by
Lemma 3(i), 〈H〉\H contains no lines; therefore H must contain at least one line.
Then the case |H| = 3 is ruled out since H also needs to contain three linearly
independent points, which cannot be collinear.

Case 1. |H| = 4. In this case, s = 4, and H must be a line supplemented by
a point, say, H = {u,v,u + v,w}. Let E be the line {u,v,u + v}. Then since
|A ∩ (〈H〉\E)| = |{w}| = 1, which is less than 2k−2 − 1

2 (s + 1) = 1.5, by Lemma 4,
either E or 〈H〉\E is a subset of {b1, . . . , bs}. In both cases, it is easy to see that A
contains a 2-flat.

Case 2. |H| = 5. In this case, H is obtained by deleting two points from a 2-flat.
Without loss of generality, we may assume thatH = {w,u+v,u+w,v+w,u+v+w},
where u, v, and w are linearly independent. Let E be the line consisting of the
three points u + v,u + w, and v + w. Then 〈H〉\E = {u,v,w,u + v + w} and
A∩ (〈H〉\E) = {w,u+ v+w}. Let P and Q be as defined in the proof of Lemma 4.
In this case, 〈H〉\E cannot be a subset of {b1, . . . , bs}, since |〈H〉\E| = 4 and s = 3.
We may also assume that E
= {b1, . . . , bs}, for otherwise A would contain the 2-
flat generated by a,u + w and v + w, and there would be nothing to prove. So
as in the proof of Lemma 4, we have max{|P |, |Q|} ≤ |A ∩ (〈H〉\E)| = 2. On the
other hand, |P ∪ Q| = 4. Therefore |P | = |Q| = 2. Let P = {a + c1,a + c2} and
Q = {a + c3,a + c4}, where a
∈ 〈H〉, c1, c2 ∈ E, and c3, c4 ∈ 〈H〉\E. Since y ∈ P
and z ∈ Q ⇒ y + z ∈ A ∩ (〈H〉\E) (see the proof of Lemma 4), we must have
{c1 + c3, c1 + c4} = {c2 + c3, c2 + c4} = A ∩ (〈H〉\E), which is {w,u + v + w}.
In particular, we must have {c1 +w, c1 + u + v +w} = {c2 +w, c2 + u + v +w}.
By checking all three ways of choosing two points from E, we conclude that this
equality holds only for {c1, c2} = {u +w,v +w}. Therefore {c3, c4} = {u,v}, and
so A = {w,u+v,u+w,v+w,u+v+w,a,a+u+v,a+w,a+u+v+w}, which
contains the 2-flat generated by a,w, and u+ v.

Now we are ready to finish the proof of the theorem by induction. Assume that
the necessity part in the theorem holds for all k′ < k, where k > 4 for q = 2 and k > 3
for q = 1. We shall show that A contains a (k − 2)-flat.

Let H be as in Lemma 1. If H is itself a (k − 2)-flat, then there is nothing to

UNIQUENESS OF SOME RESOLUTION IV DESIGNS 575

prove. Otherwise, by Lemma 3, 2k−2 − 1 ≤ |H| ≤ 2k−2 + q − 1, where q = 1 or 2.
Suppose |H| = 2k−2 − 1 + u, where 0 ≤ u ≤ q. By Lemma 3(i), 〈H〉\H contains no
lines. Hence H maximizes the number of lines among all the (2k−2−1+u)-subsets of
〈H〉. By the induction hypothesis, H is obtained by adding q points to a (k − 3)-flat
in 〈H〉. Let E be this (k − 3)-flat. Then |A ∩ (〈H〉\E)| = u. On the other hand,
s = 2k−2 + q − 1 − u. We have |A ∩ (〈H〉\E)| < 2k−2 − 1

2 (s + 1) for k > 3, q = 1
and k > 4, q = 2. It follows from Lemma 4 that either E or 〈H〉\E is a subset of
{b1, . . . , bs}. In both cases, A clearly contains a (k − 2)-flat.

REFERENCES

R. C. Bose (1947), Mathematical theory of the symmetrical factorial design, Sankhyā, 8, pp. 107–
166.

G. E. P. Box and J. S. Hunter (1961a), The 2k−p fractional factorial designs, I, Technometrics,
3, pp. 311–351.

G. E. P. Box and J. S. Hunter (1961b), The 2k−p fractional factorial designs, II, Technometrics,
3, pp. 449–458.

H. Chen (1993), Contributions to Experimental Designs, Ph.D. dissertation, University of Illinois at
Chicago, Chicago, IL.

H. Chen and C. S. Cheng (1999), Theory of optimal blocking of 2n−m designs, Ann. Statist., 27,
pp. 1948–1973.

H. Chen and A. S. Hedayat (1996), 2n−m fractional factorial designs with weak minimum aberra-
tion, Ann. Statist., 24, pp. 2536–2548.

C. S. Cheng and R. Mukerjee (1998), Regular fractional factorial designs with minimum aberration
and maximum estimation capacity, Ann. Statist., 26, pp. 2289–2300.

C. S. Cheng and R. Mukerjee (1997), Blocked regular fractional factorial designs with maximum
estimation capacity, revised for Ann. Statist.

A. S. Hedayat, N. J. A. Sloane, and J. Stufken (1999), Orthogonal Arrays: Theory and Appli-
cations, Springer-Verlag, New York.

B. H. Margolin (1969), Resolution IV fractional factorial designs, J. Roy. Statist. Soc. Ser. B, 31,
pp. 514–523.

R. Mukerjee and C. F. J. Wu (1999), Blocking in regular fractional factorials: A projective geo-
metric approach, Ann. Statist., 27, pp. 1256–1271.

	SJDMEC_V13_i1_p0002
	SJDMEC_V13_i1_p0025
	SJDMEC_V13_i1_p0033
	SJDMEC_V13_i1_p0048
	SJDMEC_V13_i1_p0056
	SJDMEC_V13_i1_p0064
	SJDMEC_V13_i1_p0079
	SJDMEC_V13_i1_p0105
	SJDMEC_V13_i1_p0139
	SJDMEC_V13_i2_p0145
	SJDMEC_V13_i2_p0154
	SJDMEC_V13_i2_p0179
	SJDMEC_V13_i2_p0194
	SJDMEC_V13_i2_p0202
	SJDMEC_V13_i2_p0212
	SJDMEC_V13_i2_p0227
	SJDMEC_V13_i2_p0255
	SJDMEC_V13_i2_p0268
	SJDMEC_V13_i3_p0281
	SJDMEC_V13_i3_p0295
	SJDMEC_V13_i3_p0302
	SJDMEC_V13_i3_p0313
	SJDMEC_V13_i3_p0324
	SJDMEC_V13_i3_p0346
	SJDMEC_V13_i3_p0354
	SJDMEC_V13_i3_p0370
	SJDMEC_V13_i3_p0384
	SJDMEC_V13_i3_p0403
	SJDMEC_V13_i4_p0419
	SJDMEC_V13_i4_p0436
	SJDMEC_V13_i4_p0454
	SJDMEC_V13_i4_p0465
	SJDMEC_V13_i4_p0492
	SJDMEC_V13_i4_p0505
	SJDMEC_V13_i4_p0521
	SJDMEC_V13_i4_p0535
	SJDMEC_V13_i4_p0571

